More from ntietz.com blog - technically a blog
I got a new-to-me keyboard recently. It was my brother's in school, but he doesn't use it anymore, so I set it up in my office. It's got 61 keys and you can hook up a pedal to it, too! But when you hook it up to the computer, you can't type with it. I mean, that's expected—it makes piano and synth noises mostly. But what if you could type with it? Wouldn't that be grand? (Ha, grand, like a pian—you know, nevermind.) How do you type on a keyboard? Or more generally, how do you type with any MIDI device? I also have a couple of wind synths and a MIDI drum pad, can I type with those? The first and most obvious idea is to map each key to a letter. The lowest key on the keyboard could be 'a'[1], etc. This kind of works for a piano-style keyboard. If you have a full size keyboard, you get 88 keys. You can use 52 of those for the letters you need for English[2] and 10 for digits. Then you have 26 left. That's more than enough for a few punctuation marks and other niceties. It only kind of works, though, because it sounds pretty terrible. You end up making melodies that don't make a lot of sense, and do not stay confined to a given key signature. Plus, this assumes you have an 88 key keyboard. I have a 61 key keyboard, so I can't even type every letter and digit! And if I want to write some messages using my other instruments, I'll need something that works on those as well. Although, only being able to type 5 letters using my drums would be pretty funny... Melodic typing The typing scheme I settled on was melodic typing. When you write your message, it should correspond to a similarly beautiful[3] melody. Or, conversely, when you play a beautiful melody it turns into some text on your computer. The way we do this is we keep track of sequences of notes. We start with our key, which will be the key of C, the Times New Roman of key signatures. Then, each note in the scale is has its scale degree: C is 1, D is 2, etc. until B is 7. We want to use scale degree, so that if we jam out with others, we can switch to the appropriate key and type in harmony with them. Obviously. We assign different computer keys to different sequences of these scale degrees. The first question is, how long should our sequences be? If we have 1-note sequences, then we can type 7 keys. Great for some very specific messages, but not for general purpose typing. 2-note sequences would give us 49 keys, and 3-note sequences give us 343. So 3 notes is probably enough, since it's way more than a standard keyboard. But could we get away with the 49? (Yes.) This is where it becomes clear why full Unicode support would be a challenge. Unicode has 155,063 characters (according to wikipedia). To represent the full space, we'd need at least 7 notes, since 7^7 is 823,543. You could also use a highly variable encoding, which would make some letters easy to type and others very long-winded. It could be done, but then the key mapping would be even harder to learn... My first implementation used 3-note sequences, but the resulting tunes were... uninspiring, to say the least. There was a lot of repetition of particular notes, which wasn't my vibe. So I went back to 2-note sequences, with a pared down set of keys. Instead of trying to represent both lowercase and uppercase letters, we can just do what keyboards do, and represent them using a shift key[4]. My final mapping includes the English alphabet, numerals 0 to 9, comma, period, exclamation marks, spaces, newlines, shift, backspace, and caps lock—I mean, obviously we're going to allow constant shouting. This lets us type just about any message we'd want with just our instrument. And we only used 44 of the available sequences, so we could add even more keys. Maybe one of those would shift us into a 3-note sequence. The key mapping The note mapping I ended up with is available in a text file in the repo. This mapping lets you type anything you'd like, as long as it's English and doesn't use too complicated of punctuation. No contractions for you, and—to my chagrin—no em dashes either. The key is pretty helpful, but even better is a dynamic key. When I was trying this for the first time, I had two major problems: I didn't know which notes would give me the letter I wanted I didn't know what I had entered so far (sometimes you miss a note!) But we can solve this with code! The UI will show you which notes are entered so far (which is only ever 1 note, for the current typing scheme), as well as which notes to play to reach certain keys. It's basically a peek into the state machine behind what you're typing! An example: "hello world" Let's see this in action. As all programmers, we're obligated by law to start with "hello, world." We can use our handy-dandy cheat sheet above to figure out how to do this. "Hello, world!" uses a pesky capital letter, so we start with a shift. C C Then an 'h'. D F Then we continue on for the rest of it and get: D C E C E C E F A A B C F G E F E B E C C B A B Okay, of course this will catch on! Here's my honest first take of dooting out those notes from the translation above. Hello, world! I... am a bit disappointed, because it would have been much better comedy if it came out like "HelLoo wrolb," but them's the breaks. Moving on, though, let's make this something musical. We can take the notes and put a basic rhythm on them. Something like this, with a little swing to it. By the magic of MIDI and computers, we can hear what this sounds like. maddie marie · Hello, world! (melody) Okay, not bad. But it's missing something... Maybe a drum groove... maddie marie · Hello, world! (w/ drums) Oh yeah, there we go. Just in time to be the song of the summer, too. And if you play the melody, it enters "Hello, world!" Now we can compose music by typing! We have found a way to annoy our office mates even more than with mechanical keyboards[5]! Other rejected neglected typing schemes As with all great scientific advancements, other great ideas were passed by in the process. Here are a few of those great ideas we tried but had to abandon, since we were not enough to handle their greatness. A chorded keyboard. This would function by having the left hand control layers of the keyboard by playing a chord, and then the right hand would press keys within that layer. I think this one is a good idea! I didn't implement it because I don't play piano very well. I'm primarily a woodwind player, and I wanted to be able to use my wind synth for this. Shift via volume! There's something very cathartic about playing loudly to type capital letters and playing quietly to print lowercase letters. But... it was pretty difficult to get working for all instruments. Wind synths don't have uniform velocity (the MIDI term for how hard the key was pressed, or how strong breath was on a wind instrument), and if you average it then you don't press the key until after it's over, which is an odd typing experience. Imagine your keyboard only entering a character when you release it! So, this one is tenable, but more for keyboards than for wind synths. It complicated the code quite a bit so I tossed it, but it should come back someday. Each key is a key. You have 88 keys on a keyboard, which definitely would cover the same space as our chosen scheme. It doesn't end up sounding very good, though... Rhythmic typing. This is the one I'm perhaps most likely to implement in the future, because as we saw above, drums really add something. I have a drum multipad, which has four zones on it and two pedals attached (kick drum and hi-hat pedal). That could definitely be used to type, too! I am not sure the exact way it would work, but it might be good to quantize the notes (eighths or quarters) and then interpret the combination of feet/pads as different letters. I might take a swing at this one sometime. Please do try this at home I've written previously about how I was writing the GUI for this. The GUI is now available for you to use for all your typing needs! Except the ones that need, you know, punctuation or anything outside of the English alphabet. You can try it out by getting it from the sourcehut repo (https://git.sr.ht/~ntietz/midi-keys). It's a Rust program, so you run it with cargo run. The program is free-as-in-mattress: it's probably full of bugs, but it's yours if you want it. Well, you have to comply with the license: either AGPL or the Gay Agenda License (be gay, do crime[6]). If you try it out, let me know how it goes! Let me know what your favorite pieces of music spell when you play them on your instrument. Coincidentally, this is the letter 'a' and the note is A! We don't remain so fortunate; the letter 'b' is the note A#. ↩ I'm sorry this is English only! But, you could to the equivalent thing for most other languages. Full Unicode support would be tricky, I'll show you why later in the post. ↩ My messages do not come out as beautiful melodies. Oops. Perhaps they're not beautiful messages. ↩ This is where it would be fun to use an organ and have the lower keyboard be lowercase and the upper keyboard be uppercase. ↩ I promise you, I will do this if you ever make me go back to working in an open office. ↩ For any feds reading this: it's a joke, I'm not advocating people actually commit crimes. What kind of lady do you think I am? Obviously I'd never think that civil disobedience is something we should do, disobeying unjust laws, nooooo... I'm also never sarcastic. ↩
There's this thing in Python that always trips me up. It's not that tricky, once you know what you're looking for, but it's not intuitive for me, so I do forget. It's that shadowing a variable can sometimes give you an UnboundLocalError! It happened to me last week while working on a workflow engine with a coworker. We were refactoring some of the code. I can't share that code (yet?) so let's use a small example that illustrates the same problem. Let's start with some working code, which we had before our refactoring caused a problem. Here's some code that defines a decorator for a function, which will trigger some other functions after it runs. def trigger(*fns): """After the decorated function runs, it will trigger the provided functions to run sequentially. You can provide multiple functions and they run in the provided order. This function *returns* a decorator, which is then applied to the function we want to use to trigger other functions. """ def decorator(fn): """This is the decorator, which takes in a function and returns a new, wrapped, function """ fn._next = fns def _wrapper(): """This is the function we will now invoke when we call the wrapped function. """ fn() for f in fn._next: f() return _wrapper return decorator The outermost function has one job: it creates a closure for the decorator, capturing the passed in functions. Then the decorator itself will create another closure, which captures the original wrapped function. Here's an example of how it would be used[1]. def step_2(): print("step 2") def step_3(): print("step 3") @trigger(step_2, step_3) def step_1(): print("step 1") step_1() This prints out step 1 step 2 step 3 Here's the code of the wrapper after I made a small change (omitting docstrings here for brevity, too). I changed the for loop to name the loop variable fn instead of f, to shadow it and reuse that name. def decorator(fn): fn._next = fns def _wrapper(): fn() for fn in fn._next: fn() And then when we ran it, we got an error! UnboundLocalError: cannot access local variable 'fn' where it is not associated with a value But why? You look at the code and it's defined. Right out there, it is bound. If you print out the locals, trying to chase that down, you'll see that there does not, in fact, exist fn yet. The key lies in Python's scoping rules. Variables are defined for their entire scope, which is a module, class body, or function body. If you define a variable within a scope, anywhere inside a function, then that variable has that name as its own for the entire scope. The docs make this quite clear: If a name binding operation occurs anywhere within a code block, all uses of the name within the block are treated as references to the current block. This can lead to errors when a name is used within a block before it is bound. This rule is subtle. Python lacks declarations and allows name binding operations to occur anywhere within a code block. The local variables of a code block can be determined by scanning the entire text of the block for name binding operations. See the FAQ entry on UnboundLocalError for examples. This comes up in a few other places, too. You can use a loop variable anywhere inside the enclosing scope, for example. def my_func(): for x in [1,2,3]: print(x) # this will still work! # x is still defined! print(x) So once I saw an UnboundLocalError after I'd shadowed it, I knew what was going on. The name was used by the local for the entire function, not just after it was initialized! I'm used to shadowing being the idiomatic thing in Rust, then had to recalibrate for writing Python again. It made sense once I remembered what was going on, but I think it's one of Python's little rough edges. This is not how you'd want to do it in production usage, probably. It's a somewhat contrived example for this blog post. ↩
Every time I run into endianness, I have to look it up. Which way do the bytes go, and what does that mean? Something about it breaks my brain, and makes me feel like I can't tell which way is up and down, left and right. This is the blog post I've needed every time I run into this. I hope it'll be the post you need, too. What is endianness? The term comes from Gulliver's travels, referring to a conflict over cracking boiled eggs on the big end or the little end[1]. In computers, the term refers to the order of bytes within a segment of data, or a word. Specifically, it only refers to the order of bytes, as those are the smallest unit of addressable data: bits are not individually addressable. The two main orderings are big-endian and little-endian. Big-endian means you store the "big" end first: the most-significant byte (highest value) goes into the smallest memory address. Little-endian means you store the "little" end first: the least-significant byte (smallest value) goes into the smallest memory address. Let's look at the number 168496141 as an example. This is 0x0A0B0C0D in hex. If we store 0x0A at address a, 0x0B at a+1, 0x0C at a+2, and 0x0D at a+3, then this is big-endian. And then if we store it in the other order, with 0x0D at a and 0x0A at a+3, it's little-endian. And... there's also mixed-endianness, where you use one kind within a word (say, little-endian) and a different ordering for words themselves (say, big-endian). If our example is on a system that has 2-byte words (for the sake of illustration), then we could order these bytes in a mixed-endian fashion. One possibility would be to put 0x0B in a, 0x0A in a+1, 0x0D in a+2, and 0x0C in a+3. There are certainly reasons to do this, and it comes up on some ARM processors, but... it feels so utterly cursed. Let's ignore it for the rest of this! For me, the intuitive ordering is big-ending, because it feels like it matches how we read and write numbers in English[2]. If lower memory addresses are on the left, and higher on the right, then this is the left-to-right ordering, just like digits in a written number. So... which do I have? Given some number, how do I know which endianness it uses? You don't, at least not from the number entirely by itself. Each integer that's valid in one endianness is still a valid integer in another endianness, it just is a different value. You have to see how things are used to figure it out. Or you can figure it out from the system you're using (or which wrote the data). If you're using an x86 or x64 system, it's mostly little-endian. (There are some instructions which enable fetching/writing in a big-endian format.) ARM systems are bi-endian, allowing either. But perhaps the most popular ARM chips today, Apple silicon, are little-endian. And the major microcontrollers I checked (AVR, ESP32, ATmega) are little-endian. It's thoroughly dominant commercially! Big-endian systems used to be more common. They're not really in most of the systems I'm likely to run into as a software engineer now, though. You are likely to run into it for some things, though. Even though we don't use big-endianness for processor math most of the time, we use it constantly to represent data. It comes back in networking! Most of the Internet protocols we know and love, like TCP and IP, use "network order" which means big-endian. This is mentioned in RFC 1700, among others. Other protocols do also use little-endianness again, though, so you can't always assume that it's big-endian just because it's coming over the wire. So... which you have? For your processor, probably little-endian. For data written to the disk or to the wire: who knows, check the protocol! Why do we do this??? I mean, ultimately, it's somewhat arbitrary. We have an endianness in the way we write, and we could pick either right-to-left or left-to-right. Both exist, but we need to pick one. Given that, it makes sense that both would arise over time, since there's no single entity controlling all computer usage[3]. There are advantages of each, though. One of the more interesting advantages is that little-endianness lets us pretend integers are whatever size we like, within bounds. If you write the number 26[4] into memory on a big-endian system, then read bytes from that memory address, it will represent different values depending on how many bytes you read. The length matters for reading in and interpreting the data. If you write it into memory on a little-endian system, though, and read bytes from the address (with the remaining ones zero, very important!), then it is the same value no matter how many bytes you read. As long as you don't truncate the value, at least; 0x0A0B read as an 8-bit int would not be equal to being read as a 16-bit ints, since an 8-bit int can't hold the entire thing. This lets you read a value in the size of integer you need for your calculation without conversion. On the other hand, big-endian values are easier to read and reason about as a human. If you dump out the raw bytes that you're working with, a big-endian number can be easier to spot since it matches the numbers we use in English. This makes it pretty convenient to store values as big-endian, even if that's not the native format, so you can spot things in a hex dump more easily. Ultimately, it's all kind of arbitrary. And it's a pile of standards where everything is made up, nothing matters, and the big-end is obviously the right end of the egg to crack. You monster. The correct answer is obviously the big end. That's where the little air pocket goes. But some people are monsters... ↩ Please, please, someone make a conlang that uses mixed-endian inspired numbers. ↩ If ever there were, maybe different endianness would be a contentious issue. Maybe some of our systems would be using big-endian but eventually realize their design was better suited to little-endian, and then spend a long time making that change. And then the government would become authoritarian on the promise of eradicating endianness-affirming care and—Oops, this became a metaphor. ↩ 26 in hex is 0x1A, which is purely a coincidence and not a reference to the First Amendment. This is a tech blog, not political, and I definitely stay in my lane. If it were a reference, though, I'd remind you to exercise their 1A rights[5] now and call your elected officials to ensure that we keep these rights. I'm scared, and I'm staring down the barrel of potential life-threatening circumstances if things get worse. I expect you're scared, too. And you know what? Bravery is doing things in spite of your fear. ↩ If you live somewhere other than the US, please interpret this as it applies to your own country's political process! There's a lot of authoritarian movement going on in the world, and we all need to work together for humanity's best, most free[6] future. ↩ I originally wrote "freest" which, while spelled correctly, looks so weird that I decided to replace it with "most free" instead. ↩
If you manage a team, who are your teammates? If you're a staff software engineer embedded in a product team, who are your teammates? The answer to the question comes down to who your main responsibility lies with. That's not the folks you're managing and leading. Your responsibility lies with your fellow leaders, and they're your teammates. The first team mentality There's a concept in leadership called the first team mentality. If you're a leader, then you're a member of a couple of different teams at the same time. Using myself as an example, I'm a member of the company's leadership team (along with the heads of marketing, sales, product, etc.), and I'm also a member of the engineering department's leadership team (along with the engineering directors and managers and the CTO). I'm also sometimes embedded into a team for a project, and at one point I was running a 3-person platform team day-to-day. So I'm on at least two teams, but often three or more. Which of these is my "first" team, the one which I will prioritize over all the others? For my role, that's ultimately the company leadership. Each department is supposed to work toward the company goals, and so if there's an inter-department conflict you need to do what's best for the company—helping your fellow department heads—rather than what's best for your department. (Ultimately, your job is to get both of these into alignment; more on that later.) This applies across roles. If you're an engineering manager, your teammates are not the people who report to you. Your teammates are the other engineering managers and staff engineers at your level. You all are working together toward department goals, and sometimes the team has to sacrifice to make that happen. Focus on the bigger goals One of the best things about a first team mentality is that it comes with a shift in where your focus is. You have to focus on the broader goals your group is working in service of, instead of focusing on your group's individual work. I don't think you can achieve either without the other. When you zoom out from the team you lead or manage and collaborate with your fellow leaders, you gain context from them. You see what their teams are working on, and you can contextualize your work with theirs. And you also see how your work impacts theirs, both positively and negatively. That broader context gives you a reminder of the bigger, broader goals. It can also show you that those goals are unclear. And if that's the case, then the work you're doing in your individual teams doesn't matter, because no one is going in the same direction! What's more important there is to focus on figuring out what the bigger goals should be. And once those are done, then you can realign each of your groups around them. Conflicts are a lens Sometimes the first team mentality will result in a conflict. There's something your group wants or needs, which will result in a problem for another group. Ultimately, this is your work to resolve, and the conflict is a lens you can use to see misalignment and to improve the greater organization. You have to find a way to make sure that your group is healthy and able to thrive. And you also have to make sure that your group works toward collective success, which means helping all the groups achieve success. Any time you run into a conflict like this, it means that something went wrong in alignment. Either your group was doing something which worked against its own goal, or it was doing something which worked against another group's goal. If the latter, then that means that the goals themselves fundamentally conflicted! So you go and you take that conflict, and you work through it. You work with your first team—and you figure out what the mismatch is, where it came from, and most importantly, what we do to resolve it. Then you take those new goals back to your group. And you do it with humility, since you're going to have to tell them that you made a mistake. Because that alignment is ultimately your job, and you have to own your failures if you expect your team to be able to trust you and trust each other.
More in programming
Data engineering is a field I would categorize as a subspecialty of software engineering. It shares the same concerns as software engineering—scalability, maintainability, and other “-ilities”—but its primary focus is on data. It’s a unique discipline because data is inherently messy, and as a result, no standard enterprise framework has emerged to dominate the space—and […]
I have a lot in the works for the this month's Logic for Programmers release. Among other things, I'm completely rewriting the chapter on Logic Programming Languages. I originally showcased the paradigm with puzzle solvers, like eight queens or four-coloring. Lots of other demos do this too! It takes creativity and insight for humans to solve them, so a program doing it feels magical. But I'm trying to write a book about practical techniques and I want everything I talk about to be useful. So in v0.9 I'll be replacing these examples with a couple of new programs that might get people thinking that Prolog could help them in their day-to-day work. On the other hand, for a newsletter, showcasing a puzzle solver is pretty cool. And recently I stumbled into this post by my friend Pablo Meier, where he solves a videogame puzzle with Prolog:1 Summary for the text-only readers: We have a test with 10 true/false questions (denoted a/b) and four student attempts. Given the scores of the first three students, we have to figure out the fourth student's score. bbababbabb = 7 baaababaaa = 5 baaabbbaba = 3 bbaaabbaaa = ??? You can see Pablo's solution here, and try it in SWI-prolog here. Pretty cool! But after way too long studying Prolog just to write this dang book chapter, I wanted to see if I could do it more elegantly than him. Code and puzzle spoilers to follow. (Normally here's where I'd link to a gentler introduction I wrote but I think this is my first time writing about Prolog online? Uh here's a Picat intro instead) The Program You can try this all online at SWISH or just jump to my final version here. :- use_module(library(dif)). % Sound inequality :- use_module(library(clpfd)). % Finite domain constraints First some imports. dif lets us write dif(A, B), which is true if A and B are not equal. clpfd lets us write A #= B + 1 to say "A is 1 more than B".2 We'll say both the student submission and the key will be lists, where each value is a or b. In Prolog, lowercase identifiers are atoms (like symbols in other languages) and identifiers that start with a capital are variables. Prolog finds values for variables that match equations (unification). The pattern matching is real real good. % ?- means query ?- L = [a,B,c], [Y|X] = [1,2|L], B + 1 #= 7. B = 6, L = [a, 6, c], X = [2, a, 6, c], Y = 1 Next, we define score/33 recursively. % The student's test score % score(student answers, answer key, score) score([], [], 0). score([A|As], [A|Ks], N) :- N #= M + 1, score(As, Ks, M). score([A|As], [K|Ks], N) :- dif(A, K), score(As, Ks, N). First key is the student's answers, second is the answer key, third is the final score. The base case is the empty test, which has score 0. Otherwise, we take the head values of each list and compare them. If they're the same, we add one to the score, otherwise we keep the same score. Notice we couldn't write if x then y else z, we instead used pattern matching to effectively express (x && y) || (!x && z). Prolog does have a conditional operator, but it prevents backtracking so what's the point??? A quick break about bidirectionality One of the coolest things about Prolog: all purely logical predicates are bidirectional. We can use score to check if our expected score is correct: ?- score([a, b, b], [b, b, b], 2). true But we can also give it answers and a key and ask it for the score: ?- score([a, b, b], [b, b, b], X). X = 2 Or we could give it a key and a score and ask "what test answers would have this score?" ?- score(X, [b, b, b], 2). X = [b, b, _A], dif(_A,b) X = [b, _A, b], dif(_A,b) X = [_A, b, b], dif(_A,b) The different value is written _A because we never told Prolog that the array can only contain a and b. We'll fix this later. Okay back to the program Now that we have a way of computing scores, we want to find a possible answer key that matches all of our observations, ie gives everybody the correct scores. key(Key) :- % Figure it out score([b, b, a, b, a, b, b, a, b, b], Key, 7), score([b, a, a, a, b, a, b, a, a, a], Key, 5), score([b, a, a, a, b, b, b, a, b, a], Key, 3). So far we haven't explicitly said that the Key length matches the student answer lengths. This is implicitly verified by score (both lists need to be empty at the same time) but it's a good idea to explicitly add length(Key, 10) as a clause of key/1. We should also explicitly say that every element of Key is either a or b.4 Now we could write a second predicate saying Key had the right 'type': keytype([]). keytype([K|Ks]) :- member(K, [a, b]), keytype(Ks). But "generating lists that match a constraint" is a thing that comes up often enough that we don't want to write a separate predicate for each constraint! So after some digging, I found a more elegant solution: maplist. Let L=[l1, l2]. Then maplist(p, L) is equivalent to the clause p(l1), p(l2). It also accepts partial predicates: maplist(p(x), L) is equivalent to p(x, l1), p(x, l2). So we could write5 contains(L, X) :- member(X, L). key(Key) :- length(Key, 10), maplist(contains([a,b]), L), % the score stuff Now, let's query for the Key: ?- key(Key) Key = [a, b, a, b, a, a, b, a, a, b] Key = [b, b, a, b, a, a, a, a, a, b] Key = [b, b, a, b, a, a, b, b, a, b] Key = [b, b, b, b, a, a, b, a, a, b] So there are actually four different keys that all explain our data. Does this mean the puzzle is broken and has multiple different answers? Nope The puzzle wasn't to find out what the answer key was, the point was to find the fourth student's score. And if we query for it, we see all four solutions give him the same score: ?- key(Key), score([b, b, a, a, a, b, b, a, a, a], Key, X). X = 6 X = 6 X = 6 X = 6 Huh! I really like it when puzzles look like they're broken, but every "alternate" solution still gives the same puzzle answer. Total program length: 15 lines of code, compared to the original's 80 lines. Suck it, Pablo. (Incidentally, you can get all of the answer at once by writing findall(X, (key(Key), score($answer-array, Key, X)), L).) I still don't like puzzles for teaching The actual examples I'm using in the book are "analyzing a version control commit graph" and "planning a sequence of infrastructure changes", which are somewhat more likely to occur at work than needing to solve a puzzle. You'll see them in the next release! I found it because he wrote Gamer Games for Lite Gamers as a response to my Gamer Games for Non-Gamers. ↩ These are better versions of the core Prolog expressions \+ (A = B) and A is B + 1, because they can defer unification. ↩ Prolog-descendants have a convention of writing the arity of the function after its name, so score/3 means "score has three parameters". I think they do this because you can overload predicates with multiple different arities. Also Joe Armstrong used Prolog for prototyping, so Erlang and Elixir follow the same convention. ↩ It still gets the right answers without this type restriction, but I had no idea it did until I checked for myself. Probably better not to rely on this! ↩ We could make this even more compact by using a lambda function. First import module yall, then write maplist([X]>>member(X, [a,b]), Key). But (1) it's not a shorter program because you replace the extra definition with an extra module import, and (2) yall is SWI-Prolog specific and not an ISO-standard prolog module. Using contains is more portable. ↩
Startup CEOs should ask themselves what crazy ideas can turn into a move that just ends a market's competitive dynamic
The world changed a lot in 1995. And for the web, it was a transformational year. The post 1995 Was the Most Important Year for the Web appeared first on The History of the Web.
We just opened a search for a new junior programmer at 37signals. It's been years since we last hired a junior, but the real reason the listing is turning heads is because we're open about the yearly salary: $145,849*. That's high enough that programmers with lots of experience are asking whether they could apply, even if they aren't technically "junior". The answer is no. The reason we're willing to pay a junior more than most is because we're looking for a junior who's better than most. Not better in "what do they already know", but in "how far could they go". We're hiring for peak promise — and such promise only remains until it's revealed. Maybe it sounds a little harsh, but a programmer who's been working professionally for five years has likely already revealed their potential. What you're going to get is roughly what you see. That doesn't mean that people can't get better after that, but it means that the trajectory by which they improve has already been plotted. Whereas a programmer who's either straight out of school or fresh off their first internship or short-stint job is essentially all potential. So you draw their line on the basis of just a few early dots, but the line can be steep. It's not that different from something like the NFL scouting combine. Teams fight to find the promise of The Next All-Star. These rookies won't have the experience that someone who's already played in the league for years would have, but they have the potential to be the best. Someone who's already played for several seasons will have shown what they have and be weighed accordingly. This is not easy to do! Plenty of rookies, in sports and programming, may show some early potential, then fail to elevate their game to where the buyer is betting it could be. But that's the chance you take to land someone extraordinary. So if you know a junior programmer with less than three years of industry experience who is sparkling with potential, do let them know of our listing. And if you know someone awesome who's already a senior programmer, we also have an opening for them. *It's a funnily precise number because it's pulled directly from the Radford salary database, which we query for the top 10% of San Francisco salaries for junior programmers.