Full Width [alt+shift+f] FOCUS MODE Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
35
<![CDATA[It has been a year since I set up my System76 Merkaat with Linux Mint. In July of 2024 I migrated from ChromeOS and the Merkaat has been my daily driver on the desktop. A year later I have nothing major to report, which is the point. Despite the occasional unplanned reinstallation I have been enjoying the stability of Linux and just using the PC. This stability finally enabled me to burn bridges with mainstream operating systems and fully embrace Linux and open systems. I'm ready to handle the worst and get back to work. Just a few years ago the frustration of troubleshooting a broken system would have made me seriously consider the switch to a proprietary solution. But a year of regular use, with an ordinary mix of quiet moments and glitches, gave me the confidence to stop worrying and learn to love Linux. linux a href="https://remark.as/p/journal.paoloamoroso.com/my-first-year-since-coming-back-to-linux"Discuss.../a Email | Reply...
2 months ago

Comments

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from Paolo Amoroso's Journal

Exploring Interlisp-10 and TWENEX

<![CDATA[I'm exploring another corner of the Interlisp ecosystem and history: the Interlisp-10 implementation for DEC PDP-10 mainframes, a 1970s character based environment that predated the graphical Interlisp-D system. I approached this corner when I set out to learn and experiment with a tool I initially checked out only superficially, the TTY editor. This command line structure editor for Lisp code and expressions was the only one of Interlisp-10. The oldest of the Interlisp editors, it came before graphical interfaces and SEdit. On Medley Interlisp the TTY editor is still useful for specialized tasks. For example, its extensive set of commands with macro support is effectively a little language for batch editing and list structure manipulation. Think Unix sed for s-exps. The language even provides the variable EDITMACROS (wink wink). Evaluating (PRINTDEF EDITMACROS) gives a flavor for the language. For an experience closer to 1970s Interlisp I'm using the editor in its original environment, Interlisp-10 on TWENEX. SDF provides a publicly accessible TWENEX system running on a PDP-10 setup. With the product name TOPS-20, TWENEX was a DEC operating system for DECSYSTEM-20/PDP-10 mainframes derived from TENEX originally developed by BBN. SDF's TWENEX system comes with Interlisp-10 and other languages. This is Interlisp-10 in a TWENEX session accessed from my Linux box: A screenshot of a Linux terminal showing Interlisp-10 running under TWENEX in a SSH session. Creating a TWENEX account is straightforward but I didn't receive the initial password via email as expected. After reporting this to the twenex-l mailing list I was soon emailed the password which I changed with the TWENEX command CHANGE DIRECTORY PASSWORD. Interacting with TWENEX is less alien or arcane than I thought. I recognize the influence of TENEX and TWENEX on Interlisp terminology and notation. For example, the Interlisp REPL is called Exec after the Exec command processor of the TENEX operating system. And, like TENEX, Interlisp uses angle brackets as part of directory names. It's clear the influence of these operating systems also on the design of CP/M and hence MS-DOS, for example the commands DIR and TYPE. SDF's TWENEX system provides a complete Interlisp-10 implementation with only one notable omission: HELPSYS, the interactive facility for consulting the online documentation of Interlisp. The SDF wiki describes the basics of using Interlisp-10 and editing Lisp code with the TTY editor. After a couple of years of experience with Medley Interlisp the Interlisp-10 environment feels familiar. Most of the same functions and commands control the development tools and facilities. My first impression of the TTY editor is it's reasonably efficient and intuitive to edit Lisp code, at least using the basic commands. One thing that's not immediately apparent is that EDITF, the entry point for editing a function, works only with existing functions and can't create new ones. The workaround is to define a stub from the Exec like this: (DEFINEQ (NEW.FUNCTION () T)) and then call (EDITF NEW.FUNCTION) to flesh it out. Transferring files between TWENEX and the external world, such as my Linux box, involves two steps because the TWENEX system is not accessible outside of SDF. First, I log into Unix on sdf.org with my SDF account and from there ftp to kankan.twenex.org (172.16.36.36) with my TWENEX account. Once the TWENEX files are on Unix I access them from Linux with scp or sftp to sdf.org. This may require the ARPA tier of SDF membership. Everything is ready for a small Interlisp-10 programming project. #Interlisp #Lisp a href="https://remark.as/p/journal.paoloamoroso.com/exploring-interlisp-10-and-twenex"Discuss.../a Email | Reply @amoroso@oldbytes.space !--emailsub--]]>

a week ago 15 votes
Adding graphics support to DandeGUI

<![CDATA[DandeGUI now does graphics and this is what it looks like. Some text and graphics output windows created with DandeGUI on Medley Interlisp. In addition to the square root table text output demo, I created the other graphics windows with the newly implemented functionality. For example, this code draws the random circles of the top window: (DEFUN RANDOM-CIRCLES (&KEY (N 200) (MAX-R 50) (WIDTH 640) (HEIGHT 480)) (LET ((RANGE-X (- WIDTH ( 2 MAX-R))) (RANGE-Y (- HEIGHT ( 2 MAX-R))) (SHADES (LIST IL:BLACKSHADE IL:GRAYSHADE (RANDOM 65536)))) (DANDEGUI:WITH-GRAPHICS-WINDOW (STREAM :TITLE "Random Circles") (DOTIMES (I N) (DECLARE (IGNORE I)) (IL:FILLCIRCLE (+ MAX-R (RANDOM RANGE-X)) (+ MAX-R (RANDOM RANGE-Y)) (RANDOM MAX-R) (ELT SHADES (RANDOM 3)) STREAM))))) GUI:WITH-GRAPHICS-WINDOW, GUI:OPEN-GRAPHICS-STREAM, and GUI:WITH-GRAPHICS-STREAM are the main additions. These functions and macros are the equivalent for graphics of what GUI:WITH-OUTPUT-TO-WINDOW, GUI:OPEN-WINDOW-STREAM, and GUI:WITH-WINDOW-STREAM, respectively, do for text. The difference is the text facilities send output to TEXTSTREAM streams whereas the graphics facilities to IMAGESTREAM, a type of device-independent graphics streams. Under the hood DandeGUI text windows are customized TEdit windows with an associated TEXTSTREAM. TEdit is the rich text editor of Medley Interlisp. Similarly, the graphics windows of DandeGUI run the Sketch line drawing editor under the hood. Sketch windows have an IMAGESTREAM which Interlisp graphics primitives like IL:DRAWLINE and IL:DRAWPOINT accept as an output destination. DandeGUI creates and manages Sketch windows with the type of stream the graphics primitives require. In other words, IMAGESTREAM is to Sketch what TEXTSTREAM is to TEdit. The benefits of programmatically using Sketch for graphics are the same as TEdit windows for text: automatic window repainting, scrolling, and resizing. The downside is overhead. Scrolling more than a few thousand graphics elements is slow and adding even more may crash the system. However, this is an acceptable tradeoff. The new graphics functions and macros work similarly to the text ones, with a few differences. First, DandeGUI now depends on the SKETCH and SKETCH-STREAM library modules which it automatically loads. Since Sketch has no notion of a read-only drawing area GUI:OPEN-GRAPHICS-STREAM achieves the same effect by other means: (DEFUN OPEN-GRAPHICS-STREAM (&KEY (TITLE "Untitled")) "Open a new window and return the associated IMAGESTREAM to send graphics output to. Sets the window title to TITLE if supplied." (LET ((STREAM (IL:OPENIMAGESTREAM '|Untitled| 'IL:SKETCH '(IL:FONTS ,DEFAULT-FONT*))) (WINDOW (IL:\\SKSTRM.WINDOW.FROM.STREAM STREAM))) (IL:WINDOWPROP WINDOW 'IL:TITLE TITLE) ;; Disable left and middle-click title bar menu (IL:WINDOWPROP WINDOW 'IL:BUTTONEVENTFN NIL) ;; Disable sketch editing via right-click actions (IL:WINDOWPROP WINDOW 'IL:RIGHTBUTTONFN NIL) ;; Disable querying the user whether to save changes (IL:WINDOWPROP WINDOW 'IL:DONTQUERYCHANGES T) STREAM)) Only the mouse gestures and commands of the middle-click title bar menu and the right-click menu change the drawing area interactively. To disable these actions GUI:OPEN-GRAPHICS-STREAM removes their menu handlers by setting to NIL the window properties IL:BUTTONEVENTFN and IL:RIGHTBUTTONFN. This way only programmatic output can change the drawing area. The function also sets IL:DONTQUERYCHANGES to T to prevent querying whether to save the changes at window close. By design output to DandeGUI windows is not permanent, so saving isn't necessary. GUI:WITH-GRAPHICS-STREAM and GUI:WITH-GRAPHICS-WINDOW are straightforward: (DEFMACRO WITH-GRAPHICS-STREAM ((VAR STREAM) &BODY BODY) "Perform the operations in BODY with VAR bound to the graphics window STREAM. Evaluates the forms in BODY in a context in which VAR is bound to STREAM which must already exist, then returns the value of the last form of BODY." `(LET ((,VAR ,STREAM)) ,@BODY)) (DEFMACRO WITH-GRAPHICS-WINDOW ((VAR &KEY TITLE) &BODY BODY) "Perform the operations in BODY with VAR bound to a new graphics window stream. Creates a new window titled TITLE if supplied, binds VAR to the IMAGESTREAM associated with the window, and executes BODY in this context. Returns the value of the last form of BODY." `(WITH-GRAPHICS-STREAM (,VAR (OPEN-GRAPHICS-STREAM :TITLE (OR ,TITLE "Untitled"))) ,@BODY)) Unlike GUI:WITH-TEXT-STREAM and GUI:WITH-TEXT-WINDOW, which need to call GUI::WITH-WRITE-ENABLED to establish a read-only environment after every output operation, GUI:OPEN-GRAPHICS-STREAM can do this only once at window creation. GUI:CLEAR-WINDOW, GUI:WINDOW-TITLE, and GUI:PRINT-MESSAGE now work with graphics streams in addition to text streams. For IMAGESTREAM arguments GUI:PRINT-MESSAGE prints to the system prompt window as Sketch stream windows have no prompt area. The random circles and fractal triangles graphics demos round up the latest additions. #DandeGUI #CommonLisp #Interlisp #Lisp a href="https://remark.as/p/journal.paoloamoroso.com/adding-graphics-support-to-dandegui"Discuss.../a Email | Reply @amoroso@oldbytes.space !--emailsub--]]>

3 months ago 41 votes
Changing text style for DandeGUI window output

<![CDATA[Printing rich text to windows is one of the planned features of DandeGUI, the GUI library for Medley Interlisp I'm developing in Common Lisp. I finally got around to this and implemented the GUI:WITH-TEXT-STYLE macro which controls the attributes of text printed to a window, such as the font family and face. GUI:WITH-TEXT-STYLE establishes a context in which text printed to the stream associated with a TEdit window is rendered in the style specified by the arguments. The call to GUI:WITH-TEXT-STYLE here extends the square root table example by printing the heading in a 12-point bold sans serif font: (gui:with-output-to-window (stream :title "Table of square roots") (gui:with-text-style (stream :family :sans :size 12 :face :bold) (format stream "~&Number~40TSquare Root~2%")) (loop for n from 1 to 30 do (format stream "~&~4D~40T~8,4F~%" n (sqrt n)))) The code produces this window in which the styled column headings stand out: Medley Interlisp window of a square root table generated by the DandeGUI GUI library. The :FAMILY, :SIZE, and :FACE arguments determine the corresponding text attributes. :FAMILY may be a generic family such as :SERIF for an unspecified serif font; :SANS for a sans serif font; :FIX for a fixed width font; or a keyword denoting a specific family like :TIMESROMAN. At the heart of GUI:WITH-TEXT-STYLE is a pair of calls to the Interlisp function PRINTOUT that wrap the macro body, the first for setting the font of the stream to the specified style and the other for restoring the default: (DEFMACRO WITH-TEXT-STYLE ((STREAM &KEY FAMILY SIZE FACE) &BODY BODY) (ONCE-ONLY (STREAM) `(UNWIND-PROTECT (PROGN (IL:PRINTOUT ,STREAM IL:.FONT (TEXT-STYLE-TO-FD ,FAMILY ,SIZE ,FACE)) ,@BODY) (IL:PRINTOUT ,STREAM IL:.FONT DEFAULT-FONT)))) PRINTOUT is an Interlisp function for formatted output similar to Common Lisp's FORMAT but with additional font control via the .FONT directive. The symbols of PRINTOUT, i.e. its directives and arguments, are in the Interlisp package. In turn GUI:WITH-TEXT-STYLE calls GUI::TEXT-STYLE-TO-FD, an internal DandeGUI function which passes to .FONT a font descriptor matching the required text attributes. GUI::TEXT-STYLE-TO-FD calls IL:FONTCOPY to build a descriptor that merges the specified attributes with any unspecified ones copied from the default font. The font descriptor is an Interlisp data structure that represents a font on the Medley environment. #DandeGUI #CommonLisp #Interlisp #Lisp a href="https://remark.as/p/journal.paoloamoroso.com/changing-text-style-for-dandegui-window-output"Discuss.../a Email | Reply @amoroso@oldbytes.space !--emailsub--]]>

4 months ago 41 votes
Adding window clearing and message printing to DandeGUI

<![CDATA[I continued working on DandeGUI, a GUI library for Medley Interlisp I'm writing in Common Lisp. I added two new short public functions, GUI:CLEAR-WINDOW and GUI:PRINT-MESSAGE, and fixed a bug in some internal code. GUI:CLEAR-WINDOW deletes the text of the window associated with the Interlisp TEXTSTREAM passed as the argument: (DEFUN CLEAR-WINDOW (STREAM) "Delete all the text of the window associated with STREAM. Returns STREAM" (WITH-WRITE-ENABLED (STR STREAM) (IL:TEDIT.DELETE STR 1 (IL:TEDIT.NCHARS STR))) STREAM) It's little more than a call to the TEdit API function IL:TEDIT.DELETE for deleting text in the editor buffer, wrapped in the internal macro GUI::WITH-WRITE-ENABLED that establishes a context for write access to a window. I also wrote GUI:PRINT-MESSAGE. This function prints a message to the prompt area of the window associated with the TEXTSTREAM passed as an argument, optionally clearing the area prior to printing. The prompt area is a one-line Interlisp prompt window attached above the title bar of the TEdit window where the editor displays errors and status messages. (DEFUN PRINT-MESSAGE (STREAM MESSAGE &OPTIONAL DONT-CLEAR-P) "Print MESSAGE to the prompt area of the window associated with STREAM. If DONT-CLEAR-P is non NIL the area will be cleared first. Returns STREAM." (IL:TEDIT.PROMPTPRINT STREAM MESSAGE (NOT DONT-CLEAR-P)) STREAM) GUI:PRINT-MESSAGE just passes the appropriate arguments to the TEdit API function IL:TEDIT.PROMPTPRINT which does the actual printing. The documentation of both functions is in the API reference on the project repo. Testing DandeGUI revealed that sometimes text wasn't appended to the end but inserted at the beginning of windows. To address the issue I changed GUI::WITH-WRITE-ENABLED to ensure the file pointer of the stream is set to the end of the file (i.e -1) prior to passing control to output functions. The fix was to add a call to the Interlisp function IL:SETFILEPTR: (IL:SETFILEPTR ,STREAM -1) #DandeGUI #CommonLisp #Interlisp #Lisp a href="https://remark.as/p/journal.paoloamoroso.com/adding-window-clearing-and-message-printing-to-dandegui"Discuss.../a Email | Reply @amoroso@oldbytes.space !--emailsub--]]>

4 months ago 30 votes

More in programming

first-class merges and cover letters

Although it looks really good, I have not yet tried the Jujutsu (jj) version control system, mainly because it’s not yet clearly superior to Magit. But I have been following jj discussions with great interest. One of the things that jj has not yet tackled is how to do better than git refs / branches / tags. As I underestand it, jj currently has something like Mercurial bookmarks, which are more like raw git ref plumbing than a high-level porcelain feature. In particular, jj lacks signed or annotated tags, and it doesn’t have branch names that always automatically refer to the tip. This is clearly a temporary state of affairs because jj is still incomplete and under development and these gaps are going to be filled. But the discussions have led me to think about how git’s branches are unsatisfactory, and what could be done to improve them. branch merge rebase squash fork cover letters previous branch workflow questions branch One of the huge improvements in git compared to Subversion was git’s support for merges. Subversion proudly advertised its support for lightweight branches, but a branch is not very useful if you can’t merge it: an un-mergeable branch is not a tool you can use to help with work-in-progress development. The point of this anecdote is to illustrate that rather than trying to make branches better, we should try to make merges better and branches will get better as a consequence. Let’s consider a few common workflows and how git makes them all unsatisfactory in various ways. Skip to cover letters and previous branch below where I eventually get to the point. merge A basic merge workflow is, create a feature branch hack, hack, review, hack, approve merge back to the trunk The main problem is when it comes to the merge, there may be conflicts due to concurrent work on the trunk. Git encourages you to resolve conflicts while creating the merge commit, which tends to bypass the normal review process. Git also gives you an ugly useless canned commit message for merges, that hides what you did to resolve the conflicts. If the feature branch is a linear record of the work then it can be cluttered with commits to address comments from reviewers and to fix mistakes. Some people like an accurate record of the history, but others prefer the repository to contain clean logical changes that will make sense in years to come, keeping the clutter in the code review system. rebase A rebase-oriented workflow deals with the problems of the merge workflow but introduces new problems. Primarily, rebasing is intended to produce a tidy logical commit history. And when a feature branch is rebased onto the trunk before it is merged, a simple fast-forward check makes it trivial to verify that the merge will be clean (whether it uses separate merge commit or directly fast-forwards the trunk). However, it’s hard to compare the state of the feature branch before and after the rebase. The current and previous tips of the branch (amongst other clutter) are recorded in the reflog of the person who did the rebase, but they can’t share their reflog. A force-push erases the previous branch from the server. Git forges sometimes make it possible to compare a branch before and after a rebase, but it’s usually very inconvenient, which makes it hard to see if review comments have been addressed. And a reviewer can’t fetch past versions of the branch from the server to review them locally. You can mitigate these problems by adding commits in --autosquash format, and delay rebasing until just before merge. However that reintroduces the problem of merge conflicts: if the autosquash doesn’t apply cleanly the branch should have another round of review to make sure the conflicts were resolved OK. squash When the trunk consists of a sequence of merge commits, the --first-parent log is very uninformative. A common way to make the history of the trunk more informative, and deal with the problems of cluttered feature branches and poor rebase support, is to squash the feature branch into a single commit on the trunk instead of mergeing. This encourages merge requests to be roughly the size of one commit, which is arguably a good thing. However, it can be uncomfortably confining for larger features, or cause extra busy-work co-ordinating changes across multiple merge requests. And squashed feature branches have the same merge conflict problem as rebase --autosquash. fork Feature branches can’t always be short-lived. In the past I have maintained local hacks that were used in production but were not (not yet?) suitable to submit upstream. I have tried keeping a stack of these local patches on a git branch that gets rebased onto each upstream release. With this setup the problem of reviewing successive versions of a merge request becomes the bigger problem of keeping track of how the stack of patches evolved over longer periods of time. cover letters Cover letters are common in the email patch workflow that predates git, and they are supported by git format-patch. Github and other forges have a webby version of the cover letter: the message that starts off a pull request or merge request. In git, cover letters are second-class citizens: they aren’t stored in the repository. But many of the problems I outlined above have neat solutions if cover letters become first-class citizens, with a Jujutsu twist. A first-class cover letter starts off as a prototype for a merge request, and becomes the eventual merge commit. Instead of unhelpful auto-generated merge commits, you get helpful and informative messages. No extra work is needed since we’re already writing cover letters. Good merge commit messages make good --first-parent logs. The cover letter subject line works as a branch name. No more need to invent filename-compatible branch names! Jujutsu doesn’t make you name branches, giving them random names instead. It shows the subject line of the topmost commit as a reminder of what the branch is for. If there’s an explicit cover letter the subject line will be a better summary of the branch as a whole. I often find the last commit on a branch is some post-feature cleanup, and that kind of commit has a subject line that is never a good summary of its feature branch. As a prototype for the merge commit, the cover letter can contain the resolution of all the merge conflicts in a way that can be shared and reviewed. In Jujutsu, where conflicts are first class, the cover letter commit can contain unresolved conflicts: you don’t have to clean them up when creating the merge, you can leave that job until later. If you can share a prototype of your merge commit, then it becomes possible for your collaborators to review any merge conflicts and how you resolved them. To distinguish a cover letter from a merge commit object, a cover letter object has a “target” header which is a special kind of parent header. A cover letter also has a normal parent commit header that refers to earlier commits in the feature branch. The target is what will become the first parent of the eventual merge commit. previous branch The other ingredient is to add a “previous branch” header, another special kind of parent commit header. The previous branch header refers to an older version of the cover letter and, transitively, an older version of the whole feature branch. Typically the previous branch header will match the last shared version of the branch, i.e. the commit hash of the server’s copy of the feature branch. The previous branch header isn’t changed during normal work on the feature branch. As the branch is revised and rebased, the commit hash of the cover letter will change fairly frequently. These changes are recorded in git’s reflog or jj’s oplog, but not in the “previous branch” chain. You can use the previous branch chain to examine diffs between versions of the feature branch as a whole. If commits have Gerrit-style or jj-style change-IDs then it’s fairly easy to find and compare previous versions of an individual commit. The previous branch header supports interdiff code review, or allows you to retain past iterations of a patch series. workflow Here are some sketchy notes on how these features might work in practice. One way to use cover letters is jj-style, where it’s convenient to edit commits that aren’t at the tip of a branch, and easy to reshuffle commits so that a branch has a deliberate narrative. When you create a new feature branch, it starts off as an empty cover letter with both target and parent pointing at the same commit. Alternatively, you might start a branch ad hoc, and later cap it with a cover letter. If this is a small change and rebase + fast-forward is allowed, you can edit the “cover letter” to contain the whole change. Otherwise, you can hack on the branch any which way. Shuffle the commits that should be part of the merge request so that they occur before the cover letter, and edit the cover letter to summarize the preceding commits. When you first push the branch, there’s (still) no need to give it a name: the server can see that this is (probably) going to be a new merge request because the top commit has a target branch and its change-ID doesn’t match an existing merge request. Also when you push, your client automatically creates a new instance of your cover letter, adding a “previous branch” header to indicate that the old version was shared. The commits on the branch that were pushed are now immutable; rebases and edits affect the new version of the branch. During review there will typically be multiple iterations of the branch to address feedback. The chain of previous branch headers allows reviewers to see how commits were changed to address feedback, interdiff style. The branch can be merged when the target header matches the current trunk and there are no conflicts left to resolve. When the time comes to merge the branch, there are several options: For a merge workflow, the cover letter is used to make a new commit on the trunk, changing the target header into the first parent commit, and dropping the previous branch header. Or, if you like to preserve more history, the previous branch chain can be retained. Or you can drop the cover letter and fast foward the branch on to the trunk. Or you can squash the branch on to the trunk, using the cover letter as the commit message. questions This is a fairly rough idea: I’m sure that some of the details won’t work in practice without a lot of careful work on compatibility and deployability. Do the new commit headers (“target” and “previous branch”) need to be headers? What are the compatibility issues with adding new headers that refer to other commits? How would a server handle a push of an unnamed branch? How could someone else pull a copy of it? How feasible is it to use cover letter subject lines instead of branch names? The previous branch header is doing a similar job to a remote tracking branch. Is there an opportunity to simplify how we keep a local cache of the server state? Despite all that, I think something along these lines could make branches / reviews / reworks / merges less awkward. How you merge should me a matter of your project’s preferred style, without interference from technical limitations that force you to trade off one annoyance against another. There remains a non-technical limitation: I have assumed that contributors are comfortable enough with version control to use a history-editing workflow effectively. I’ve lost all perspective on how hard this is for a newbie to learn; I expect (or hope?) jj makes it much easier than git rebase.

15 hours ago 5 votes
Performant Full-Disk Encryption on a Raspberry Pi, but Foiled by Twisty UARTs

In my post yesterday (“ARM is great, ARM is terrible (and so is RISC-V)), I described my desire to find ARM hardware with AES instructions to support full-disk encryption, and the poor state of the OS ecosystem around the newer ARM boards. I was anticipating buying either a newer ARM SBC or an x86 mini … Continue reading Performant Full-Disk Encryption on a Raspberry Pi, but Foiled by Twisty UARTs →

2 hours ago 2 votes
Words are not violence

Debates, at their finest, are about exploring topics together in search for truth. That probably sounds hopelessly idealistic to anyone who've ever perused a comment section on the internet, but ideals are there to remind us of what's possible, to inspire us to reach higher — even if reality falls short. I've been reaching for those debating ideals for thirty years on the internet. I've argued with tens of thousands of people, first on Usenet, then in blog comments, then Twitter, now X, and also LinkedIn — as well as a million other places that have come and gone. It's mostly been about technology, but occasionally about society and morality too. There have been plenty of heated moments during those three decades. It doesn't take much for a debate between strangers on this internet to escalate into something far lower than a "search for truth", and I've often felt willing to settle for just a cordial tone! But for the majority of that time, I never felt like things might escalate beyond the keyboards and into the real world. That was until we had our big blow-up at 37signals back in 2021. I suddenly got to see a different darkness from the most vile corners of the internet. Heard from those who seem to prowl for a mob-sanctioned opportunity to threaten and intimidate those they disagree with. It fundamentally changed me. But I used the experience as a mirror to reflect on the ways my own engagement with the arguments occasionally felt too sharp, too personal. And I've since tried to refocus way more of my efforts on the positive and the productive. I'm by no means perfect, and the internet often tempts the worst in us, but I resist better now than I did then. What I cannot come to terms with, though, is the modern equation of words with violence. The growing sense of permission that if the disagreement runs deep enough, then violence is a justified answer to settle it. That sounds so obvious that we shouldn't need to state it in a civil society, but clearly it is not. Not even in technology. Not even in programming. There are plenty of factions here who've taken to justify their violent fantasies by referring to their ideological opponents as "nazis", "fascists", or "racists". And then follow that up with a call to "punch a nazi" or worse. When you hear something like that often enough, it's easy to grow glib about it. That it's just a saying. They don't mean it. But I'm afraid many of them really do. Which brings us to Charlie Kirk. And the technologists who name drinks at their bar after his mortal wound just hours after his death, to name but one of the many, morbid celebrations of the famous conservative debater's death. It's sickening. Deeply, profoundly sickening. And my first instinct was exactly what such people would delight in happening. To watch the rest of us recoil, then retract, and perhaps even eject. To leave the internet for a while or forever. But I can't do that. We shouldn't do that. Instead, we should double down on the opposite. Continue to show up with our ideals held high while we debate strangers in that noble search for the truth. Where we share our excitement, our enthusiasm, and our love of technology, country, and humanity. I think that's what Charlie Kirk did so well. Continued to show up for the debate. Even on hostile territory. Not because he thought he was ever going to convince everyone, but because he knew he'd always reach some with a good argument, a good insight, or at least a different perspective. You could agree or not. Counter or be quiet. But the earnest exploration of the topics in a live exchange with another human is as fundamental to our civilization as Socrates himself. Don't give up, don't give in. Keep debating.

35 minutes ago 1 votes
ARM is great, ARM is terrible (and so is RISC-V)

I’ve long been interested in new and different platforms. I ran Debian on an Alpha back in the late 1990s and was part of the Alpha port team; then I helped bootstrap Debian on amd64. I’ve got somewhere around 8 Raspberry Pi devices in active use right now, and the free NNCPNET Internet email service … Continue reading ARM is great, ARM is terrible (and so is RISC-V) →

yesterday 3 votes
Many Hard Leetcode Problems are Easy Constraint Problems

In my first interview out of college I was asked the change counter problem: Given a set of coin denominations, find the minimum number of coins required to make change for a given number. IE for USA coinage and 37 cents, the minimum number is four (quarter, dime, 2 pennies). I implemented the simple greedy algorithm and immediately fell into the trap of the question: the greedy algorithm only works for "well-behaved" denominations. If the coin values were [10, 9, 1], then making 37 cents would take 10 coins in the greedy algorithm but only 4 coins optimally (10+9+9+9). The "smart" answer is to use a dynamic programming algorithm, which I didn't know how to do. So I failed the interview. But you only need dynamic programming if you're writing your own algorithm. It's really easy if you throw it into a constraint solver like MiniZinc and call it a day. int: total; array[int] of int: values = [10, 9, 1]; array[index_set(values)] of var 0..: coins; constraint sum (c in index_set(coins)) (coins[c] * values[c]) == total; solve minimize sum(coins); You can try this online here. It'll give you a prompt to put in total and then give you successively-better solutions: coins = [0, 0, 37]; ---------- coins = [0, 1, 28]; ---------- coins = [0, 2, 19]; ---------- coins = [0, 3, 10]; ---------- coins = [0, 4, 1]; ---------- coins = [1, 3, 0]; ---------- Lots of similar interview questions are this kind of mathematical optimization problem, where we have to find the maximum or minimum of a function corresponding to constraints. They're hard in programming languages because programming languages are too low-level. They are also exactly the problems that constraint solvers were designed to solve. Hard leetcode problems are easy constraint problems.1 Here I'm using MiniZinc, but you could just as easily use Z3 or OR-Tools or whatever your favorite generalized solver is. More examples This was a question in a different interview (which I thankfully passed): Given a list of stock prices through the day, find maximum profit you can get by buying one stock and selling one stock later. It's easy to do in O(n^2) time, or if you are clever, you can do it in O(n). Or you could be not clever at all and just write it as a constraint problem: array[int] of int: prices = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8]; var int: buy; var int: sell; var int: profit = prices[sell] - prices[buy]; constraint sell > buy; constraint profit > 0; solve maximize profit; Reminder, link to trying it online here. While working at that job, one interview question we tested out was: Given a list, determine if three numbers in that list can be added or subtracted to give 0? This is a satisfaction problem, not a constraint problem: we don't need the "best answer", any answer will do. We eventually decided against it for being too tricky for the engineers we were targeting. But it's not tricky in a solver; include "globals.mzn"; array[int] of int: numbers = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8]; array[index_set(numbers)] of var {0, -1, 1}: choices; constraint sum(n in index_set(numbers)) (numbers[n] * choices[n]) = 0; constraint count(choices, -1) + count(choices, 1) = 3; solve satisfy; Okay, one last one, a problem I saw last year at Chipy AlgoSIG. Basically they pick some leetcode problems and we all do them. I failed to solve this one: Given an array of integers heights representing the histogram's bar height where the width of each bar is 1, return the area of the largest rectangle in the histogram. The "proper" solution is a tricky thing involving tracking lots of bookkeeping states, which you can completely bypass by expressing it as constraints: array[int] of int: numbers = [2,1,5,6,2,3]; var 1..length(numbers): x; var 1..length(numbers): dx; var 1..: y; constraint x + dx <= length(numbers); constraint forall (i in x..(x+dx)) (y <= numbers[i]); var int: area = (dx+1)*y; solve maximize area; output ["(\(x)->\(x+dx))*\(y) = \(area)"] There's even a way to automatically visualize the solution (using vis_geost_2d), but I didn't feel like figuring it out in time for the newsletter. Is this better? Now if I actually brought these questions to an interview the interviewee could ruin my day by asking "what's the runtime complexity?" Constraint solvers runtimes are unpredictable and almost always than an ideal bespoke algorithm because they are more expressive, in what I refer to as the capability/tractability tradeoff. But even so, they'll do way better than a bad bespoke algorithm, and I'm not experienced enough in handwriting algorithms to consistently beat a solver. The real advantage of solvers, though, is how well they handle new constraints. Take the stock picking problem above. I can write an O(n²) algorithm in a few minutes and the O(n) algorithm if you give me some time to think. Now change the problem to Maximize the profit by buying and selling up to max_sales stocks, but you can only buy or sell one stock at a given time and you can only hold up to max_hold stocks at a time? That's a way harder problem to write even an inefficient algorithm for! While the constraint problem is only a tiny bit more complicated: include "globals.mzn"; int: max_sales = 3; int: max_hold = 2; array[int] of int: prices = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8]; array [1..max_sales] of var int: buy; array [1..max_sales] of var int: sell; array [index_set(prices)] of var 0..max_hold: stocks_held; var int: profit = sum(s in 1..max_sales) (prices[sell[s]] - prices[buy[s]]); constraint forall (s in 1..max_sales) (sell[s] > buy[s]); constraint profit > 0; constraint forall(i in index_set(prices)) (stocks_held[i] = (count(s in 1..max_sales) (buy[s] <= i) - count(s in 1..max_sales) (sell[s] <= i))); constraint alldifferent(buy ++ sell); solve maximize profit; output ["buy at \(buy)\n", "sell at \(sell)\n", "for \(profit)"]; Most constraint solving examples online are puzzles, like Sudoku or "SEND + MORE = MONEY". Solving leetcode problems would be a more interesting demonstration. And you get more interesting opportunities to teach optimizations, like symmetry breaking. Because my dad will email me if I don't explain this: "leetcode" is slang for "tricky algorithmic interview questions that have little-to-no relevance in the actual job you're interviewing for." It's from leetcode.com. ↩

yesterday 4 votes