Full Width [alt+shift+f] Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
49
A project I'm working on (which is definitely not my SIGBOVIK submission for this year, and definitely not about computer ergonomics) requires me to use MIDI. And to do custom handling of it. So I need something that receives those MIDI events and handles them. But... I'm going to make mistakes along the way, and a terminal program isn't very interesting for a presentation. So of course, this program also needs a UI. This should be simple, right? Just a little UI to show things as they come in, should be easy, yeah? Hahahaha. Haha. Ha. Ha. Whoops. The initial plan Who am I kidding? There was no plan. I sat down with egui's docs open in a tab and started just writing a UI. After a few false starts with this—it turns out, sitting down without a plan is a recipe for not doing anything at all—I finally asked some friends to talk through it. I had two short meetings with two different friends. Talking it through with them forced me to figure out ahead of time what I wanted, which made the...
2 months ago

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from ntietz.com blog - technically a blog

Big endian and little endian

Every time I run into endianness, I have to look it up. Which way do the bytes go, and what does that mean? Something about it breaks my brain, and makes me feel like I can't tell which way is up and down, left and right. This is the blog post I've needed every time I run into this. I hope it'll be the post you need, too. What is endianness? The term comes from Gulliver's travels, referring to a conflict over cracking boiled eggs on the big end or the little end[1]. In computers, the term refers to the order of bytes within a segment of data, or a word. Specifically, it only refers to the order of bytes, as those are the smallest unit of addressable data: bits are not individually addressable. The two main orderings are big-endian and little-endian. Big-endian means you store the "big" end first: the most-significant byte (highest value) goes into the smallest memory address. Little-endian means you store the "little" end first: the least-significant byte (smallest value) goes into the smallest memory address. Let's look at the number 168496141 as an example. This is 0x0A0B0C0D in hex. If we store 0x0A at address a, 0x0B at a+1, 0x0C at a+2, and 0x0D at a+3, then this is big-endian. And then if we store it in the other order, with 0x0D at a and 0x0A at a+3, it's little-endian. And... there's also mixed-endianness, where you use one kind within a word (say, little-endian) and a different ordering for words themselves (say, big-endian). If our example is on a system that has 2-byte words (for the sake of illustration), then we could order these bytes in a mixed-endian fashion. One possibility would be to put 0x0B in a, 0x0A in a+1, 0x0D in a+2, and 0x0C in a+3. There are certainly reasons to do this, and it comes up on some ARM processors, but... it feels so utterly cursed. Let's ignore it for the rest of this! For me, the intuitive ordering is big-ending, because it feels like it matches how we read and write numbers in English[2]. If lower memory addresses are on the left, and higher on the right, then this is the left-to-right ordering, just like digits in a written number. So... which do I have? Given some number, how do I know which endianness it uses? You don't, at least not from the number entirely by itself. Each integer that's valid in one endianness is still a valid integer in another endianness, it just is a different value. You have to see how things are used to figure it out. Or you can figure it out from the system you're using (or which wrote the data). If you're using an x86 or x64 system, it's mostly little-endian. (There are some instructions which enable fetching/writing in a big-endian format.) ARM systems are bi-endian, allowing either. But perhaps the most popular ARM chips today, Apple silicon, are little-endian. And the major microcontrollers I checked (AVR, ESP32, ATmega) are little-endian. It's thoroughly dominant commercially! Big-endian systems used to be more common. They're not really in most of the systems I'm likely to run into as a software engineer now, though. You are likely to run into it for some things, though. Even though we don't use big-endianness for processor math most of the time, we use it constantly to represent data. It comes back in networking! Most of the Internet protocols we know and love, like TCP and IP, use "network order" which means big-endian. This is mentioned in RFC 1700, among others. Other protocols do also use little-endianness again, though, so you can't always assume that it's big-endian just because it's coming over the wire. So... which you have? For your processor, probably little-endian. For data written to the disk or to the wire: who knows, check the protocol! Why do we do this??? I mean, ultimately, it's somewhat arbitrary. We have an endianness in the way we write, and we could pick either right-to-left or left-to-right. Both exist, but we need to pick one. Given that, it makes sense that both would arise over time, since there's no single entity controlling all computer usage[3]. There are advantages of each, though. One of the more interesting advantages is that little-endianness lets us pretend integers are whatever size we like, within bounds. If you write the number 26[4] into memory on a big-endian system, then read bytes from that memory address, it will represent different values depending on how many bytes you read. The length matters for reading in and interpreting the data. If you write it into memory on a little-endian system, though, and read bytes from the address (with the remaining ones zero, very important!), then it is the same value no matter how many bytes you read. As long as you don't truncate the value, at least; 0x0A0B read as an 8-bit int would not be equal to being read as a 16-bit ints, since an 8-bit int can't hold the entire thing. This lets you read a value in the size of integer you need for your calculation without conversion. On the other hand, big-endian values are easier to read and reason about as a human. If you dump out the raw bytes that you're working with, a big-endian number can be easier to spot since it matches the numbers we use in English. This makes it pretty convenient to store values as big-endian, even if that's not the native format, so you can spot things in a hex dump more easily. Ultimately, it's all kind of arbitrary. And it's a pile of standards where everything is made up, nothing matters, and the big-end is obviously the right end of the egg to crack. You monster. The correct answer is obviously the big end. That's where the little air pocket goes. But some people are monsters... ↩ Please, please, someone make a conlang that uses mixed-endian inspired numbers. ↩ If ever there were, maybe different endianness would be a contentious issue. Maybe some of our systems would be using big-endian but eventually realize their design was better suited to little-endian, and then spend a long time making that change. And then the government would become authoritarian on the promise of eradicating endianness-affirming care and—Oops, this became a metaphor. ↩ 26 in hex is 0x1A, which is purely a coincidence and not a reference to the First Amendment. This is a tech blog, not political, and I definitely stay in my lane. If it were a reference, though, I'd remind you to exercise their 1A rights[5] now and call your elected officials to ensure that we keep these rights. I'm scared, and I'm staring down the barrel of potential life-threatening circumstances if things get worse. I expect you're scared, too. And you know what? Bravery is doing things in spite of your fear. ↩ If you live somewhere other than the US, please interpret this as it applies to your own country's political process! There's a lot of authoritarian movement going on in the world, and we all need to work together for humanity's best, most free[6] future. ↩ I originally wrote "freest" which, while spelled correctly, looks so weird that I decided to replace it with "most free" instead. ↩

6 days ago 8 votes
Who are your teammates?

If you manage a team, who are your teammates? If you're a staff software engineer embedded in a product team, who are your teammates? The answer to the question comes down to who your main responsibility lies with. That's not the folks you're managing and leading. Your responsibility lies with your fellow leaders, and they're your teammates. The first team mentality There's a concept in leadership called the first team mentality. If you're a leader, then you're a member of a couple of different teams at the same time. Using myself as an example, I'm a member of the company's leadership team (along with the heads of marketing, sales, product, etc.), and I'm also a member of the engineering department's leadership team (along with the engineering directors and managers and the CTO). I'm also sometimes embedded into a team for a project, and at one point I was running a 3-person platform team day-to-day. So I'm on at least two teams, but often three or more. Which of these is my "first" team, the one which I will prioritize over all the others? For my role, that's ultimately the company leadership. Each department is supposed to work toward the company goals, and so if there's an inter-department conflict you need to do what's best for the company—helping your fellow department heads—rather than what's best for your department. (Ultimately, your job is to get both of these into alignment; more on that later.) This applies across roles. If you're an engineering manager, your teammates are not the people who report to you. Your teammates are the other engineering managers and staff engineers at your level. You all are working together toward department goals, and sometimes the team has to sacrifice to make that happen. Focus on the bigger goals One of the best things about a first team mentality is that it comes with a shift in where your focus is. You have to focus on the broader goals your group is working in service of, instead of focusing on your group's individual work. I don't think you can achieve either without the other. When you zoom out from the team you lead or manage and collaborate with your fellow leaders, you gain context from them. You see what their teams are working on, and you can contextualize your work with theirs. And you also see how your work impacts theirs, both positively and negatively. That broader context gives you a reminder of the bigger, broader goals. It can also show you that those goals are unclear. And if that's the case, then the work you're doing in your individual teams doesn't matter, because no one is going in the same direction! What's more important there is to focus on figuring out what the bigger goals should be. And once those are done, then you can realign each of your groups around them. Conflicts are a lens Sometimes the first team mentality will result in a conflict. There's something your group wants or needs, which will result in a problem for another group. Ultimately, this is your work to resolve, and the conflict is a lens you can use to see misalignment and to improve the greater organization. You have to find a way to make sure that your group is healthy and able to thrive. And you also have to make sure that your group works toward collective success, which means helping all the groups achieve success. Any time you run into a conflict like this, it means that something went wrong in alignment. Either your group was doing something which worked against its own goal, or it was doing something which worked against another group's goal. If the latter, then that means that the goals themselves fundamentally conflicted! So you go and you take that conflict, and you work through it. You work with your first team—and you figure out what the mismatch is, where it came from, and most importantly, what we do to resolve it. Then you take those new goals back to your group. And you do it with humility, since you're going to have to tell them that you made a mistake. Because that alignment is ultimately your job, and you have to own your failures if you expect your team to be able to trust you and trust each other.

a week ago 10 votes
Stewardship over ownership

Code ownership is a popular concept, but it emphasizes the wrong thing. It can bring out the worst in a person or a team: defensiveness, control-seeking, power struggles. Instead, we should be focusing on stewardship. How code ownership manifests Code ownership as a concept means that a particular person or team "owns" a section of the codebase. This gives them certain rights and responsibilities: They control what goes into the code, and can approve or deny changes They are responsible for fixing bugs in that part of the code They are responsible for maintaining and improving that part of the code There are tools that help with these, like the CODEOWNERS file on GitHub. This file lets you define a group or list of individuals who own a section of the repository. Then you can require reviews/approvals from them before anything gets merged. These are all coming from a good place. We want our code to be well-maintained, and we want to make sure that someone is responsible for its direction. It really helps to know who to go to with questions or requests. Without these, changes can grind to a halt, mired in confusion and tech debt. But the concept in practice brings challenges. If you've worked on a team using code ownership before, you've probably run into: that engineer who guards the code against anyone else's changes, wanting all the credit for themselves that engineer who refuses to add anything else to their codebase, because they don't want to maintain it that engineer who tries to gain code ownership over more areas, to control more of the code and more of the company I've done certainly acted badly due to code ownership, without realizing what I was doing or or why I was doing it at the time. There are almost endless ways that code ownership can bring out the worst in people. And it all makes sense. We can do better by shifting to stewardship instead of ownership. Stewardship is about service We are all stewards of things we own or are responsible for. I have stewardship over the house I live in with my family, for example. I also have stewardship over the espresso machine I use every day: It's a big piece of machinery, and it's my responsibility to take good care of it and to ensure that as long as it's mine, it operates well and lasts a long time. That reduces expense, reduces waste, and reduces impact on the world—but it also means that the object (an espresso machine) is serving its purpose to bring joy and connection. Code is no different. By focusing on stewardship rather than ownership, we are focusing on the responsible, sustainable maintenance of the code. We focus on taking good care of that which we're entrusted with. A steward doesn't jealously guard, or struggle to gain more power. A steward watches what her responsibilities are, ensuring enough to contribute but not so many as to burn out. And she nurtures and cares for the code, to make sure that it continues to serve its purpose. Instead of an adversarial relationship, stewardship promotes partnership: It promotes working with others to figure out how to make the best use of resources, instead of hoarding them for yourself. Stewardship can solve many of the same problems that code ownership does: It gives you someone who's a main point of contact for some code It grants someone responsibility for bug fixes and maintenance of that code And in some ways, they look alike. You're going to do a lot of the same things, controlling what goes in or out. But they are very different in the focus. Owners are concerned with the value of what they own. Stewards are concerned with how well it can serve the group. And this makes all the difference in producing better outcomes.

2 weeks ago 14 votes
Some things that make Rust lifetimes hard to learn

After I wrote YARR (Yet Another Rust Resource, with requisite pirate mentions), one of my friends tried it out. He gave me some really useful insights as he went through it, letting me see what was hard about learning Rust from a newcomer's perspective. Unsurprisingly, lifetimes are a challenge—and seeing him go through it helped me understand why they're hard to learn. Here are a few of the challenges he ran into. I don't think that these are necessarily problems, but they're perhaps opportunities to improve educational materials. They don't map 100% to how long a variable is in memory My friend gave me an example he's seen a few times when people explain lifetimes. fn longest<'a>(x: &'a str, y: &'a str) -> &'a str { if x.len() > y.len() { x } else { y } } And for many newcomers, you see this and you expect it is saying that x and y both have the lifetime 'a, so they live the same amount of time. But the following is valid: fn print_longest(x: &'static str) { let y = "local"; let a = longest(x, y); println!("{a}"); drop(a); drop(y); println!("y is gone"); } In this example, x and y live for different amounts of time. y doesn't even survive to the end of the function, whereas x should be valid for the entire duration of the program. That's because lifetimes are talking about a bound on the time something can live. There's some lifetime 'a during which we can say that x and y are both certainly valid. But x and y can both live longer than 'a. Lifetimes don't change the runtime behavior Most code we write changes what the program does at runtime. Types can be different, because sometimes you're giving the compiler information about what something is. But most type information can change the runtime behavior! The simplest example is when you have an integer. You can declare one without a type. let x = 10; This has an inferred type, and if you set a different type, like u8, you'll get different behavior at run time. let x: u8 = 10; In contrast, lifetimes are only used by the compiler to ensure that borrows are all valid. The compiler can reject your program if invalid borrows are performed, but the binary output should not be affected by the lifetimes of the variables. It's a different kind of type system We're used to seeing types in our programming languages, and these type systems are usually pretty similar. Rust's lifetimes are different, though. The borrow checker uses a linear type system to do its work. These are super cool, and something that I don't understand particularly well. I'm familiar with how to use the borrow checker, but I don't know any of the theory behind them. The premise, as I understand it, is that objects can be used exactly once, allowing you to safely deallocate it after use (since it won't be used again). This prevents multiple concurrent uses (yay, data race protection!) or use-after-free (yay, segfault protection!). The coolness is why we have it, but it's still pretty tough to understand. You have to learn this whole new type system that's pretty different from everything else you've touched. And most of the resources1 out there don't even mention that it's a different kind of type system! They share syntax with generics Another challenge is that the syntax is shared with generics. Even though lifetimes are very different in behavior and type system from generics, they sit inside very similar looking syntax. This is probably unavoidable—lifetimes are related to all the other types in your code—but it certainly makes things harder to learn. When you see something like this, you expect that it's generic over a type. fn something_generic<T>(arg: T) { ... } And you're right that it is! But then you have something that looks very similar, like this. And you might expect it to also be generic over a type. fn something_generic<'a>(arg: &'a str) { ... } But it's not, in the normal sense. Instead it's generic over a lifetime. And that's a little confusing that those sit in the same spot, especially when it's not called out as a potential gotcha in learning materials. * * * Lifetimes have some inherent complexity. The borrow checker is a very valuable tool, and it's great we have it! But with that power and complexity can come challenges in learning, and teaching, the underlying concepts. I think the current difficulty in learning Rust is due to a lot of things. One aspect is certainly some inherent complexity. But another aspect is that many resources aren't really geared toward the kind of programmer coming to Rust without this background knowledge, and there is room for improvement. We can make explanations of lifetimes and the borrow checker better and less confusing. Or we can at least make them more empathetic, projecting that it's expected to be confused because there are some good reasons it's hard to understand. And that you'll get there, eventually. Thank you, Ryan, for generously sharing your thoughts as you went through learning Rust. Our conversations were instrumental in writing this post. 1 I suppose, as the author of YARR, I can fix this in at least one instance.

3 weeks ago 17 votes
Your product shouldn't require showing my legal name

Last week, I finally got verified on LinkedIn. Now there's a little badge next to my name that says "yes, she's a human who is legally named Nicole." Their marketing for verification says that I should now expect 60% more profile views and 50% more comments and reactions. For a writer like me, that seems great. More people viewing my content means more people can learn from me, or be entertained by me. And all that for free? There's a problem, of course. Nicole is my legal name, so I was able to get verified as a result. But many people don't go by their legal name. Other names are common So who doesn't go by their legal name? I didn't, for years after my wife and I got married. I went by an alias—our hyphenated last name—without legally changing it. I wasn't eligible to get verified then, since that name was not on my ID. I didn't, when I came out as transgender. It takes time to change your name and update your documents. Until that was complete, I would have had to go by my deadname or lose verification. And what about women who change their name when they get married, but go by their previous name professionally? This is an alias, and it is their name even though it's not what the government knows them as. But they would lose verification for doing this. Anyone who goes by a nickname or alias is ineligible. I have many friends who go by a different name than what their ID shows. This isn't fraudulent—it just reflects who they are. Penalized for being yourself And yet, if you fall into any case where you cannot get verified, then you can't get the benefits. You can't get your extra profile views and extra comments. Or put another way: you're penalized for not being verified. You'll get about 40% fewer profile views and 33% fewer comments/reactions than people who are verified. You get marginalized, unable to reap the full benefits of the platform, if you don't conform to a very particular outlook on what a name is (the official sequence of letters on your ID). To be clear, the problem isn't the verification process itself1. That process (and its associated benefits) may be in place to deal with bot traffic. I can sympathize with this, and I do want lower bot traffic—it makes platforms much more pleasant to use. Let us use our names The problem is that you have to show your legal name to everyone. There should be a process for being verified without it being your legal name on display. This process doesn't have to be scalable if the group that would utilize it is small—since surely they'd only forget about small populations2. It can be as simple as filing a help ticket and allowing a human to approve it based on some evidence. Is your name consistent across your public profiles? And you're a human being? Cool, verified. I believe that LinkedIn can, and should, do better. This feature as implemented is harming marginalized folks who are not able to get the same visibility when they cannot get verified. It reduces the exposure that marginalized creators can get. You should keep this in mind in the products you make, too. Don't require people to display their legal names. And before you even collect that data, think about what problem you're trying to solve. Do you need to collect legal names to solve that? (Probably not.) If so, do you need to store them after processing once? (Probably not.) And if so, do you need to display them publicly? (Probably not.) Names are so much more than what the government knows us by. Let us be our true selves and verify us with our true names. 1 It's not free of problems, though: I'd like to have a way to achieve the same result ("she's a human! she's generally the internet person she claims she is!") without showing my government identity documents to a third party. 2 Though, companies have been known to marginalize large groups of people. This is a rhetorical point that they are either harming a lot of people or they could solve the problem for a low cost.

a month ago 23 votes

More in programming

syntax highlighting with tree-sitter

I have added syntax highlighting to my blog using tree-sitter. Here are some notes about what I learned, with some complaining. static site generator markdown ingestion highlighting incompatible?! highlight names class names styling code results future work frontmatter templates feed style highlight quality static site generator I moved my blog to my own web site a few years ago. It is produced using a scruffy Rust program that converts a bunch of Markdown files to HTML using pulldown-cmark, and produces complete pages from Handlebars templates. Why did I write another static site generator? Well, partly as an exercise when learning Rust. Partly, since I wrote my own page templates, I’m not going to benefit from a library of existing templates. On the contrary, it’s harder to create new templates that work with a general-purpose SSG than write my own simpler site-specific SSG. It’s miserable to write programs in template languages. My SSG can keep the logic in the templates to a minimum, and do all the fiddly stuff in Rust. (Which is not very fiddly, because my site doesn’t have complicated navigation – compared to the multilevel menus on www.dns.cam.ac.uk for instance.) markdown ingestion There are a few things to do to each Markdown file: split off and deserialize the YAML frontmatter find the <cut> or <toc> marker that indicates the end of the teaser / where the table of contents should be inserted augment headings with self-linking anchors (which are also used by the ToC) Before this work I was using regexes to do all these jobs, because that allowed me to treat pulldown-cmark as a black box: Markdown in, HTML out. But for syntax highlighting I had to be able to find fenced code blocks. It was time to put some code into the pipeline between pulldown-cmark’s parser and renderer. And if I’m using a proper parser I can get rid of a few regexes: after some hacking, now only the YAML frontmatter is handled with a regex. Sub-heading linkification and ToC construction are fiddly and more complicated than they were before. But they are also less buggy: markup in headings actually works now! Compared to the ToC, it’s fairly simple to detect code blocks and pass them through a highlighter. You can look at my Markdown munger here. (I am not very happy with the way it uses state, but it works.) highlighting As well as the tree-sitter-highlight documentation I used femark as an example implementation. I encountered a few problems. incompatible?! I could not get the latest tree-sitter-highlight to work as described in its documentation. I thought the current tree-sitter crates were incompatible with each other! For a while I downgraded to an earlier version, but eventually I solved the problem. Where the docs say, let javascript_language = tree_sitter_javascript::language(); They should say: let javascript_language = tree_sitter::Language::new( tree_sitter_javascript::LANGUAGE ); highlight names I was offended that tree-sitter-highlight seems to expect me to hardcode a list of highlight names, without explaining where they come from or what they mean. I was doubly offended that there’s an array of STANDARD_CAPTURE_NAMES but it isn’t exported, and doesn’t match the list in the docs. You mean I have to copy and paste it? Which one?! There’s some discussion of highlight names in the tree-sitter manual’s “syntax highlighting” chapter, but that is aimed at people who are writing a tree-sitter grammar, not people who are using one. Eventually I worked out that tree_sitter_javascript::HIGHLIGHT_QUERY in the tree-sitter-highlight example corresponds to the contents of a highlights.scm file. Each @name in highlights.scm is a highlight name that I might be interested in. In principle I guess different tree-sitter grammars should use similar highlight names in their highlights.scm files? (Only to a limited extent, it turns out.) I decided the obviously correct list of highlight names is the list of every name defined in the HIGHLIGHT_QUERY. The query is just a string so I can throw a regex at it and build an array of the matches. This should make the highlighter produce <span> wrappers for as many tokens as possible in my code, which might be more than necessary but I don’t have to style them all. class names The tree-sitter-highlight crate comes with a lightly-documented HtmlRenderer, which does much of the job fairly straightforwardly. The fun part is the attribute_callback. When the HtmlRenderer is wrapping a token, it emits the start of a <span then expects the callback to append whatever HTML attributes it thinks might be appropriate. Uh, I guess I want a class="..." here? Well, the highlight names work a little bit like class names: they have dot-separated parts which tree-sitter-highlight can match more or less specifically. (However I am telling it to match all of them.) So I decided to turn each dot-separated highlight name into a space-separated class attribute. The nice thing about this is that my Rust code doesn’t need to know anything about a language’s tree-sitter grammar or its highlight query. The grammar’s highlight names become CSS class names automatically. styling code Now I can write some simple CSS to add some colours to my code. I can make type names green, code span.hilite.type { color: #aca; } If I decide builtin types should be cyan like keywords I can write, code span.hilite.type.builtin, code span.hilite.keyword { color: #9cc; } results You can look at my tree-sitter-highlight wrapper here. Getting it to work required a bit more creativity than I would have preferred, but it turned out OK. I can add support for a new language by adding a crate to Cargo.toml and a couple of lines to hilite.rs – and maybe some CSS if I have not yet covered its highlight names. (Like I just did to highlight the CSS above!) future work While writing this blog post I found myself complaining about things that I really ought to fix instead. frontmatter I might simplify the per-page source format knob so that I can use pulldown-cmark’s support for YAML frontmatter instead of a separate regex pass. This change will be easier if I can treat the html pages as Markdown without mangling them too much (is Markdown even supposed to be idempotent?). More tricky are a couple of special case pages whose source is Handlebars instead of Markdown. templates I’m not entirely happy with Handlebars. It’s a more powerful language than I need – I chose Handlebars instead of Mustache because Handlebars works neatly with serde. But it has a dynamic type system that makes the templates more error-prone than I would like. Perhaps I can find a more static Rust template system that takes advantage of the close coupling between my templates and the data structure that describes the web site. However, I like my templates to be primarily HTML with a sprinkling of insertions, not something weird that’s neither HTML nor Rust. feed style There’s no CSS in my Atom feed, so code blocks there will remain unstyled. I don’t know if feed readers accept <style> tags or if it has to be inline styles. (That would make a mess of my neat setup!) highlight quality I’m not entirely satisfied with the level of detail and consistency provided by the tree-sitter language grammars and highlight queries. For instance, in the CSS above the class names and property names have the same colour because the CSS highlights.scm gives them the same highlight name. The C grammar is good at identifying variables, but the Rust grammar is not. Oh well, I guess it’s good enough for now. At least it doesn’t involve Javascript.

21 hours ago 3 votes
How to simplify complex decisions by cleaving the facts

Simplify complex decisions by separating upsides from downsides, investing in upsides, vetoing with downsides, and using an appropriate decision framework.

23 hours ago 2 votes
Adventures in pixel space
3 hours ago 2 votes
The Year on Linux

I've been running Linux, Neovim, and Framework for a year now, but it easily feels like a decade or more. That's the funny thing about habits: They can be so hard to break, but once you do, they're also easily forgotten. That's how it feels having left the Apple realm after two decades inside the walled garden. It was hard for the first couple of weeks, but since then, it’s rarely crossed my mind. Humans are rigid in the short term, but flexible in the long term. Blessed are the few who can retain the grit to push through that early mental resistance and reach new maxima. That is something that gets harder with age. I can feel it. It takes more of me now to wipe a mental slate clean and start over. To go back to being a beginner. But the reward for learning something new is as satisfying as ever. But it's also why I've tried to be modest with the advocacy. I don't know if most developers are better off on Linux. I mean, I believe they are, at some utopian level, especially if they work for the web, using open source tooling. But I don't know if they are as humans with limited will or capacity for change. Of course, it's fair to say that one doesn't want to. Either because one remain a fan of Apple, in dire need of the remaining edge MacBooks retain on efficiency/battery, or simply content inside the ecosystem. There are plenty of reasons why someone might not want to change. It's not just about rigidity. Besides, it's a dead end trying to convince anyone of an alternative with the sharp end of a religious argument. That kind of crusading just seeds resentment and stubbornness. I know that all too well. What I've found to work much better is planting seeds and showing off your plowshare. Let whatever curiosity that blooms find its own way towards your blue sky. The mimetic engine of persuasion runs much cleaner anyway. And for me, it's primarily about my personal computing workbench regardless of what the world does or doesn't. It was the same with finding Ruby. It's great when others come along for the ride, but I'd also be happy taking the trip solo too. So consider this a postcard from a year into the Linux, Neovim, and Framework journey. The sun is still shining, the wind is in my hair, and the smile on my lips hasn't been this big since the earliest days of OS X.

yesterday 2 votes
Monki Gras 2025: What I’ve Learned by Building to Last

Yesterday I gave a talk at Monki Gras 2025. This year, the theme is Sustaining Software Development Craft, and here’s the description from the conference website: The big question we want to explore is – how can we keep doing the work we do, when it sustains us, provides meaning and purpose, and sometimes pays the bills? We’re in a period of profound change, technically, politically, socially, economically, which has huge implications for us as practitioners, the makers and doers, but also for the culture at large. I did a talk about the first decade of my career, which I’ve spent working on projects that are designed to last. I’m pleased with my talk, and I got a lot of nice comments. Monki Gras is always a pleasure to attend and speak at – it’s such a lovely, friendly vibe, and the organisers James Governor and Jessica West do a great job of making it a nice day. When I left yesterday, I felt warm and fuzzy and appreciated. I also have a front-row photo of me speaking, courtesy of my dear friend Eriol Fox. Naturally, I chose my outfit to match my slides (and this blog post!). Key points How do you create something that lasts? You can’t predict the future, but there are patterns in what lasts People skills sustain a career more than technical skills Long-lasting systems cannot grow without bound; they need weeding Links/recommended reading Sibyl Schaefer presented a paper Energy, Digital Preservation, and the Climate at iPres 2024, which is about how digital preservation needs to change in anticipation of the climate crisis. This was a major inspiration for this talk. Simon Willison gave a talk Coping strategies for the serial project hoarder at DjangoCon US in 2022, which is another inspiration for me. I’m not as prolific as Simon, but I do see parallels between his approach and what I remember of Metaswitch. Most of the photos in the talk come from the Flickr Commons, a collection of historical photographs from over 100 international cultural heritage organisations. You can learn more about the Commons, browse the photos, and see who’s involved using the Commons Explorer https://commons.flickr.org/. (Which I helped to build!) Slides and notes Photo: dry stone wall building in South Wales. Taken by Wikimedia Commons user TR001, used under CC BY‑SA 3.0. [Make introductory remarks; name and pronouns; mention slides on my website] I’ve been a software developer for ten years, and I’ve spent my career working on projects that are designed to last – first telecoms and networking, now cultural heritage – so when I heard this year’s theme “sustaining craft”, I thought about creating things that last a long time. The key question I want to address in this talk is how do you create something that lasts? I want to share a few thoughts I’ve had from working on decade- and century-scale projects. Part of this is about how we sustain ourselves as software developers, as the individuals who create software, especially with the skill threat of AI and the shifting landscape of funding software. I also want to go broader, and talk about how we sustain the craft, the skill, the projects. Let’s go through my career, and see what we can learn. Photo: women working at a Bell System telephone switchboard. From the U.S. National Archives, no known copyright restrictions. My first software developer job was at a company called Metaswitch. Not a household name, they made telecoms equipment, and you’d probably have heard of their customers. They sold equipment to carriers like AT&T, Vodafone, and O2, who’d use that equipment to sell you telephone service. Telecoms infrastructure is designed to last a long time. I spent most of my time at Metaswitch working with BGP, a routing protocol designed on a pair of napkins in 1989. BGP is sometimes known as the "two-napkin protocol", because of the two napkins on which Kirk Lougheed and Yakov Rekhter wrote the original design. From the Computer History Museum. These are those napkins. This design is basically still the backbone of the Internet. A lot of the building blocks of the telephone network and the Internet are fundamentally the same today as when they were created. I was working in a codebase that had been actively developed for most of my life, and was expected to outlast me. This was my first job so I didn’t really appreciate it at the time, but Metaswitch did a lot of stuff designed to keep that codebase going, to sustain it into the future. Let’s talk about a few of them. Photo: a programmer testing electronic equipment. From the San Diego Air & Space Museum Archives, no known copyright restrictions. Metaswitch was very careful about adopting new technologies. Most of their code was written in C, a little C++, and Rust was being adopted very slowly. They didn’t add new technology quickly. Anything they add, they have to support for a long time – so they wanted to pick technologies that weren’t a flash in the pan. I learnt about something called “the Lindy effect” – this is the idea that any technology is about halfway through its expected life. An open-source library that’s been developed for decades? That’ll probably be around a while longer. A brand new JavaScript framework? That’s a riskier long-term bet. The Lindy effect is about how software that’s been around a long time has already proven its staying power. And talking of AI specifically – I’ve been waiting for things to settle. There’s so much churn and change in this space, if I’d learnt a tool six months ago, most of that would be obsolete today. I don’t hate AI, I love that people are trying all these new tools – but I’m tired and I learning new things is exhausting. I’m waiting for things to calm down before really diving deep on these tools. Metaswitch was very cautious about third-party code, and they didn’t have much of it. Again, anything they use will have to be supported for a long time – is that third-party code, that open-source project stick around? They preferred to take the short-term hit of writing their own code, but then having complete control over it. To give you some idea of how seriously they took this: every third-party dependency had to be reviewed and vetted by lawyers before it could be added to the codebase. Imagine doing that for a modern Node.js project! They had a lot of safety nets. Manual and automated testing, a dedicated QA team, lots of checks and reviews. These were large codebases which had to be reliable. Long-lived systems can’t afford to “move fast and break things”. This was a lot of extra work, but it meant more stability, less churn, and not much risk of outside influences breaking things. This isn’t the only way to build software – Metaswitch is at one extreme of a spectrum – but it did seem to work. I think this is a lesson for building software, but also in what we choose to learn as individuals. Focusing on software that’s likely to last means less churn in our careers. If you learn the fundamentals of the web today, that knowledge will still be useful in five years. If you learn the JavaScript framework du jour? Maybe less so. How do you know what’s going to last? That’s the key question! It’s difficult, but it’s not impossible. This is my first thought for you all: you can’t predict the future, but there are patterns in what lasts. I’ve given you some examples of coding practices that can help the longevity of a codebase, these are just a few. Maybe I have rose-tinted spectacles, but I’ve taken the lessons from Metaswitch and brought them into my current work, and I do like them. I’m careful about external dependencies, I write a lot of my own code, and I create lots of safety nets, and stuff doesn’t tend to churn so much. My code lasts because it isn’t constantly being broken by external forces. Photo: a child in nursery school cutting a plank of wood with a saw. From the Community Archives of Belleville and Hastings County, no known copyright restrictions. So that’s what the smart people were doing at Metaswitch. What was I doing? I joined Metaswitch when I was a young and twenty-something graduate, so I knew everything. I knew software development was easy, these old fuddy-duddies were making it all far too complicated, and I was gonna waltz in and show them how it was done. And obviously, that happened. (Please imagine me reading that paragraph in a very sarcastic voice.) I started doing the work, and it was a lot harder than I expected – who knew that software development was difficult? But I was coming from a background as a solo dev who’d only done hobby projects. I’d never worked in a team before. I didn’t know how to say that I was struggling, to ask for help. I kept making bold promises about what I could do, based on how quickly I thought I should be able to do the work – but I was making promises my skills couldn’t match. I kept missing self-imposed deadlines. You can do that once, but you can’t make it a habit. About six months before I left, my manager said to me “Alex, you have a reputation for being unreliable”. Photo: a boy with a pudding bowl haircut, photographed by Elinor Wiltshire, 1964. From the National Library of Ireland, no known copyright restrictions. He was right! I had such a history of making promises that I couldn’t keep, people stopped trusting me. I didn’t get to work on interesting features or the exciting projects, because nobody trusted me to deliver. That was part of why I left that job – I’d ploughed my reputation into the ground, and I needed to reset. Photo: the library stores at Wellcome Collection. Taken by Thomas SG Farnetti used under CC BY‑NC 4.0. I got that reset at Wellcome Collection, a London museum and library that some of you might know. I was working a lot with their collections, a lot of data and metadata. Wellcome Collection is building on long tradition of libraries and archives, which go back thousands of years. Long-term thinking is in their DNA. To give you one example: there’s stuff in the archive that won’t be made public until the turn of the century. Everybody who works there today will be long gone, but they assume that those records will exist in some shape or form form when that time comes, and they’re planning for those files to eventually be opened. This is century-scale thinking. Photo: Bob Hoover. From the San Diego Air & Space Museum Archives, no known copyright restrictions. When I started, I sat next to a guy called Chris. (I couldn’t find a good picture of him, but I feel like this photo captures his energy.) Chris was a senior archivist. He’d been at Wellcome Collection about twenty-five years, and there were very few people – if anyone – who knew more about the archive than he did. He absolutely knew his stuff, and he could have swaggered around like he owned the place. But he didn’t. Something I was struck by, from my very first day, was how curious and humble he was. A bit of a rarity, if you work in software. He was the experienced veteran of the organisation, but he cared about what other people had to say and wanted to learn from them. Twenty-five years in, and he still wanted to learn. He was a nice guy. He was a pleasure to work with, and I think that’s a big part of why he was able to stay in that job as long as he did. We were all quite disappointed when he left for another job! This is my second thought for you: people skills sustain a career more than technical ones. Being a pleasure to work with opens so many doors and opportunities than technical skill alone cannot. We could do another conference just on what those people skills are, but for now I just want to give you a few examples to think about. Photo: Lt.(jg.) Harriet Ida Pickens and Ens. Frances Wills, first Negro Waves to be commissioned in the US Navy. From the U.S. National Archives, no known copyright restrictions. Be a respectful and reliable teammate. You want to be seen as a safe pair of hands. Reliability isn’t about avoiding mistakes, it’s about managing expectations. If you’re consistently overpromising and underdelivering, people stop trusting you (which I learnt the hard way). If you want people to trust you, you have to keep your promises. Good teammates communicate early when things aren’t going to plan, they ask for help and offer it in return. Good teammates respect the work that went before. It’s tempting to dismiss it as “legacy”, but somebody worked hard on it, and it was the best they knew how to do – recognise that effort and skill, don’t dismiss it. Listen with curiosity and intent. My colleague Chris had decades of experience, but he never acted like he knew everything. He asked thoughtful questions and genuinely wanted to learn from everyone. So many of us aren’t really listening when we’re “listening” – we’re just waiting for the next silence, where we can interject with the next thing we’ve already thought of. We aren’t responding to what other people are saying. When we listen, we get to learn, and other people feel heard – and that makes collaboration much smoother and more enjoyable. Finally, and this is a big one: don’t give people unsolicited advice. We are very bad at this as an industry. We all have so many opinions and ideas, but sometimes, sharing isn’t caring. Feedback is only useful when somebody wants to hear it – otherwise, it feels like criticism, it feels like an attack. Saying “um, actually” when nobody asked for feedback isn’t helpful, it just puts people on the defensive. Asking whether somebody wants feedback, and what sort of feedback they want, will go a long way towards it being useful. So again: people skills sustain a career more than technical skills. There aren’t many truly solo careers in software development – we all have to work with other people – for many of us, that’s the joy of it! If you’re a nice person to work with, other people will want to work with you, to collaborate on projects, they’ll offer you opportunities, it opens doors. Your technical skills won’t sustain your career if you can’t work with other people. Photo: "The Keeper", an exhibition at the New Museum in New York. Taken by Daniel Doubrovkine, used under CC BY‑NC‑SA 4.0. When I went to Wellcome Collection, it was my first time getting up-close and personal with a library and archive, and I didn’t really know how they worked. If you’d asked me, I’d have guessed they just keep … everything? And it was gently explained to me that “No Alex, that’s hoarding.” “Your overflowing yarn stash does not count as an archive.” Big collecting institutions are actually super picky – they have guidelines about what sort of material they collect, what’s in scope, what isn’t, and they’ll aggressively reject anything that isn’t a good match. At Wellcome Collection, their remit was “the history of health and human experience”. You have medical papers? Definitely interesting! Your dad’s old pile of car magazines? Less so. Photo: a dumpster full of books that have been discarded. From brewbooks on Flickr, used under CC BY‑SA 2.0. Collecting institutions also engage in the practice of “weeding” or “deaccessioning”, which is removing material, pruning the collection. For example, in lending libraries, books will be removed from the shelves if they’ve become old, damaged, or unpopular. They may be donated, or sold, or just thrown away – but whatever happens, they’re gotten rid of. That space is reclaimed for other books. Getting rid of material is a fundamental part of professional collecting, because professionals know that storing something has an ongoing cost. They know they can’t keep everything. Photo: a box full of printed photos. From Miray Bostancı on Pexels, used under the Pexels license. This is something I think about in my current job as well. I currently work at the Flickr Foundation, where we’re thinking about how to keep Flickr’s pictures visible for 100 years. How do we preserve social media, how do we maintain our digital legacy? When we talk to people, one thing that comes up regularly is that almost everybody has too many photos. Modern smartphones have made it so easy to snap, snap, snap, and we end up with enormous libraries with thousands of images, but we can’t find the photos we care about. We can’t find the meaningful memories. We’re collecting too much stuff. Digital photos aren’t expensive to store, but we feel the cost in other ways – the cognitive load of having to deal with so many images, of having to sift through a disorganised collection. Photo: a wheelbarrow in a garden. From Hans Middendorp on Pexels, used under the Pexels license. I think there’s a lesson here for the software industry. What’s the cost of all the code that we’re keeping? We construct these enormous edifices of code, but when do we turn things off? When do we delete code? We’re more focused on new code, new ideas, new features. I’m personally quite concerned by how much generative AI has focused on writing more code, and not on dealing with the code we already have. Code is text, so it’s cheap to store, but it still has a cost – it’s more cognitive load, more maintenance, more room for bugs and vulnerabilities. We can keep all our software forever, but we shouldn’t. Photo: Open Garbage Dump on Highway 112, North of San Sebastian. Taken by John Vachon, 1973. From the U.S. National Archives no known copyright restrictions. I think this is going to become a bigger issue for us. We live in an era of abundance, where we can get more computing resources at the push of a button. But that can’t last forever. What happens when our current assumptions about endless compute no longer hold? The climate crisis – where’s all our electricity and hardware coming from? The economics of AI – who’s paying for all these GPU-intensive workloads? And politics – how many of us are dependent on cloud computing based in the US? How many of us feel as good about that as we did three months ago? Libraries are good at making a little go a long way, about eking out their resources, about deciding what’s a good use of resources and what’s waste. Often the people who are good with money are the people who don’t have much of it, and we have a lot of money. It’s easier to make decisions about what to prune and what to keep when things are going well – it’s harder to make decisions in an emergency. This is my third thought for you: long-lasting systems cannot grow without bound; they need weeding. It isn’t sustainable to grow forever, because eventually you get overwhelmed by the weight of everything that came before. We need to get better at writing software efficiently, at turning things off that we don’t need. It’s a skill we’ve neglected. We used to be really good at it – when computers were the size of the room, programmers could eke out every last bit of performance. We can’t do that any more, but it’s so important when building something to last, and I think it’s a skill we’ll have to re-learn soon. Photo: Val Weaver and Vera Askew running in a relay race, Brisbane, 1939. From the State Library of Queensland no known copyright restrictions. Weeding is a term that comes from the preservation world, so let’s stay there. When you talk to people who work in digital preservation, we often describe it as a relay race. There is no permanent digital media, there’s no digital parchment or stone tablets – everything we have today will be unreadable in a few decades. We’re constantly migrating from one format to another, trying to stay ahead of obsolete technology. Software is also a bit of a relay race – there is no “write it once and you’re done”. We’re constantly upgrading, editing, improving. And that can be frustrating, but it also means have regular opportunities to learn and improve. We have that chance to reflect, to do things better. Photo: Broken computer monitor found in the woods. By Jeff Myers on Flickr, used under CC BY‑NC 2.0. I think we do our best reflections when computers go bust. When something goes wrong, we spring into action – we do retrospectives, root cause analysis, we work out what went wrong and how to stop it happening again. This is a great way to build software that lasts, to make it more resilient. It’s a period of intense reflection – what went wrong, how do we stop it happening again? What I’ve noticed is that the best systems are doing this sort of reflection all the time – they aren’t waiting for something to go wrong. They know that prevention is better than cure, and they embody it. They give themselves regular time to reflect, to think about what’s working and what’s not – and when we do, great stuff can happen. Photo: Statue of Astrid Lindgren. By Tobias Barz on Flickr, used under CC BY‑ND 2.0. I want to give you one more example. As a sidebar to my day job, I’ve been writing a blog for thirteen years. It’s the longest job – asterisk – I’ve ever had. The indie web is still cool! A lot of what I write, especially when I was starting, was sharing bits of code. “Here’s something I wrote, here’s what it does, here’s how it works and why it’s cool.” Writing about my code has been an incredible learning experience. You might know have heard the saying “ask a developer to review 5 lines of code, she’ll find 5 issues, ask her to review 500 lines and she’ll say it looks good”. When I sit back and deeply read and explain short snippets of my code, I see how to do things better. I get better at programming. Writing this blog has single-handedly had the biggest impact on my skill as a programmer. Photo: Midnight sun in Advent Bay, Spitzbergen, Norway. From the Library of Congress, no known copyright restrictions. There are so many ways to reflect on our work, opportunities to look back and ask how we can do better – but we have to make the most of them. I think we are, in some ways, very lucky that our work isn’t set in stone, that we do keep doing the same thing, that we have the opportunity to do better. Writing this talk has been, in some sense, a reflection on the first decade of my career, and it’s made me think about what I want the next decade to look like. In this talk, I’ve tried to distill some of those things, tried to give you some of the ideas that I want to keep, that I think will help my career and my software to last. Be careful about what you create, what you keep, and how you interact with other people. That care, that process of reflection – that is what creates things that last. [If the formatting of this post looks odd in your feed reader, visit the original article]

2 days ago 3 votes