Full Width [alt+shift+f] Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
50
I like to think that I write code deliberately. I’m an admittedly slow developer, and I want to believe I do so on purpose. I want to know as much as I can about the context of what it is that I'm automating. I also use a limited set of tools. I used old computers for a long time, both out of an environmental mindset, but also because a slower computer quickly makes it obvious when something scales poorly.1 The idea is to seek friction, and harness it as an early signal that whatever I’m doing may need to be tweaked, readjusted. I find this friction, and even frustration in general to also be useful around learning approaches.2 In opposition to the way I'd like to do things, everything about the tech industry is oriented towards elevated productivity, accelerated growth, and "easy" solutions to whole families of problems. I feel that maybe we should teach people to program the way they teach martial arts, like only in the most desperate situations when all else failed should you...
2 months ago

More from Ferd.ca

Carrots, sticks, and making things worse

This blog post originally appeared on the LFI blog but I decided to post it on my own as well. Every organization has to contend with limits: scarcity of resources, people, attention, or funding, friction from scaling, inertia from previous code bases, or a quickly shifting ecosystem. And of course there are more, like time, quality, effort, or how much can fit in anyone's mind. There are so many ways for things to go wrong; your ongoing success comes in no small part from the people within your system constantly navigating that space, making sacrifice decisions and trading off some things to buy runway elsewhere. From time to time, these come to a head in what we call a goal conflict, where two important attributes clash with each other. These are not avoidable, and in fact are just assumed to be so in many cases, such as "cheap, fast, and good; pick two". But somehow, when it comes to more specific details of our work, that clarity hides itself or gets obscured by the veil of normative judgments. It is easy after an incident to think of what people could have done differently, of signals they should have listened to, or of consequences they would have foreseen had they just been a little bit more careful. From this point of view, the idea of reinforcing desired behaviors through incentives, both positive (bonuses, public praise, promotions) and negative (demerits, re-certification, disciplinary reviews) can feel attractive. (Do note here that I am specifically talking of incentives around specific decision-making or performance, rather than broader ones such as wages, perks, overtime or hazard pay, or employment benefits, even though effects may sometimes overlap.) But this perspective itself is a trap. Hindsight bias—where we overestimate how predictable outcomes were after the fact—and its close relative outcome bias—where knowing the results after the fact tints how we judge the decision made—both serve as good reminders that we should ideally look at decisions as they were being made, with the information known and pressures present then.. This is generally made easier by assuming people were trying to do a good job and get good results; a judgment that seems to make no sense asks of us that we figure out how it seemed reasonable at the time. Events were likely challenging, resources were limited (including cognitive bandwidth), and context was probably uncertain. If you were looking for goal conflicts and difficult trade-offs, this is certainly a promising area in which they can be found. Taking people's desire for good outcomes for granted forces you to shift your perspective. It demands you move away from thinking that somehow more pressure toward succeeding would help. It makes you ask what aid could be given to navigate the situation better, how the context could be changed for the trade-offs to be negotiated differently next time around. It lets us move away from wondering how we can prevent mistakes and move toward how we could better support our participants. Hell, the idea of rewarding desired behavior feels enticing even in cases where your review process does not fall into the traps mentioned here, where you take a more just approach. But the core idea here is that you can't really expect different outcomes if the pressures and goals that gave them rise don't change either. During incidents, priorities in play already are things like "I've got to fix this to keep this business alive", stabilizing the system to prevent large cascades, or trying to prevent harm to users or customers. They come with stress, adrenalin, and sometimes a sense of panic or shock. These are likely to rank higher in the minds of people than “what’s my bonus gonna be?” or “am I losing a gift card or some plaque if I fail?” Adding incentives, whether positive or negative, does not clarify the situation. It does not address goal conflicts. It adds more variables to the equation, complexifies the situation, and likely makes it more challenging. Chances are that people will make the same decisions they would have made (and have been making continuously) in the past, obtaining the desired outcomes. Instead, they’ll change what they report later in subtle ways, by either tweaking or hiding information to protect themselves, or by gradually losing trust in the process you've put in place. These effects can be amplified when teams are given hard-to-meet abstract targets such as lowering incident counts, which can actively interfere with incident response by creating new decision points in people's mental flows. If responders have to discuss and classify the nature of an incident to fit an accounting system unrelated to solving it right now, their response is likely made slower, more challenging. This is not to say all attempts at structure and classification would hinder proper response, though. Clarifying the critical elements to salvage first, creating cues and language for patterns that will be encountered, and agreeing on strategies that support effective coordination across participants can all be really productive. It needs to be done with a deeper understanding of how your incident response actually works, and that sometimes means unpleasant feedback about how people perceive your priorities. I've been in reviews where people stated things like "we know that we get yelled at more for delivering features late than broken code so we just shipped broken code since we were out of time", or who admitted ignoring execs who made a habit of coming down from above to scold employees into fixing things they were pressured into doing anyway. These can be hurtful for an organization to consider, but they are nevertheless a real part of how people deal with exceptional situations. By trying to properly understand the challenges, by clarifying the goal conflicts that arise in systems and result in sometimes frustrating trade-offs, and by making learning from these experiences an objective of its own, we can hopefully make things a bit better. Grounding our interventions within a richer, more naturalistic understanding of incident response and all its challenges is a small—albeit a critical one—part of it all.

4 months ago 44 votes
My Blog Engine is the Erlang Build Tool

From time to time, people ask me what I use to power my blog, maybe because they like the minimalist form it has. I tell them it’s a bad idea and that I use the Erlang compiler infrastructure for it, and they agree to look elsewhere. After launching my notes section, I had to fully clean up my engine. I thought I could write about how it works because it’s fairly unique and interesting, even if you should probably not use it. The Requirements I first started my blog 14 years ago. It had roughly the same structure as it does at the time of writing this: a list of links and text with nothing else. It did poorly with mobile (which was still sort of new but I should really work to improve these days), but okay with screen readers. It’s gotta be minimal enough to load fast on old devices. There’s absolutely nothing dynamic on here. No JavaScript, no comments, no tracking, and I’m pretty sure I’ve disabled most logging and retention. I write into a void, either transcribing talks or putting down rants I’ve repeated 2-3 times to other people so it becomes faster to just link things in the future. I mostly don’t know what gets read or not, but over time I found this kept the experience better for me than chasing readers or views. Basically, a static site is the best technology for me, but from time to time it’s nice to be able to update the layout, add some features (like syntax highlighting or an RSS feed) so it needs to be better than flat HTML files. Internally it runs with erlydtl, an Erlang implementation of Django Templates, which I really liked a decade and a half ago. It supports template inheritance, which is really neat to minimize files I have to edit. All I have is a bunch of files containing my posts, a few of these templates, and a little bit of Rebar3 config tying them together. There are some features that erlydtl doesn’t support but that I wanted anyway, notably syntax highlighting (without JavaScript), markdown support, and including subsections of HTML files (a weird corner case to support RSS feeds without powering them with a database). The feature I want to discuss here is “only rebuild what you strictly need to,” which I covered by using the Rebar3 compiler. Rebar3’s Compiler Rebar3 is the Erlang community’s build tool, which Tristan and I launched over 10 years ago, a follower to the classic rebar 2.x script. A funny requirement for Rebar3 is that Erlang has multiple compilers: one for Erlang, but also one for MIB files (for SNMP), the Leex syntax analyzer generator, and the Yecc parser generator. It also is plugin-friendly in order to compile Elixir modules, and other BEAM languages, like LFE, or very early versions of Gleam. We needed to support at least four compilers out of the box, and to properly track everything such that we only rebuild what we must. This is done using a Directed Acyclic Graph (DAG) to track all files, including build artifacts. The Rebar3 compiler infrastructure works by breaking up the flow of compilation in a generic and specific subset. The specific subset will: Define which file types and paths must be considered by the compiler. Define which files are dependencies of other files. Be given a graph of all files and their artifacts with their last modified times (and metadata), and specify which of them need rebuilding. Compile individual files and provide metadata to track the artifacts. The generic subset will: Scan files and update their timestamps in a graph for the last modifications. Use the dependency information to complete the dependency graph. Propagate the timestamps of source files modifications transitively through the graph (assume you update header A, included by header B, applied by macro C, on file D; then B, C, and D are all marked as modified as recently as A in the DAG). Pass this updated graph to the specific part to get a list of files to build (usually by comparing which source files are newer than their artifacts, but also if build options changed). Schedule sequential or parallel compilation based on what the specific part specified. Update the DAG with the artifacts and build metadata, and persist the data to disk. In short, you build a compiler plugin that can name directories, file extensions, dependencies, and can compare timestamps and metadata. Then make sure this plugin can compile individual files, and the rest is handled for you. The blog engine Since I’m currently the most active Rebar3 maintainer, I’ve definitely got to maintain the compiler infrastructure described earlier. Since my blog needed to rebuild the fewest static files possible and I already used a template compiler, plugging it into Rebar3 became the solution demanding the least effort. It requires a few hundred lines of code to write the plugin and a bit of config looking like this: {blog3r,[{vars,[{url,[{base,"https://ferd.ca/"},{notes,"https://ferd.ca/notes/"},{img,"https://ferd.ca/static/img/"},...]},%% Main site{index,#{template=>"index.tpl",out=>"index.html",section=>main}},{index,#{template=>"rss.tpl",out=>"feed.rss",section=>main}},%% Notes section{index,#{template=>"index-notes.tpl",out=>"notes/index.html",section=>notes}},{index,#{template=>"rss-notes.tpl",out=>"notes/feed.rss",section=>notes}},%% All sections' pages.{sections,#{main=>{"posts/","./",[{"Mon, 02 Sep 2024 11:00:00 EDT","My Blog Engine is the Erlang Build Tool","blog-engine-erlang-build-tool.md.tpl"},{"Thu, 30 May 2024 15:00:00 EDT","The Review Is the Action Item","the-review-is-the-action-item.md.tpl"},{"Tue, 19 Mar 2024 11:00:00 EDT","A Commentary on Defining Observability","a-commentary-on-defining-observability.md.tpl"},{"Wed, 07 Feb 2024 19:00:00 EST","A Distributed Systems Reading List","distsys-reading-list.md.tpl"},...]},notes=>{"notes/","notes/",[{"Fri, 16 Aug 2024 10:30:00 EDT","Paper: Psychological Safety: The History, Renaissance, and Future of an Interpersonal Construct","papers/psychological-safety-interpersonal-construct.md.tpl"},{"Fri, 02 Aug 2024 09:30:00 EDT","Atomic Accidents and Uneven Blame","atomic-accidents-and-uneven-blame.md.tpl"},{"Sat, 27 Jul 2024 12:00:00 EDT","Paper: Moral Crumple Zones","papers/moral-crumple-zones.md.tpl"},{"Tue, 16 Jul 2024 19:00:00 EDT","Hutchins' Distributed Cognition in The Wild","hutchins-distributed-cognition-in-the-wild.md.tpl"},...]}}}]}. And blog post entry files like this: {% extends "base.tpl" %} {% block content %} <p>I like cats. I like food. <br /> I don't especially like catfood though.</p> {% markdown %} ### Have a subtitle And then _all sorts_ of content! - lists - other lists - [links]({{ url.base }}section/page)) - and whatever fits a demo > Have a quote to close this out {% endmarkdown %} {% endblock %} These call to a parent template (see base.tpl for the structure) to inject their content. The whole site gets generated that way. Even compiler error messages are lifted from the Rebar3 libraries (although I haven't wrapped everything perfectly yet), with the following coming up when I forgot to close an if tag before closing a for loop: $ rebar3 compile ===> Verifying dependencies... ===> Analyzing applications... ===> Compiling ferd_ca ===> template error: ┌─ /home/ferd/code/ferd-ca/templates/rss.tpl: │ 24 │ {% endfor %} │ ╰── syntax error before: "endfor" ===> Compiling templates/rss.tpl failed As you can see, I build my blog by calling rebar3 compile, the same command as I do for any Erlang project. I find it interesting that on one hand, this is pretty much the best design possible for me given that it represents almost no new code, no new tools, and no new costs. It’s quite optimal. On the other hand, it’s possibly the worst possible tool chain imaginable for a blog engine for almost anybody else.

5 months ago 51 votes
The Review Is the Action Item

2024/05/30 The Review Is the Action Item I like to consider running an incident review to be its own action item. Other follow-ups emerging from it are a plus, but the point is to learn from incidents, and the review gives room for that to happen. This is not surprising advice if you’ve read material from the LFI community and related disciplines. However, there are specific perspectives required to make this work, and some assumptions necessary for it, without which things can break down. How can it work? In a more traditional view, the system is believed to be stable, then disrupted into an incident. The system gets stabilized, and we must look for weaknesses that can be removed or barriers that could be added in order to prevent such disruption in the future. Other perspectives for systems include views where they are never truly stable. Things change constantly; uncertainty is normal. Under that lens, systems can’t be forced into stability by control or authority. They can be influenced and adapt on an ongoing basis, and possibly kept in balance through constant effort. Once you adopt a socio-technical perspective, the hard-to-model nature of humans becomes a desirable trait to cope with chaos. Rather than a messy variable to stamp out, you’ll want to give them more tools and ways to keep all the moving parts of the subsystems going. There, an incident review becomes an arena where misalignment in objectives can be repaired, where strategies and tactics can be discussed, where mental models can be corrected and enriched, where voices can be heard when they wouldn’t be, and where we are free to reflect on the messy reality that drove us here. This is valuable work, and establishing an environment where it takes place is a key action item on its own. People who want to keep things working will jump on this opportunity if they see any value in it. Rather than giving them tickets to work on, we’re giving them a safe context to surface and discuss useful information. They’ll carry that information with them in the future, and it may influence the decisions they make, here and elsewhere. If the stories that come out of reviews are good enough, they will be retold to others, and the organization will have learned something. That belief people will do better over time as they learn, to me, tends to be worth more than focusing on making room for a few tickets in the backlog. How can it break down? One of the unnamed assumptions with this whole approach is that teams should have the ability to influence their own roadmap and choose some of their own work. A staunchly top-down organization may leverage incident reviews as a way to let people change the established course with a high priority. That use of incident reviews can’t be denied in these contexts. We want to give people the information and the perspectives they need to come up with fixes that are effective. Good reviews with action items ought to make sense, particularly in these orgs where most of the work is normally driven by folks outside of the engineering teams. But if the maintainers do not have the opportunity to schedule work they think needs doing outside of the aftermath of an incident—work that is by definition reactive—then they have no real power to schedule preventive work on their own. And so that’s a place where learning being its own purpose breaks down: when the learnings can’t be applied. Maybe it feels like “good” reviews focused on learning apply to a surprisingly narrow set of teams then, because most teams don’t have that much control. The question here really boils down to “who is it that can apply things they learned, and when?” If the answer is “almost no one, and only when things explode,” that’s maybe a good lesson already. That’s maybe where you’d want to start remediating. Note that even this perspective is a bit reductionist, which is also another way in which learning reviews may break down. By narrowing knowledge’s utility only to when it gets applied in measurable scheduled work, we stop finding value outside of this context, and eventually stop giving space for it. It’s easy to forget that we don’t control what people learn. We don’t choose what the takeaways are. Everyone does it for themselves based on their own lived experience. More importantly, we can’t stop people from using the information they learned, whether at work or in their personal life. Lessons learned can be applied anywhere and any time, and they can become critically useful at unexpected times. Narrowing the scope of your reviews such that they only aim to prevent bad accidents indirectly hinders creating fertile grounds for good surprises as well. Going for better While the need for action items is almost always there, a key element of improving incident reviews is to not make corrections the focal point. Consider the incident review as a preliminary step, the data-gathering stage before writing down the ideas. You’re using recent events as a study of what’s surprising within the system, but also of how it is that things usually work well. Only once that perspective is established does it make sense to start thinking of ways of modifying things. Try it with only one or two reviews at first. Minor incidents are usually good, because following the methods outlined in docs like the Etsy Debriefing Facilitation Guide and the Howie guide tends to reveal many useful insights in incidents people would have otherwise overlooked as not very interesting. As you and your teams see value, expand to more and more incidents. It also helps to set the tone before and during the meetings. I’ve written a set of “ground rules” we use at Honeycomb and that my colleague Lex Neva has transcribed, commented, and published. See if something like that could adequately frame the session.. If abandoning the idea of action items seems irresponsible or impractical to you, keep them. But keep them with some distance; the common tip given by the LFI community is to schedule another meeting after the review to discuss them in isolation. iiii At some point, that follow-up meeting may become disjoint from the reviews. There’s not necessarily a reason why every incident needs a dedicated set of fixes (longer-term changes impacting them could already be in progress, for example), nor is there a reason to wait for an incident to fix things and improve them. That’s when you decouple understanding from fixing, and the incident review becomes its own sufficient action item.

8 months ago 69 votes
A Commentary on Defining Observability

2024/03/19 A Commentary on Defining Observability Recently, Hazel Weakly has published a great article titled Redefining Observability. In it, she covers competing classical definitions observability, weaknesses they have, and offers a practical reframing of the concept in the context of software organizations (well, not only software organizations, but the examples tilt that way). I agree with her post in most ways, and so this blog post of mine is more of an improv-like “yes, and…” response to it, in which I also try to frame the many existing models as complementary or contrasting perspectives of a general concept. The main points I’ll try to bring here are on the topics of the difference between insights and questions, the difference between observability and data availability, reinforcing a socio-technical definition, the mess of complex systems and mapping them, and finally, a hot take on the use of models when reasoning about systems. Insights and Questions The control theory definition of observability, from Rudolf E. Kálmán, goes as follows: Observability is a measure of how well internal states of a system can be inferred from knowledge of its external outputs. The one from Woods and Hollnagel in cognitive engineering goes like this: Observability is feedback that provides insight into a process and refers to the work needed to extract meaning from available data. Hazel version’s, by comparison, is: Observability is the process through which one develops the ability to ask meaningful questions, get useful answers, and act effectively on what you learn. While all three definitions relate to extracting information from a system, Hazel’s definition sits at a higher level by specifically mentioning questions and actions. It’s a more complete feedback loop including some people, their mental models, and seeking to enrich them or use them. I think that higher level ends up erasing a property of observability in the other definitions: it doesn’t have to be inquisitive nor analytical. Let’s take a washing machine, for example. You can know whether it is being filled or spinning by sound. The lack of sound itself can be a signal about whether it is running or not. If it is overloaded, it might shake a lot and sound out of balance during the spin cycle. You don’t necessarily have to be in the same room as the washing machine nor paying attention to it to know things about its state, passively create an understanding of normalcy, and learn about some anomalies in there. Another example here would be something as simple as a book. If you’re reading a good old paper book, you know you’re nearing the end of it just by how the pages you have read make a thicker portion of the book than those you haven’t read yet. You do not have to think about it, the information is inherent to the medium. An ebook read on an electronic device, however, will hide that information unless a design decision is made to show how many lines or words have been read, display a percentage, or a time estimate of the content left. Observability for the ebook isn’t innate to its structure and must be built in deliberately. Similarly, you could know old PCs were doing heavy work if the disk was making noise and when the fan was spinning up; it is not possible to know as much on a phone or laptop that has an SSD and no fan unless someone builds a way to expose this data. Associations and patterns can be formed by the observer in a way that provides information and explanations, leading to effective action and management of the system in play. It isn’t something always designed or done on purpose, but it may need to be. The key element is that an insight can be obtained without asking questions. In fact, a lot of anomaly detection is done passively, by the observer having a sort of mental construct of what normal is that lets them figure out what should happen next—what the future trajectory of the system is—and to then start asking questions when these expectations are not met. The insights, therefore, can come before the question is asked. Observability can be described as a mechanism behind this. I don’t think that this means Hazel’s definition is wrong; I think it might just be a consequence of the scale at which her definition operates. However, this distinction is useful for a segue into the difference between data availability and observability. The difference between observability and data availability For a visual example, I’ll use variations on a painting from 1866 named In a Roman Osteria, by Danish painter Carl Bloch: The first one is an outline, and the second is a jigsaw puzzle version (with all the pieces are right side up with the correct orientation, at least). The jigsaw puzzle has 100% data availability. All of the information is there and you can fully reconstruct the initial painting. The outlined version has a lot less data available, but if you’ve never seen the painting before, you will get a better understanding from it in absolutely no time compared to the jigsaw. This “make the jigsaw show you what you need faster” approach is more or less where a lot of observability vendors operate: the data is out there, you need help to store it and put it together and extract the relevancy out of it: What this example highlights though is that while you may get better answers with richer and more accurate data (given enough time, tools, and skill), the outline is simpler and may provide adequate information with less effort required from the observer. Effective selection of data, presented better, may be more appropriate during high-tempo, tense situations where quick decisions can make a difference. This, at least, implies that observability is not purely a data problem nor a tool problem (which lines up, again, with what Hazel said in her post). However, it hints at it being a potential design problem. The way data is presented, the way affordances are added, and whether the system is structured in a way that makes storytelling possible all can have a deep impact in how observable it turns out to be. Sometimes, coworkers mention that some of our services are really hard to interpret even when using Honeycomb (which we build and operate!) My theory about that is that too often, the data we output for observability is structured with the assumption that the person looking at it will have the code on hand—as the author did when writing it—and will be able to map telemetry data to specific areas of code. So when you’re in there writing queries and you don’t know much about the service, the traces mean little. As a coping mechanism, social patterns emerge where data that is generally useful is kept on some specific spans that are considered important, but that you can only find if someone more familiar with this area explained where it was to you already. It draws into pre-existing knowledge of the architecture, of communication patterns, of goals of the application that do not live within the instrumentation. Traces that are easier to understand and explore make use of patterns that are meaningful to the investigator, regardless of their understanding of the code. For the more “understandable” telemetry data, the naming, structure, and level of detail are more related to how the information is to be presented than the structure of the underlying implementation. Observability requires interpretation, and interpretation sits in the observer. What is useful or not will be really hard to predict, and people may find patterns and affordances in places that weren’t expected or designed, but still significant. Catering to this property requires taking a perspective of the system that is socio-technical. The System is Socio-Technical Once again for this section, I agree with Hazel on the importance of people in the process. She has lots of examples of good questions that exemplify this. I just want to push even harder here. Most of the examples I’ve given so far were technical: machines and objects whose interpretation is done by humans. Real complex systems don’t limit themselves to technical components being looked at; people are involved, talking to each other, making decisions, and steering the overall system around. This is nicely represented by the STELLA Report’s Above/Below the line diagram: The continued success of the overall system does not purely depend on the robustness of technical components and their ability to withstand challenges for which they were designed. When challenges beyond what was planned for do happen, and when the context in which the system operates changes (whether it is due to competition, legal frameworks, pandemics, or evolving user needs and tastes), adjustments need to be made to adapt the system and keep it working. The adaptation is not done purely on a technical level, by fixing and changing the software and hardware, but also by reconfiguring the organization, by people learning new things, by getting new or different people in the room, by reframing the situation, and by steering things in a new direction. There is a constant gap to bridge between a solution and its context, and the ability to anticipate these challenges, prepare for them, and react to them can be informed by observability. Observability at the technical level (“instrument the code and look at it with tools”) is covered by all definitions of observability in play here, but I want to really point out that observability can go further. If you reframe your system as properly socio-technical, then yes you will need technical observability interpreted at the social level. But you may also need social observability handled at the social level: are employees burning out? Do we have the psychological safety required to learn from events? Do I have silos of knowledge that render my organization brittle? What are people working on? Where is the market at right now? Are our users leaving us for competition? Are our employees leaving us for competitions? How do we deal with a fast-moving space with limited resources? There are so many ways for an organization to fail that aren’t technical, and ideally we’d also keep an eye on them. A definition of observability that is technical in nature can set artificial boundaries to your efforts to gain insights from ongoing processes. I believe Hazel’s definition maps to this ideal more clearly than the cognitive engineering one, but I want to re-state the need to avoid strictly framing its application to technical components observed by people. A specific dynamic I haven’t mentioned here—and this is something disciplines like cybernetics, cognitive engineering, and resilience engineering all have interests for—is one where the technical elements of the system know about the social elements of the system. We essentially do not currently have automation (nor AI) sophisticated enough to be good team members. For example, while I can detect a coworker is busy managing a major outage or meeting with important customers in the midst of a contract renewal, pretty much no alerting system will be able to find that information and decide to ask for assistance from someone else who isn’t as busy working on high-priority stuff within the system. The ability of one agent to shape their own work based on broader objectives than their private ones is something that requires being able to observe other agents in the system, map that to higher goals, and shape their own behaviour accordingly. Ultimately, a lot of decisions are made through attempts at steering the system or part of it in a given direction. This needs some sort of [mental] map of the relationships in the system, and an even harder thing to map out is the impact of having this information will have on the system itself. Complex Systems Mapping Themselves Recently I was at work trying to map concepts about reliability, and came up with this mess of a diagram showing just a tiny portion of what I think goes into influencing system reliability (the details are unimportant): In this concept map, very few things are purely technical; lots of work is social, process-driven, and is about providing feedback loops. As the system grows more complex, analysis and control lose some power, and sense-making and influence become more applicable. The overall system becomes unknowable, and nearly impossible to map out—by the time the map is complete, it’s already outdated. On top of that, the moment the above map becomes used to make decisions, its own influence might need to become part of itself, since it has entered the feedback loop of how decisions are made. These things can’t be planned out, and sometimes can only be discovered in a timely manner by acting. Basically, the point here is that not everything is observable via data availability and search. Some questions you have can only be answered by changing the system, either through adding new data, or by extracting the data through probing of the system. Try a bunch of things and look at the consequences. A few years ago, I was talking with David Woods (to be exact, he was telling me useful things and I was listening) and he compared complex socio-technical systems to a messy web; everything is somehow connected to everything, and it’s nearly impossible to just keep track of all the relevant connections in your head. Things change and some elements will be more relevant today than they were yesterday. As we walk the web, we rediscover connections that are important, some that stopped being so significant, and so on. Experimental practices like chaos engineering or fault injection aren’t just about testing behaviour for success and failure, they are also about deliberately exploring the connections and parts of the web we don’t venture into as often as we’d need to in order to maintain a solid understanding of it. One thing to keep in mind is that the choice of which experiment to run is also based on the existing map and understanding of situations and failures that might happen. There is a risk in the planners and decision-makers not considering themselves to be part of the system they are studying, and of ignoring their own impact and influence. This leads to elements such as pressures, goal conflicts, and adaptations to them, which may tend to only become visible during incidents. The framing of what to investigate, how to investigate it, how errors are constructed, which questions are worth asking or not worth asking all participate to the weird complex feedback loop within the big messy systems we’re in. The tools required for that level of analysis are however very, very different from what most observability vendors provide, and are generally never marketed as such, which does tie back on Hazel’s conclusion that “observability is organizational learning.” A Hot Take on the Use of Models Our complex socio-technical systems aren’t closed systems. Competitors exist; employees bring in their personal life into their work life; the environment and climate in which we live plays a role. It’s all intractable, but simplified models help make bits of it all manageable, at least partially. A key criterion is knowing when a model is worth using and when it is insufficient. Hazel Weakly again hints at this when she states: The control theory version gives you a way to know whether a system is observable or not, but it ignores the people and gives you no way to get there The cognitive engineering version is better, but doesn’t give you a “why” you should care, nor any idea of where you are and where to go Her version provides a motivation and a sense of direction as a process I don’t think these versions are in conflict. They are models, and models have limits and contextual uses. In general I’d like to reframe these models as: What data may be critical to provide from a technical component’s point of view (control theory model) How people may process the data and find significance in it (cognitive engineering model) How organizations should harness the mechanism as a feedback loop to learn and improve (Hazel Weakly’s model) They work on different concerns by picking a different area of focus, and therefore highlight different parts of the overall system. It’s a bit like how looking at phenomena at a human scale with your own eyes, at a micro scale with a microscope, and at an astronomical scale with a telescope, all provide you with useful information despite operating at different levels. While the astronomical scale tools may not bear tons of relevance at the microscopic scale operations, they can all be part of the same overall search of understanding. Much like observability can be improved despite having less data if it is structured properly, a few simpler models can let you make better decisions in the proper context. My hope here was not to invalidate anything Hazel posted, but to keep the validity and specificity of the other models through additional contextualization.

10 months ago 73 votes

More in programming

Adding auto-generated cover images to EPUBs downloaded from AO3

I was chatting with a friend recently, and she mentioned an annoyance when reading fanfiction on her iPad. She downloads fic from AO3 as EPUB files, and reads it in the Kindle app – but the files don’t have a cover image, and so the preview thumbnails aren’t very readable: She’s downloaded several hundred stories, and these thumbnails make it difficult to find things in the app’s “collections” view. This felt like a solvable problem. There are tools to add cover images to EPUB files, if you already have the image. The EPUB file embeds some key metadata, like the title and author. What if you had a tool that could extract that metadata, auto-generate an image, and use it as the cover? So I built that. It’s a small site where you upload EPUB files you’ve downloaded from AO3, the site generates a cover image based on the metadata, and it gives you an updated EPUB to download. The new covers show the title and author in large text on a coloured background, so they’re much easier to browse in the Kindle app: If you’d find this helpful, you can use it at alexwlchan.net/my-tools/add-cover-to-ao3-epubs/ Otherwise, I’m going to explain how it works, and what I learnt from building it. There are three steps to this process: Open the existing EPUB to get the title and author Generate an image based on that metadata Modify the EPUB to insert the new cover image Let’s go through them in turn. Open the existing EPUB I’ve not worked with EPUB before, and I don’t know much about it. My first instinct was to look for Python EPUB libraries on PyPI, but there was nothing appealing. The results were either very specific tools (convert EPUB to/from format X) or very unmaintained (the top result was last updated in April 2014). I decied to try writing my own code to manipulate EPUBs, rather than using somebody else’s library. I had a vague memory that EPUB files are zips, so I changed the extension from .epub to .zip and tried unzipping one – and it turns out that yes, it is a zip file, and the internal structure is fairly simple. I found a file called content.opf which contains metadata as XML, including the title and author I’m looking for: <?xml version='1.0' encoding='utf-8'?> <package xmlns="http://www.idpf.org/2007/opf" version="2.0" unique-identifier="uuid_id"> <metadata xmlns:opf="http://www.idpf.org/2007/opf" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:calibre="http://calibre.kovidgoyal.net/2009/metadata"> <dc:title>Operation Cameo</dc:title> <meta name="calibre:timestamp" content="2025-01-25T18:01:43.253715+00:00"/> <dc:language>en</dc:language> <dc:creator opf:file-as="alexwlchan" opf:role="aut">alexwlchan</dc:creator> <dc:identifier id="uuid_id" opf:scheme="uuid">13385d97-35a1-4e72-830b-9757916d38a7</dc:identifier> <meta name="calibre:title_sort" content="operation cameo"/> <dc:description><p>Some unusual orders arrive at Operation Mincemeat HQ.</p></dc:description> <dc:publisher>Archive of Our Own</dc:publisher> <dc:subject>Fanworks</dc:subject> <dc:subject>General Audiences</dc:subject> <dc:subject>Operation Mincemeat: A New Musical - SpitLip</dc:subject> <dc:subject>No Archive Warnings Apply</dc:subject> <dc:date>2023-12-14T00:00:00+00:00</dc:date> </metadata> … That dc: prefix was instantly familiar from my time working at Wellcome Collection – this is Dublin Core, a standard set of metadata fields used to describe books and other objects. I’m unsurprised to see it in an EPUB; this is exactly how I’d expect it to be used. I found an article that explains the structure of an EPUB file, which told me that I can find the content.opf file by looking at the root-path element inside the mandatory META-INF/container.xml file which is every EPUB. I wrote some code to find the content.opf file, then a few XPath expressions to extract the key fields, and I had the metadata I needed. Generate a cover image I sketched a simple cover design which shows the title and author. I wrote the first version of the drawing code in Pillow, because that’s what I’m familiar with. It was fine, but the code was quite flimsy – it didn’t wrap properly for long titles, and I couldn’t get custom fonts to work. Later I rewrote the app in JavaScript, so I had access to the HTML canvas element. This is another tool that I haven’t worked with before, so a fun chance to learn something new. The API felt fairly familiar, similar to other APIs I’ve used to build HTML elements. This time I did implement some line wrapping – there’s a measureText() API for canvas, so you can see how much space text will take up before you draw it. I break the text into words, and keeping adding words to a line until measureText tells me the line is going to overflow the page. I have lots of ideas for how I could improve the line wrapping, but it’s good enough for now. I was also able to get fonts working, so I picked Georgia to match the font used for titles on AO3. Here are some examples: I had several ideas for choosing the background colour. I’m trying to help my friend browse her collection of fic, and colour would be a useful way to distinguish things – so how do I use it? I realised I could get the fandom from the EPUB file, so I decided to use that. I use the fandom name as a seed to a random number generator, then I pick a random colour. This means that all the fics in the same fandom will get the same colour – for example, all the Star Wars stories are a shade of red, while Star Trek are a bluey-green. This was a bit harder than I expected, because it turns out that JavaScript doesn’t have a built-in seeded random number generator – I ended up using some snippets from a Stack Overflow answer, where bryc has written several pseudorandom number generators in plain JavaScript. I didn’t realise until later, but I designed something similar to the placeholder book covers in the Apple Books app. I don’t use Apple Books that often so it wasn’t a deliberate choice to mimic this style, but clearly it was somewhere in my subconscious. One difference is that Apple’s app seems to be picking from a small selection of background colours, whereas my code can pick a much nicer variety of colours. Apple’s choices will have been pre-approved by a designer to look good, but I think mine is more fun. Add the cover image to the EPUB My first attempt to add a cover image used pandoc: pandoc input.epub --output output.epub --epub-cover-image cover.jpeg This approach was no good: although it added the cover image, it destroyed the formatting in the rest of the EPUB. This made it easier to find the fic, but harder to read once you’d found it. An EPUB file I downloaded from AO3, before/after it was processed by pandoc. So I tried to do it myself, and it turned out to be quite easy! I unzipped another EPUB which already had a cover image. I found the cover image in OPS/images/cover.jpg, and then I looked for references to it in content.opf. I found two elements that referred to cover images: <?xml version="1.0" encoding="UTF-8"?> <package xmlns="http://www.idpf.org/2007/opf" version="3.0" unique-identifier="PrimaryID"> <metadata xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:opf="http://www.idpf.org/2007/opf"> <meta name="cover" content="cover-image"/> … </metadata> <manifest> <item id="cover-image" href="images/cover.jpg" media-type="image/jpeg" properties="cover-image"/> … </manifest> </package> This gave me the steps for adding a cover image to an EPUB file: add the image file to the zipped bundle, then add these two elements to the content.opf. Where am I going to deploy this? I wrote the initial prototype of this in Python, because that’s the language I’m most familiar with. Python has all the libraries I need: The zipfile module can unpack and modify the EPUB/ZIP The xml.etree or lxml modules can manipulate XML The Pillow library can generate images I built a small Flask web app: you upload the EPUB to my server, my server does some processing, and sends the EPUB back to you. But for such a simple app, do I need a server? I tried rebuilding it as a static web page, doing all the processing in client-side JavaScript. That’s simpler for me to host, and it doesn’t involve a round-trip to my server. That has lots of other benefits – it’s faster, less of a privacy risk, and doesn’t require a persistent connection. I love static websites, so can they do this? Yes! I just had to find a different set of libraries: The JSZip library can unpack and modify the EPUB/ZIP, and is the only third-party code I’m using in the tool Browsers include DOMParser for manipulating XML I’ve already mentioned the HTML <canvas> element for rendering the image This took a bit longer because I’m not as familiar with JavaScript, but I got it working. As a bonus, this makes the tool very portable. Everything is bundled into a single HTML file, so if you download that file, you have the whole tool. If my friend finds this tool useful, she can save the file and keep a local copy of it – she doesn’t have to rely on my website to keep using it. What should it look like? My first design was very “engineer brain” – I just put the basic controls on the page. It was fine, but it wasn’t good. That might be okay, because the only person I need to be able to use this app is my friend – but wouldn’t it be nice if other people were able to use it? If they’re going to do that, they need to know what it is – most people aren’t going to read a 2,500 word blog post to understand a tool they’ve never heard of. (Although if you have read this far, I appreciate you!) I started designing a proper page, including some explanations and descriptions of what the tool is doing. I got something that felt pretty good, including FAQs and acknowledgements, and I added a grey area for the part where you actually upload and download your EPUBs, to draw the user’s eye and make it clear this is the important stuff. But even with that design, something was missing. I realised I was telling you I’d create covers, but not showing you what they’d look like. Aha! I sat down and made up a bunch of amusing titles for fanfic and fanfic authors, so now you see a sample of the covers before you upload your first EPUB: This makes it clearer what the app will do, and was a fun way to wrap up the project. What did I learn from this project? Don’t be scared of new file formats My first instinct was to look for a third-party library that could handle the “complexity” of EPUB files. In hindsight, I’m glad I didn’t find one – it forced me to learn more about how EPUBs work, and I realised I could write my own code using built-in libraries. EPUB files are essentially ZIP files, and I only had basic needs. I was able to write my own code. Because I didn’t rely on a library, now I know more about EPUBs, I have code that’s simpler and easier for me to understand, and I don’t have a dependency that may cause problems later. There are definitely some file formats where I need existing libraries (I’m not going to write my own JPEG parser, for example) – but I should be more open to writing my own code, and not jumping to add a dependency. Static websites can handle complex file manipulations I love static websites and I’ve used them for a lot of tasks, but mostly read-only display of information – not anything more complex or interactive. But modern JavaScript is very capable, and you can do a lot of things with it. Static pages aren’t just for static data. One of the first things I made that got popular was find untagged Tumblr posts, which was built as a static website because that’s all I knew how to build at the time. Somewhere in the intervening years, I forgot just how powerful static sites can be. I want to build more tools this way. Async JavaScript calls require careful handling The JSZip library I’m using has a lot of async functions, and this is my first time using async JavaScript. I got caught out several times, because I forgot to wait for async calls to finish properly. For example, I’m using canvas.toBlob to render the image, which is an async function. I wasn’t waiting for it to finish, and so the zip would be repackaged before the cover image was ready to add, and I got an EPUB with a missing image. Oops. I think I’ll always prefer the simplicity of synchronous code, but I’m sure I’ll get better at async JavaScript with practice. Final thoughts I know my friend will find this helpful, and that feels great. Writing software that’s designed for one person is my favourite software to write. It’s not hyper-scale, it won’t launch the next big startup, and it’s usually not breaking new technical ground – but it is useful. I can see how I’m making somebody’s life better, and isn’t that what computers are for? If other people like it, that’s a nice bonus, but I’m really thinking about that one person. Normally the one person I’m writing software for is me, so it’s extra nice when I can do it for somebody else. If you want to try this tool yourself, go to alexwlchan.net/my-tools/add-cover-to-ao3-epubs/ If you want to read the code, it’s all on GitHub. [If the formatting of this post looks odd in your feed reader, visit the original article]

8 hours ago 4 votes
Non-alcoholic apéritifs

I’ve been doing Dry January this year. One thing I missed was something for apéro hour, a beverage to mark the start of the evening. Something complex and maybe bitter, not like a drink you’d have with lunch. I found some good options. Ghia sodas are my favorite. Ghia is an NA apéritif based on grape juice but with enough bitterness (gentian) and sourness (yuzu) to be interesting. You can buy a bottle and mix it with soda yourself but I like the little cans with extra flavoring. The Ginger and the Sumac & Chili are both great. Another thing I like are low-sugar fancy soda pops. Not diet drinks, they still have a little sugar, but typically 50 calories a can. De La Calle Tepache is my favorite. Fermented pineapple is delicious and they have some fun flavors. Culture Pop is also good. A friend gave me the Zero book, a drinks cookbook from the fancy restaurant Alinea. This book is a little aspirational but the recipes are doable, it’s just a lot of labor. Very fancy high end drink mixing, really beautiful flavor ideas. The only thing I made was their gin substitute (mostly junipers extracted in glycerin) and it was too sweet for me. Need to find the right use for it, a martini definitely ain’t it. An easier homemade drink is this Nonalcoholic Dirty Lemon Tonic. It’s basically a lemonade heavily flavored with salted preserved lemons, then mixed with tonic. I love the complexity and freshness of this drink and enjoy it on its own merits. Finally, non-alcoholic beer has gotten a lot better in the last few years thanks to manufacturing innovations. I’ve been enjoying NA Black Butte Porter, Stella Artois 0.0, Heineken 0.0. They basically all taste just like their alcoholic uncles, no compromise. One thing to note about non-alcoholic substitutes is they are not cheap. They’ve become a big high end business. Expect to pay the same for an NA drink as one with alcohol even though they aren’t taxed nearly as much.

2 days ago 5 votes
It burns

The first time we had to evacuate Malibu this season was during the Franklin fire in early December. We went to bed with our bags packed, thinking they'd probably get it under control. But by 2am, the roaring blades of fire choppers shaking the house got us up. As we sped down the canyon towards Pacific Coast Highway (PCH), the fire had reached the ridge across from ours, and flames were blazing large out the car windows. It felt like we had left the evacuation a little too late, but they eventually did get Franklin under control before it reached us. Humans have a strange relationship with risk and disasters. We're so prone to wishful thinking and bad pattern matching. I remember people being shocked when the flames jumped the PCH during the Woolsey fire in 2017. IT HAD NEVER DONE THAT! So several friends of ours had to suddenly escape a nightmare scenario, driving through burning streets, in heavy smoke, with literally their lives on the line. Because the past had failed to predict the future. I feel into that same trap for a moment with the dramatic proclamations of wind and fire weather in the days leading up to January 7. Warning after warning of "extremely dangerous, life-threatening wind" coming from the City of Malibu, and that overly-bureaucratic-but-still-ominous "Particularly Dangerous Situation" designation. Because, really, how much worse could it be? Turns out, a lot. It was a little before noon on the 7th when we first saw the big plumes of smoke rise from the Palisades fire. And immediately the pattern matching ran astray. Oh, it's probably just like Franklin. It's not big yet, they'll get it out. They usually do. Well, they didn't. By the late afternoon, we had once more packed our bags, and by then it was also clear that things actually were different this time. Different worse. Different enough that even Santa Monica didn't feel like it was assured to be safe. So we headed far North, to be sure that we wouldn't have to evacuate again. Turned out to be a good move. Because by now, into the evening, few people in the connected world hadn't started to see the catastrophic images emerging from the Palisades and Eaton fires. Well over 10,000 houses would ultimately burn. Entire neighborhoods leveled. Pictures that could be mistaken for World War II. Utter and complete destruction. By the night of the 7th, the fire reached our canyon, and it tore through the chaparral and brush that'd been building since the last big fire that area saw in 1993. Out of some 150 houses in our immediate vicinity, nearly a hundred burned to the ground. Including the first house we moved to in Malibu back in 2009. But thankfully not ours. That's of course a huge relief. This was and is our Malibu Dream House. The site of that gorgeous home office I'm so fond to share views from. Our home. But a house left standing in a disaster zone is still a disaster. The flames reached all the way up to the base of our construction, incinerated much of our landscaping, and devoured the power poles around it to dysfunction. We have burnt-out buildings every which way the eye looks. The national guard is still stationed at road blocks on the access roads. Utility workers are tearing down the entire power grid to rebuild it from scratch. It's going to be a long time before this is comfortably habitable again. So we left. That in itself feels like defeat. There's an urge to stay put, and to help, in whatever helpless ways you can. But with three school-age children who've already missed over a months worth of learning from power outages, fire threats, actual fires, and now mudslide dangers, it was time to go. None of this came as a surprise, mind you. After Woolsey in 2017, Malibu life always felt like living on borrowed time to us. We knew it, even accepted it. Beautiful enough to be worth the risk, we said.  But even if it wasn't a surprise, it's still a shock. The sheer devastation, especially in the Palisades, went far beyond our normal range of comprehension. Bounded, as it always is, by past experiences. Thus, we find ourselves back in Copenhagen. A safe haven for calamities of all sorts. We lived here for three years during the pandemic, so it just made sense to use it for refuge once more. The kids' old international school accepted them right back in, and past friendships were quickly rebooted. I don't know how long it's going to be this time. And that's an odd feeling to have, just as America has been turning a corner, and just as the optimism is back in so many areas. Of the twenty years I've spent in America, this feels like the most exciting time to be part of the exceptionalism that the US of A offers. And of course we still are. I'll still be in the US all the time on both business, racing, and family trips. But it won't be exclusively so for a while, and it won't be from our Malibu Dream House. And that burns.

2 days ago 6 votes
Slow, flaky, and failing

Thou shalt not suffer a flaky test to live, because it’s annoying, counterproductive, and dangerous: one day it might fail for real, and you won’t notice. Here’s what to do.

3 days ago 7 votes
Name that Ware, January 2025

The ware for January 2025 is shown below. Thanks to brimdavis for contributing this ware! …back in the day when you would get wares that had “blue wires” in them… One thing I wonder about this ware is…where are the ROMs? Perhaps I’ll find out soon! Happy year of the snake!

3 days ago 5 votes