More from Paolo Amoroso's Journal
<![CDATA[It has been a year since I set up my System76 Merkaat with Linux Mint. In July of 2024 I migrated from ChromeOS and the Merkaat has been my daily driver on the desktop. A year later I have nothing major to report, which is the point. Despite the occasional unplanned reinstallation I have been enjoying the stability of Linux and just using the PC. This stability finally enabled me to burn bridges with mainstream operating systems and fully embrace Linux and open systems. I'm ready to handle the worst and get back to work. Just a few years ago the frustration of troubleshooting a broken system would have made me seriously consider the switch to a proprietary solution. But a year of regular use, with an ordinary mix of quiet moments and glitches, gave me the confidence to stop worrying and learn to love Linux. linux a href="https://remark.as/p/journal.paoloamoroso.com/my-first-year-since-coming-back-to-linux"Discuss.../a Email | Reply @amoroso@oldbytes.space !--emailsub--]]>
<![CDATA[DandeGUI now does graphics and this is what it looks like. Some text and graphics output windows created with DandeGUI on Medley Interlisp. In addition to the square root table text output demo, I created the other graphics windows with the newly implemented functionality. For example, this code draws the random circles of the top window: (DEFUN RANDOM-CIRCLES (&KEY (N 200) (MAX-R 50) (WIDTH 640) (HEIGHT 480)) (LET ((RANGE-X (- WIDTH ( 2 MAX-R))) (RANGE-Y (- HEIGHT ( 2 MAX-R))) (SHADES (LIST IL:BLACKSHADE IL:GRAYSHADE (RANDOM 65536)))) (DANDEGUI:WITH-GRAPHICS-WINDOW (STREAM :TITLE "Random Circles") (DOTIMES (I N) (DECLARE (IGNORE I)) (IL:FILLCIRCLE (+ MAX-R (RANDOM RANGE-X)) (+ MAX-R (RANDOM RANGE-Y)) (RANDOM MAX-R) (ELT SHADES (RANDOM 3)) STREAM))))) GUI:WITH-GRAPHICS-WINDOW, GUI:OPEN-GRAPHICS-STREAM, and GUI:WITH-GRAPHICS-STREAM are the main additions. These functions and macros are the equivalent for graphics of what GUI:WITH-OUTPUT-TO-WINDOW, GUI:OPEN-WINDOW-STREAM, and GUI:WITH-WINDOW-STREAM, respectively, do for text. The difference is the text facilities send output to TEXTSTREAM streams whereas the graphics facilities to IMAGESTREAM, a type of device-independent graphics streams. Under the hood DandeGUI text windows are customized TEdit windows with an associated TEXTSTREAM. TEdit is the rich text editor of Medley Interlisp. Similarly, the graphics windows of DandeGUI run the Sketch line drawing editor under the hood. Sketch windows have an IMAGESTREAM which Interlisp graphics primitives like IL:DRAWLINE and IL:DRAWPOINT accept as an output destination. DandeGUI creates and manages Sketch windows with the type of stream the graphics primitives require. In other words, IMAGESTREAM is to Sketch what TEXTSTREAM is to TEdit. The benefits of programmatically using Sketch for graphics are the same as TEdit windows for text: automatic window repainting, scrolling, and resizing. The downside is overhead. Scrolling more than a few thousand graphics elements is slow and adding even more may crash the system. However, this is an acceptable tradeoff. The new graphics functions and macros work similarly to the text ones, with a few differences. First, DandeGUI now depends on the SKETCH and SKETCH-STREAM library modules which it automatically loads. Since Sketch has no notion of a read-only drawing area GUI:OPEN-GRAPHICS-STREAM achieves the same effect by other means: (DEFUN OPEN-GRAPHICS-STREAM (&KEY (TITLE "Untitled")) "Open a new window and return the associated IMAGESTREAM to send graphics output to. Sets the window title to TITLE if supplied." (LET ((STREAM (IL:OPENIMAGESTREAM '|Untitled| 'IL:SKETCH '(IL:FONTS ,DEFAULT-FONT*))) (WINDOW (IL:\\SKSTRM.WINDOW.FROM.STREAM STREAM))) (IL:WINDOWPROP WINDOW 'IL:TITLE TITLE) ;; Disable left and middle-click title bar menu (IL:WINDOWPROP WINDOW 'IL:BUTTONEVENTFN NIL) ;; Disable sketch editing via right-click actions (IL:WINDOWPROP WINDOW 'IL:RIGHTBUTTONFN NIL) ;; Disable querying the user whether to save changes (IL:WINDOWPROP WINDOW 'IL:DONTQUERYCHANGES T) STREAM)) Only the mouse gestures and commands of the middle-click title bar menu and the right-click menu change the drawing area interactively. To disable these actions GUI:OPEN-GRAPHICS-STREAM removes their menu handlers by setting to NIL the window properties IL:BUTTONEVENTFN and IL:RIGHTBUTTONFN. This way only programmatic output can change the drawing area. The function also sets IL:DONTQUERYCHANGES to T to prevent querying whether to save the changes at window close. By design output to DandeGUI windows is not permanent, so saving isn't necessary. GUI:WITH-GRAPHICS-STREAM and GUI:WITH-GRAPHICS-WINDOW are straightforward: (DEFMACRO WITH-GRAPHICS-STREAM ((VAR STREAM) &BODY BODY) "Perform the operations in BODY with VAR bound to the graphics window STREAM. Evaluates the forms in BODY in a context in which VAR is bound to STREAM which must already exist, then returns the value of the last form of BODY." `(LET ((,VAR ,STREAM)) ,@BODY)) (DEFMACRO WITH-GRAPHICS-WINDOW ((VAR &KEY TITLE) &BODY BODY) "Perform the operations in BODY with VAR bound to a new graphics window stream. Creates a new window titled TITLE if supplied, binds VAR to the IMAGESTREAM associated with the window, and executes BODY in this context. Returns the value of the last form of BODY." `(WITH-GRAPHICS-STREAM (,VAR (OPEN-GRAPHICS-STREAM :TITLE (OR ,TITLE "Untitled"))) ,@BODY)) Unlike GUI:WITH-TEXT-STREAM and GUI:WITH-TEXT-WINDOW, which need to call GUI::WITH-WRITE-ENABLED to establish a read-only environment after every output operation, GUI:OPEN-GRAPHICS-STREAM can do this only once at window creation. GUI:CLEAR-WINDOW, GUI:WINDOW-TITLE, and GUI:PRINT-MESSAGE now work with graphics streams in addition to text streams. For IMAGESTREAM arguments GUI:PRINT-MESSAGE prints to the system prompt window as Sketch stream windows have no prompt area. The random circles and fractal triangles graphics demos round up the latest additions. #DandeGUI #CommonLisp #Interlisp #Lisp a href="https://remark.as/p/journal.paoloamoroso.com/adding-graphics-support-to-dandegui"Discuss.../a Email | Reply @amoroso@oldbytes.space !--emailsub--]]>
<![CDATA[I continued working on DandeGUI, a GUI library for Medley Interlisp I'm writing in Common Lisp. I added two new short public functions, GUI:CLEAR-WINDOW and GUI:PRINT-MESSAGE, and fixed a bug in some internal code. GUI:CLEAR-WINDOW deletes the text of the window associated with the Interlisp TEXTSTREAM passed as the argument: (DEFUN CLEAR-WINDOW (STREAM) "Delete all the text of the window associated with STREAM. Returns STREAM" (WITH-WRITE-ENABLED (STR STREAM) (IL:TEDIT.DELETE STR 1 (IL:TEDIT.NCHARS STR))) STREAM) It's little more than a call to the TEdit API function IL:TEDIT.DELETE for deleting text in the editor buffer, wrapped in the internal macro GUI::WITH-WRITE-ENABLED that establishes a context for write access to a window. I also wrote GUI:PRINT-MESSAGE. This function prints a message to the prompt area of the window associated with the TEXTSTREAM passed as an argument, optionally clearing the area prior to printing. The prompt area is a one-line Interlisp prompt window attached above the title bar of the TEdit window where the editor displays errors and status messages. (DEFUN PRINT-MESSAGE (STREAM MESSAGE &OPTIONAL DONT-CLEAR-P) "Print MESSAGE to the prompt area of the window associated with STREAM. If DONT-CLEAR-P is non NIL the area will be cleared first. Returns STREAM." (IL:TEDIT.PROMPTPRINT STREAM MESSAGE (NOT DONT-CLEAR-P)) STREAM) GUI:PRINT-MESSAGE just passes the appropriate arguments to the TEdit API function IL:TEDIT.PROMPTPRINT which does the actual printing. The documentation of both functions is in the API reference on the project repo. Testing DandeGUI revealed that sometimes text wasn't appended to the end but inserted at the beginning of windows. To address the issue I changed GUI::WITH-WRITE-ENABLED to ensure the file pointer of the stream is set to the end of the file (i.e -1) prior to passing control to output functions. The fix was to add a call to the Interlisp function IL:SETFILEPTR: (IL:SETFILEPTR ,STREAM -1) #DandeGUI #CommonLisp #Interlisp #Lisp a href="https://remark.as/p/journal.paoloamoroso.com/adding-window-clearing-and-message-printing-to-dandegui"Discuss.../a Email | Reply @amoroso@oldbytes.space !--emailsub--]]>
<![CDATA[I'm working on DandeGUI, a Common Lisp GUI library for simple text and graphics output on Medley Interlisp. The name, pronounced "dandy guy", is a nod to the Dandelion workstation, one of the Xerox D-machines Interlisp-D ran on in the 1980s. DandeGUI allows the creation and management of windows for stream-based text and graphics output. It captures typical GUI patterns of the Medley environment such as printing text to a window instead of the standard output. The main window of this screenshot was created by the code shown above it. A text output window created with DandeGUI on Medley Interlisp and the Lisp code that generated it. The library is written in Common Lisp and exposes its functionality as an API callable from Common Lisp and Interlisp code. Motivations In most of my prior Lisp projects I wrote programs that print text to windows. In general these windows are actually not bare Medley windows but running instances of the TEdit rich-text editor. Driving a full editor instead of directly creating windows may be overkill, but I get for free content scrolling as well as window resizing and repainting which TEdit handles automatically. Moreover, TEdit windows have an associated TEXTSTREAM, an Interlisp data structure for text stream I/O. A TEXTSTREAM can be passed to any Common Lisp or Interlisp output function that takes a stream as an argument such as PRINC, FORMAT, and PRIN1. For example, if S is the TEXTSTREAM associated with a TEdit window, (FORMAT S "~&Hello, Medley!~%") inserts the text "Hello, Medley!" in the window at the position of the cursor. Simple and versatile. As I wrote more GUI code, recurring patterns and boilerplate emerged. These programs usually create a new TEdit window; set up the title and other options; fetch the associated text stream; and return it for further use. The rest of the program prints application specific text to the stream and hence to the window. These patterns were ripe for abstracting and packaging in a library that other programs can call. This work is also good experience with API design. Usage An example best illustrates what DandeGUI can do and how to use it. Suppose you want to display in a window some text such as a table of square roots. This code creates the table in the screenshot above: (gui:with-output-to-window (stream :title "Table of square roots") (format stream "~&Number~40TSquare Root~2%") (loop for n from 1 to 30 do (format stream "~&~4D~40T~8,4F~%" n (sqrt n)))) DandeGUI exports all the public symbols from the DANDEGUI package with nickname GUI. The macro GUI:WITH-OUTPUT-TO-WINDOW creates a new TEdit window with title specified by :TITLE, and establishes a context in which the variable STREAM is bound to the stream associated with the window. The rest of the code prints the table by repeatedly calling the Common Lisp function FORMAT with the stream. GUI:WITH-OUTPUT-TO-WINDOW is best suited for one-off output as the stream is no longer accessible outside of its scope. To retain the stream and send output in a series of steps, or from different parts of the program, you need a combination of GUI:OPEN-WINDOW-STREAM and GUI:WITH-WINDOW-STREAM. The former opens and returns a new window stream which may later be used by FORMAT and other stream output functions. These functions must be wrapped in calls to the macro GUI:WITH-WINDOW-STREAM to establish a context in which a variable is bound to the appropriate stream. The DandeGUI documentation on the project repository provides more details, sample code, and the API reference. Design DandeGUI is a thin wrapper around the Interlisp system facilities that provide the underlying functionality. The main reason for a thin wrapper is to have a simple API that covers the most common user interface patterns. Despite the simplicity, the library takes care of a lot of the complexity of managing Medley GUIs such as content scrolling and window repainting and resizing. A thin wrapper doesn't hide much the data structures ubiquitous in Medley GUIs such as menus and font descriptors. This is a plus as the programmer leverages prior knowledge of these facilities. So far I have no clear idea how DandeGUI may evolve. One more reason not to deepen the wrapper too much without a clear direction. The user needs not know whether DandeGUI packs TEdit or ordinary windows under the hood. Therefore, another design goal is to hide this implementation detail. DandeGUI, for example, disables the main command menu of TEdit and sets the editor buffer to read-only so that typing in the window doesn't change the text accidentally. Using Medley Common Lisp DandeGUI relies on basic Common Lisp features. Although the Medley Common Lisp implementation is not ANSI compliant it provides all I need, with one exception. The function DANDEGUI:WINDOW-TITLE returns the title of a window and allows to set it with a SETF function. However, the SEdit structure editor and the File Manager of Medley don't support or track function names that are lists such as (SETF WINDOW-TITLE). A good workaround is to define SETF functions with DEFSETF which Medley does support along with the CLtL macro DEFINE-SETF-METHOD. Next steps At present DandeGUI doesn't do much more than what described here. To enhance this foundation I'll likely allow to clear existing text and give control over where to insert text in windows, such as at the beginning or end. DandeGUI will also have rich text facilities like printing in bold or changing fonts. The windows of some of my programs have an attached menu of commands and a status area for displaying errors and other messages. I will eventually implement such menu-ed windows. To support programs that do graphics output I plan to leverage the functionality of Sketch for graphics in a way similar to how I build upon TEdit for text. Sketch is the line drawing editor of Medley. The Interlisp graphics primitives require as an argument a DISPLAYSTREAM, a data stracture that represents an output sink for graphics. It is possible to use the Sketch drawing area as an output destination by associating a DISPLAYSTREAM with the editor's window. Like TEdit, Sketch takes care of repainting content as well as window scrolling and resizing. In other words, DISPLAYSTREAM is to Sketch what TEXTSTREAM is to TEdit. DandeGUI will create and manage Sketch windows with associated streams suitable for use as the DISPLAYSTREAM the graphics primitives require. #DandeGUI #CommonLisp #Interlisp #Lisp a href="https://remark.as/p/journal.paoloamoroso.com/dandegui-a-gui-library-for-medley-interlisp"Discuss.../a Email | Reply @amoroso@fosstodon.org !--emailsub--]]>
More in programming
Welcome to my ongoing series on x86-64 assembly programming, designed for programmers who want to peel back the abstraction and understand how code really runs at the machine level.
In the early 1990s, three companies pioneered online transactions, facing challenges of security and user accessibility. They are hardly known today. The post Three attempts at making payments secure appeared first on The History of the Web.
A hands-on guide to general-purpose registers and data movement in x86-64
Any person who has used a computer in the past ten years knows that doing meaningless tasks is just part of the experience. Millions of people create accounts, confirm emails, dismiss notifications, solve captchas, reject cookies, and accept terms and conditions—not because they particularly want to or even need to. They do it because that’s what the computer told them to do. Like it or not, we are already serving the machines. Well, now there is a new way to serve our silicon overlords. LLMs started to have opinions on how your API should look, and since 90% of all code will be written by AI comes September, we have no choice but to oblige. You might’ve heard a story of Soundslice adding a feature because ChatGPT kept telling people it exists. We see the same at Instant: for example, we used tx.update for both inserting and updating entities, but LLMs kept writing tx.create instead. Guess what: we now have tx.create, too. Is it good or is it bad? It definitely feels strange. In a sense, it’s helpful: LLMs here have seen millions of other APIs and are suggesting the most obvious thing, something every developer would think of first, too. It’s also a unique testing device: if developers use your API wrong, they blame themselves, read the documentation, and fix their code. In the end, you might never learn that they even had the problem. But with ChatGPT, you yourself can experience “newbie’s POV” at any time. Of course, this approach doesn’t work if you are trying to do something new and unique. LLMs just won’t “get it”. But how many of us are doing something new and unique? Maybe, API is not the place to get clever? Maybe, for most cases, it’s truly best if you did the most obvious thing? So welcome to the new era. AI is not just using tools we gave it. It now has opinions about how these tools should’ve been made. And instead of asking nicely, it gaslights everybody into thinking that’s how it’s always been.
According to Statcounter, Linux has claimed 5% market share of desktop computing in the US. That's double of where it was just three years ago! Really impressive. Windows is still dominant at 63%, and Apple sit at 26%. But for the latter, it's quite a drop from their peak of 33% in June 2023. These are just browser stats, though (even if it's backed up by directionally-similar numbers from Cloudflare). There's undoubtedly some variability in the numbers, by the season, and by what lives in the relatively large 4% mystery box of "other". But there's no denying that Linux is trending in the right direction in the US. As a Dane, though, I find it sad that Denmark is once again a laggard when it comes to adoption. Windows is even more dominant there at almost 70% (with Apple at 15%). Linux is just under 2%. Interestingly, though, ChromeOS, which is basically a locked-down Linux distribution, is at almost 5%. I guess I really shouldn't be disappointed because this is how it always was. It was a big reason why I moved to the US back in 2005. When Ruby on Rails was taking off, it was in America first and foremost. Danish companies were too conservative, too complacent, too married to Microsoft to really pay attention. There are early indications that a willingness to change this laggard mentality might be sprouting, but we've yet to see any evidence that a shift has actually taken hold yet. It's hard to change culture! So while the Danes continue to fiddle, the Americans continue to push forward. Linux is on the up and up!