Full Width [alt+shift+f] FOCUS MODE Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
39
<![CDATA[Printing rich text to windows is one of the planned features of DandeGUI, the GUI library for Medley Interlisp I'm developing in Common Lisp. I finally got around to this and implemented the GUI:WITH-TEXT-STYLE macro which controls the attributes of text printed to a window, such as the font family and face. GUI:WITH-TEXT-STYLE establishes a context in which text printed to the stream associated with a TEdit window is rendered in the style specified by the arguments. The call to GUI:WITH-TEXT-STYLE here extends the square root table example by printing the heading in a 12-point bold sans serif font: (gui:with-output-to-window (stream :title "Table of square roots") (gui:with-text-style (stream :family :sans :size 12 :face :bold) (format stream "~&Number~40TSquare Root~2%")) (loop for n from 1 to 30 do (format stream "~&~4D~40T~8,4F~%" n (sqrt n)))) The code produces this window in which the styled column headings stand out: Medley Interlisp window of a...
3 months ago

Comments

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from Paolo Amoroso's Journal

Exploring Interlisp-10 and TWENEX

<![CDATA[I'm exploring another corner of the Interlisp ecosystem and history: the Interlisp-10 implementation for DEC PDP-10 mainframes, a 1970s character based environment that predated the graphical Interlisp-D system. I approached this corner when I set out to learn and experiment with a tool I initially checked out only superficially, the TTY editor. This command line structure editor for Lisp code and expressions was the only one of Interlisp-10. The oldest of the Interlisp editors, it came before graphical interfaces and SEdit. On Medley Interlisp the TTY editor is still useful for specialized tasks. For example, its extensive set of commands with macro support is effectively a little language for batch editing and list structure manipulation. Think Unix sed for s-exps. The language even provides the variable EDITMACROS (wink wink). Evaluating (PRINTDEF EDITMACROS) gives a flavor for the language. For an experience closer to 1970s Interlisp I'm using the editor in its original environment, Interlisp-10 on TWENEX. SDF provides a publicly accessible TWENEX system running on a PDP-10 setup. With the product name TOPS-20, TWENEX was a DEC operating system for DECSYSTEM-20/PDP-10 mainframes derived from TENEX originally developed by BBN. SDF's TWENEX system comes with Interlisp-10 and other languages. This is Interlisp-10 in a TWENEX session accessed from my Linux box: A screenshot of a Linux terminal showing Interlisp-10 running under TWENEX in a SSH session. Creating a TWENEX account is straightforward but I didn't receive the initial password via email as expected. After reporting this to the twenex-l mailing list I was soon emailed the password which I changed with the TWENEX command CHANGE DIRECTORY PASSWORD. Interacting with TWENEX is less alien or arcane than I thought. I recognize the influence of TENEX and TWENEX on Interlisp terminology and notation. For example, the Interlisp REPL is called Exec after the Exec command processor of the TENEX operating system. And, like TENEX, Interlisp uses angle brackets as part of directory names. It's clear the influence of these operating systems also on the design of CP/M and hence MS-DOS, for example the commands DIR and TYPE. SDF's TWENEX system provides a complete Interlisp-10 implementation with only one notable omission: HELPSYS, the interactive facility for consulting the online documentation of Interlisp. The SDF wiki describes the basics of using Interlisp-10 and editing Lisp code with the TTY editor. After a couple of years of experience with Medley Interlisp the Interlisp-10 environment feels familiar. Most of the same functions and commands control the development tools and facilities. My first impression of the TTY editor is it's reasonably efficient and intuitive to edit Lisp code, at least using the basic commands. One thing that's not immediately apparent is that EDITF, the entry point for editing a function, works only with existing functions and can't create new ones. The workaround is to define a stub from the Exec like this: (DEFINEQ (NEW.FUNCTION () T)) and then call (EDITF NEW.FUNCTION) to flesh it out. Transferring files between TWENEX and the external world, such as my Linux box, involves two steps because the TWENEX system is not accessible outside of SDF. First, I log into Unix on sdf.org with my SDF account and from there ftp to kankan.twenex.org (172.16.36.36) with my TWENEX account. Once the TWENEX files are on Unix I access them from Linux with scp or sftp to sdf.org. This may require the ARPA tier of SDF membership. Everything is ready for a small Interlisp-10 programming project. #Interlisp #Lisp a href="https://remark.as/p/journal.paoloamoroso.com/exploring-interlisp-10-and-twenex"Discuss.../a Email | Reply @amoroso@oldbytes.space !--emailsub--]]>

5 days ago 13 votes
My first year since coming back to Linux

<![CDATA[It has been a year since I set up my System76 Merkaat with Linux Mint. In July of 2024 I migrated from ChromeOS and the Merkaat has been my daily driver on the desktop. A year later I have nothing major to report, which is the point. Despite the occasional unplanned reinstallation I have been enjoying the stability of Linux and just using the PC. This stability finally enabled me to burn bridges with mainstream operating systems and fully embrace Linux and open systems. I'm ready to handle the worst and get back to work. Just a few years ago the frustration of troubleshooting a broken system would have made me seriously consider the switch to a proprietary solution. But a year of regular use, with an ordinary mix of quiet moments and glitches, gave me the confidence to stop worrying and learn to love Linux. linux a href="https://remark.as/p/journal.paoloamoroso.com/my-first-year-since-coming-back-to-linux"Discuss.../a Email | Reply @amoroso@oldbytes.space !--emailsub--]]>

2 months ago 32 votes
Adding graphics support to DandeGUI

<![CDATA[DandeGUI now does graphics and this is what it looks like. Some text and graphics output windows created with DandeGUI on Medley Interlisp. In addition to the square root table text output demo, I created the other graphics windows with the newly implemented functionality. For example, this code draws the random circles of the top window: (DEFUN RANDOM-CIRCLES (&KEY (N 200) (MAX-R 50) (WIDTH 640) (HEIGHT 480)) (LET ((RANGE-X (- WIDTH ( 2 MAX-R))) (RANGE-Y (- HEIGHT ( 2 MAX-R))) (SHADES (LIST IL:BLACKSHADE IL:GRAYSHADE (RANDOM 65536)))) (DANDEGUI:WITH-GRAPHICS-WINDOW (STREAM :TITLE "Random Circles") (DOTIMES (I N) (DECLARE (IGNORE I)) (IL:FILLCIRCLE (+ MAX-R (RANDOM RANGE-X)) (+ MAX-R (RANDOM RANGE-Y)) (RANDOM MAX-R) (ELT SHADES (RANDOM 3)) STREAM))))) GUI:WITH-GRAPHICS-WINDOW, GUI:OPEN-GRAPHICS-STREAM, and GUI:WITH-GRAPHICS-STREAM are the main additions. These functions and macros are the equivalent for graphics of what GUI:WITH-OUTPUT-TO-WINDOW, GUI:OPEN-WINDOW-STREAM, and GUI:WITH-WINDOW-STREAM, respectively, do for text. The difference is the text facilities send output to TEXTSTREAM streams whereas the graphics facilities to IMAGESTREAM, a type of device-independent graphics streams. Under the hood DandeGUI text windows are customized TEdit windows with an associated TEXTSTREAM. TEdit is the rich text editor of Medley Interlisp. Similarly, the graphics windows of DandeGUI run the Sketch line drawing editor under the hood. Sketch windows have an IMAGESTREAM which Interlisp graphics primitives like IL:DRAWLINE and IL:DRAWPOINT accept as an output destination. DandeGUI creates and manages Sketch windows with the type of stream the graphics primitives require. In other words, IMAGESTREAM is to Sketch what TEXTSTREAM is to TEdit. The benefits of programmatically using Sketch for graphics are the same as TEdit windows for text: automatic window repainting, scrolling, and resizing. The downside is overhead. Scrolling more than a few thousand graphics elements is slow and adding even more may crash the system. However, this is an acceptable tradeoff. The new graphics functions and macros work similarly to the text ones, with a few differences. First, DandeGUI now depends on the SKETCH and SKETCH-STREAM library modules which it automatically loads. Since Sketch has no notion of a read-only drawing area GUI:OPEN-GRAPHICS-STREAM achieves the same effect by other means: (DEFUN OPEN-GRAPHICS-STREAM (&KEY (TITLE "Untitled")) "Open a new window and return the associated IMAGESTREAM to send graphics output to. Sets the window title to TITLE if supplied." (LET ((STREAM (IL:OPENIMAGESTREAM '|Untitled| 'IL:SKETCH '(IL:FONTS ,DEFAULT-FONT*))) (WINDOW (IL:\\SKSTRM.WINDOW.FROM.STREAM STREAM))) (IL:WINDOWPROP WINDOW 'IL:TITLE TITLE) ;; Disable left and middle-click title bar menu (IL:WINDOWPROP WINDOW 'IL:BUTTONEVENTFN NIL) ;; Disable sketch editing via right-click actions (IL:WINDOWPROP WINDOW 'IL:RIGHTBUTTONFN NIL) ;; Disable querying the user whether to save changes (IL:WINDOWPROP WINDOW 'IL:DONTQUERYCHANGES T) STREAM)) Only the mouse gestures and commands of the middle-click title bar menu and the right-click menu change the drawing area interactively. To disable these actions GUI:OPEN-GRAPHICS-STREAM removes their menu handlers by setting to NIL the window properties IL:BUTTONEVENTFN and IL:RIGHTBUTTONFN. This way only programmatic output can change the drawing area. The function also sets IL:DONTQUERYCHANGES to T to prevent querying whether to save the changes at window close. By design output to DandeGUI windows is not permanent, so saving isn't necessary. GUI:WITH-GRAPHICS-STREAM and GUI:WITH-GRAPHICS-WINDOW are straightforward: (DEFMACRO WITH-GRAPHICS-STREAM ((VAR STREAM) &BODY BODY) "Perform the operations in BODY with VAR bound to the graphics window STREAM. Evaluates the forms in BODY in a context in which VAR is bound to STREAM which must already exist, then returns the value of the last form of BODY." `(LET ((,VAR ,STREAM)) ,@BODY)) (DEFMACRO WITH-GRAPHICS-WINDOW ((VAR &KEY TITLE) &BODY BODY) "Perform the operations in BODY with VAR bound to a new graphics window stream. Creates a new window titled TITLE if supplied, binds VAR to the IMAGESTREAM associated with the window, and executes BODY in this context. Returns the value of the last form of BODY." `(WITH-GRAPHICS-STREAM (,VAR (OPEN-GRAPHICS-STREAM :TITLE (OR ,TITLE "Untitled"))) ,@BODY)) Unlike GUI:WITH-TEXT-STREAM and GUI:WITH-TEXT-WINDOW, which need to call GUI::WITH-WRITE-ENABLED to establish a read-only environment after every output operation, GUI:OPEN-GRAPHICS-STREAM can do this only once at window creation. GUI:CLEAR-WINDOW, GUI:WINDOW-TITLE, and GUI:PRINT-MESSAGE now work with graphics streams in addition to text streams. For IMAGESTREAM arguments GUI:PRINT-MESSAGE prints to the system prompt window as Sketch stream windows have no prompt area. The random circles and fractal triangles graphics demos round up the latest additions. #DandeGUI #CommonLisp #Interlisp #Lisp a href="https://remark.as/p/journal.paoloamoroso.com/adding-graphics-support-to-dandegui"Discuss.../a Email | Reply @amoroso@oldbytes.space !--emailsub--]]>

3 months ago 39 votes
Adding window clearing and message printing to DandeGUI

<![CDATA[I continued working on DandeGUI, a GUI library for Medley Interlisp I'm writing in Common Lisp. I added two new short public functions, GUI:CLEAR-WINDOW and GUI:PRINT-MESSAGE, and fixed a bug in some internal code. GUI:CLEAR-WINDOW deletes the text of the window associated with the Interlisp TEXTSTREAM passed as the argument: (DEFUN CLEAR-WINDOW (STREAM) "Delete all the text of the window associated with STREAM. Returns STREAM" (WITH-WRITE-ENABLED (STR STREAM) (IL:TEDIT.DELETE STR 1 (IL:TEDIT.NCHARS STR))) STREAM) It's little more than a call to the TEdit API function IL:TEDIT.DELETE for deleting text in the editor buffer, wrapped in the internal macro GUI::WITH-WRITE-ENABLED that establishes a context for write access to a window. I also wrote GUI:PRINT-MESSAGE. This function prints a message to the prompt area of the window associated with the TEXTSTREAM passed as an argument, optionally clearing the area prior to printing. The prompt area is a one-line Interlisp prompt window attached above the title bar of the TEdit window where the editor displays errors and status messages. (DEFUN PRINT-MESSAGE (STREAM MESSAGE &OPTIONAL DONT-CLEAR-P) "Print MESSAGE to the prompt area of the window associated with STREAM. If DONT-CLEAR-P is non NIL the area will be cleared first. Returns STREAM." (IL:TEDIT.PROMPTPRINT STREAM MESSAGE (NOT DONT-CLEAR-P)) STREAM) GUI:PRINT-MESSAGE just passes the appropriate arguments to the TEdit API function IL:TEDIT.PROMPTPRINT which does the actual printing. The documentation of both functions is in the API reference on the project repo. Testing DandeGUI revealed that sometimes text wasn't appended to the end but inserted at the beginning of windows. To address the issue I changed GUI::WITH-WRITE-ENABLED to ensure the file pointer of the stream is set to the end of the file (i.e -1) prior to passing control to output functions. The fix was to add a call to the Interlisp function IL:SETFILEPTR: (IL:SETFILEPTR ,STREAM -1) #DandeGUI #CommonLisp #Interlisp #Lisp a href="https://remark.as/p/journal.paoloamoroso.com/adding-window-clearing-and-message-printing-to-dandegui"Discuss.../a Email | Reply @amoroso@oldbytes.space !--emailsub--]]>

4 months ago 28 votes

More in programming

Engineering excellence starts on edge

The best engineering teams take control of their tools. They help develop the frameworks and libraries they depend on, and they do this by running production code on edge — the unreleased next version. That's where progress is made, that's where participation matters most. This sounds scary at first. Edge? Isn't that just another word for danger? What if there's a bug?! Yes, what if? Do you think bugs either just magically appear or disappear? No, they're put there by programmers and removed by the very same. If you want bug-free frameworks and libraries, you have to work for it, but if you do, the reward for your responsibility is increased engineering excellence. Take Rails 8.1, as an example. We just released the first beta version at Rails World, but Shopify, GitHub, 37signals, and a handful of other frontier teams have already been running this code in production for almost a year. Of course, there were bugs along the way, but good automated testing and diligent programmers caught virtually all of them before they went to production. It didn't always used to be this way. Once upon a time, I felt like I had one of the only teams running Rails on edge in production. But now two of the most important web apps in the world are doing the same! At an incredible scale and criticality. This has allowed both of them, and the few others with the same frontier ambition, to foster a truly elite engineering culture. One that isn't just a consumer of open source software, but a real-time co-creator. This is a step function in competence and prowess for any team. It's also an incredible motivation boost. When your programmers are able to directly influence the tools they're working with, they're far more likely to do so, and thus they go deeper, learn more, and create connections to experts in the same situation elsewhere. But this requires being able to immediately use the improvements or bug fixes they help devise. It doesn't work if you sit around waiting patiently for the next release before you dare dive in. Far more companies could do this. Far more companies should do this. Whether it's with Ruby, Rails, Omarchy, or whatever you're using, your team could level up by getting more involved, taking responsibility for finding issues on edge, and reaping the reward of excellence in the process. So what are you waiting on?

14 hours ago 4 votes
Dreams of Late Summer

Here on a summer night in the grass and lilac smell Drunk on the crickets and the starry sky, Oh what fine stories we could tell With this moonlight to tell them by. A summer night, and you, and paradise, So lovely and so filled with grace, Above your head, the universe has hung its … Continue reading Dreams of Late Summer →

an hour ago 2 votes
Apologies and forgiveness

The first in a series of posts about doing things the right way

yesterday 7 votes
Understanding Bazel remote caching

A deep dive into the Action Cache, the CAS, and the security issues that arise from using Bazel with a remote cache but without remote execution

yesterday 8 votes
Trying to Make Sense of Casing Conventions on the Web

(I present to you my stream of consciousness on the topic of casing as it applies to the web platform.) I’m reading about the new command and commandfor attributes — which I’m super excited about, declarative behavior invocation in HTML? YES PLEASE!! — and one thing that strikes me is the casing in these APIs. For example, the command attribute has a variety of values in HTML which correspond to APIs in JavaScript. The show-popover attribute value maps to .showPopover() in JavaScript. hide-popover maps to .hidePopover(), etc. So what we have is: lowercase in attribute names e.g. commandfor="..." kebab-case in attribute values e.g. show-popover camelCase for JS counterparts e.g. showPopover() After thinking about this a little more, I remember that HTML attributes names are case insensitive, so the browser will normalize them to lowercase during parsing. Given that, I suppose you could write commandFor="..." but it’s effectively the same. Ok, lowercase attribute names in HTML makes sense. The related popover attributes follow the same convention: popovertarget popovertargetaction And there are many other attribute names in HTML that are lowercase, e.g.: maxlength novalidate contenteditable autocomplete formenctype So that all makes sense. But wait, there are some attribute names with hyphens in them, like aria-label="..." and data-value="...". So why isn’t it command-for="..."? Well, upon further reflection, I suppose those attributes were named that way for extensibility’s sake: they are essentially wildcard attributes that represent a family of attributes that are all under the same namespace: aria-* and data-*. But wait, isn’t that an argument for doing popover-target and popover-target-action? Or command and command-for? But wait (I keep saying that) there are kebab-case attribute names in HTML — like http-equiv on the <meta> tag, or accept-charset on the form tag — but those seem more like legacy exceptions. It seems like the only answer here is: there is no rule. Naming is driven by convention and decisions are made on a case-by-case basis. But if I had to summarize, it would probably be that the default casing for new APIs tends to follow the rules I outlined at the start (and what’s reflected in the new command APIs): lowercase for HTML attributes names kebab-case for HTML attribute values camelCase for JS counterparts Let’s not even get into SVG attribute names We need one of those “bless this mess” signs that we can hang over the World Wide Web. Email · Mastodon · Bluesky

2 days ago 10 votes