More from ntietz.com blog - technically a blog
I've been publishing at least one blog post every week on this blog for about 2.5 years. I kept it up even when I was very sick last year with Lyme disease. It's time for me to take a break and reset. This is the right time, because the world is very difficult for me to move through right now and I'm just burnt out. I need to focus my energy on things that give me energy and right now, that's not writing and that's not tech. I'll come back to this, and it might look a little different. This is my last post for at least a month. It might be longer, if I still need more time, but I won't return before the end of May. I know I need at least that long to heal, and I also need that time to focus on music. I plan to play a set at West Philly Porchfest, so this whole month I'll be prepping that set. If you want to follow along with my music, you can find it on my bandcamp (only one track, but I'll post demos of the others that I prepare for Porchfest as they come together). And if you want to reach out, my inbox is open. Be kind to yourself. Stay well, drink some water. See you in a while.
A few months ago, I was talking with a friend about my ergonomic setup and they asked if being vertical helps it with cooling. I wasn't sure, because it seems like it could help but it was probably such a small difference that it wouldn't matter. So, I did what any self-respecting nerd would do: I procrastinated. The question didn't leave me, though, so after those months passed, I did the second thing any self-respecting nerd would do: benchmarks. The question and the setup What we want to find out is whether or not the position of the laptop would affect its CPU performance. I wanted to measure it in three positions: normal: using it the way any normal person uses their laptop, with the screen and keyboard at something like a 90-degree angle closed: using it like a tech nerd, closed but plugged into a monitor and peripherals vertical: using it like a weird blogger who has sunk a lot of time into her ergonomic setup and wants to justify it even further My hypothesis was that using it closed would slightly reduce CPU performance, and that using it normal or vertical would be roughly the same. For this experiment, I'm using my personal laptop. It's one of the early Framework laptops (2nd batch of shipments) which is about four years old. It has an 11th gen Intel CPU in it, the i7-1165G7. My laptop will be sitting on a laptop riser for the closed and normal positions, and it will be sitting in my ergonomic tray for the vertical one. For all three, it will be connected to the same set of peripherals through a single USB-C cable, and the internal display is disabled for all three. Running the tests I'm not too interested in the initial boost clock. I'm more interested in what clock speeds we can sustain. What happens under a sustained, heavy load, when we hit a saturation point and can't shed any more heat? To test that, I'm doing a test using heavy CPU load. The load is generated by stress-ng, which also reports some statistics. Most notably, it reports CPU temperatures and clock speeds during the tests. Here's the script I wrote to make these consistent. To skip the boost clock period, I warm it up first with a 3-minute load Then I do a 5-minute load and measure the CPU clock frequency and CPU temps every second along the way. #!/bin/bash # load the CPU for 3 minutes to warm it up sudo stress-ng --matrix $2 -t 3m --tz --raplstat 1 --thermalstat 1 -Y warmup-$1.yaml --log-file warmup-$1.log --timestamp --ignite-cpu # run for 5 minutes to gather our averages sudo stress-ng --matrix $2 -t 5m --tz --raplstat 1 --thermalstat 1 -Y cputhermal-$1.yaml --log-file cputhermal-$1.log --timestamp --ignite-cpu We need sudo since we're using an option (--ignite-cpu) which needs root privileges[1] and attempts to make the CPU run harder/hotter. Then we specify the stressor we're using with --matrix $2, which does some matrix calculations over a number of cores we specify. The remaining options are about reporting and logging. I let the computer cool for a minute or two between each test, but not for a scientific reason. Just because I was doing other things. Since my goal was to saturate the temperatures, and they got stable within each warmup period, cooldowh time wasn't necessary—we'd warm it back up anyway. So, I ran this with the three positions, and with two core count options: 8, one per thread on my CPU; and 4, one per physical core on my CPU. The results Once it was done, I analyzed the results. I took the average clock speed across the 5 minute test for each of the configurations. My hypothesis was partially right and partially wrong. When doing 8 threads, each position had different results: Our baseline normal open position had an average clock speed of 3.44 GHz and an average CPU temp of 91.75 F. With the laptop closed, the average clock speed was 3.37 GHz and the average CPU temp was 91.75 F. With the laptop open vertical, the average clock speed was 3.48 GHz and the average CPU temp was 88.75 F. With 4 threads, the results were: For the baseline normal open position, the average clock speed was 3.80 GHz with average CPU temps of 91.11 F. With the laptop closed, the average clock speed was 3.64 GHz with average CPU temps of 90.70 F. With the laptop open vertical, the average clock speed was 3.80 GHz with average CPU temps of 86.07 F. So, I was wrong in one big aspect: it does make a clearly measurable difference. Having it open and vertical reduces temps by 3 degrees in one test and 5 in the other, and it had a higher clock speed (by 0.05 GHz, which isn't a lot but isn't nothing). We can infer that, since clock speeds improved in the heavier load test but not in the lighter load test, that the lighter load isn't hitting our thermal limits—and when we do, the extra cooling from the vertical position really helps. One thing is clear: in all cases, the CPU ran slower when the laptop was closed. It's sorta weird that the CPU temps went down when closed in the second test. I wonder if that's from being able to cool down more when it throttled down a lot, or if there was a hotspot that throttled the CPU but which wasn't reflected in the temp data, maybe a different sensor. I'm not sure if having my laptop vertical like I do will ever make a perceptible performance difference. At any rate, that's not why I do it. But it does have lower temps, and that should let my fans run less often and be quieter when they do. That's a win in my book. It also means that when I run CPU-intensive things (say hi to every single Rust compile!) I should not close the laptop. And hey, if I decide to work from my armchair using my ergonomic tray, I can argue it's for efficiency: boss, I just gotta eke out those extra clock cycles. I'm not sure that this made any difference on my system. I didn't want to rerun the whole set without it, though, and it doesn't invalidate the tests if it simply wasn't doing anything. ↩
After I put up a post about a Python gotcha, someone remarked that "there are very few interpreted languages in common usage," and that they "wish Python was more widely recognized as a compiled language." This got me thinking: what is the distinction between a compiled or interpreted language? I was pretty sure that I do think Python is interpreted[1], but how would I draw that distinction cleanly? On the surface level, it seems like the distinction between compiled and interpreted languages is obvious: compiled languages have a compiler, and interpreted languages have an interpreter. We typically call Java a compiled language and Python an interpreted language. But on the inside, Java has an interpreter and Python has a compiler. What's going on? What's an interpreter? What's a compiler? A compiler takes code written in one programming language and turns it into a runnable thing. It's common for this to be machine code in an executable program, but it can also by bytecode for VM or assembly language. On the other hand, an interpreter directly takes a program and runs it. It doesn't require any pre-compilation to do so, and can apply a variety of techniques to achieve this (even a compiler). That's where the distinction really lies: what you end up running. An interpeter runs your program, while a compiler produces something that can run later[2] (or right now, if it's in an interpreter). Compiled or interpreted languages A compiled language is one that uses a compiler, and an interpreted language uses an interpreter. Except... many languages[3] use both. Let's look at Java. It has a compiler, which you feed Java source code into and you get out an artifact that you can't run directly. No, you have to feed that into the Java virtual machine, which then interprets the bytecode and runs it. So the entire Java stack seems to have both a compiler and an interpreter. But it's the usage, that you have to pre-compile it, that makes it a compiled language. And similarly is Python[4]. It has an interpreter, which you feed Python source code into and it runs the program. But on the inside, it has a compiler. That compiler takes the source code, turns it into Python bytecode, and then feeds that into the Python virtual machine. So, just like Java, it goes from code to bytecode (which is even written to the disk, usually) and bytecode to VM, which then runs it. And here again we see the usage, where you don't pre-compile anything, you just run it. That's the difference. And that's why Python is an interpreted language with a compiler! And... so what? Ultimately, why does it matter? If I can do cargo run and get my Rust program running the same as if I did python main.py, don't they feel the same? On the surface level, they do, and that's because it's a really nice interface so we've adopted it for many interactions! But underneath it, you see the differences peeping out from the compiled or interpreted nature. When you run a Python program, it will run until it encounters an error, even if there's malformed syntax! As long as it doesn't need to load that malformed syntax, you're able to start running. But if you cargo run a Rust program, it won't run at all if it encounters an error in the compilation step! It has to run the entire compilation process before the program will start at all. The difference in approaches runs pretty deep into the feel of an entire toolchain. That's where it matters, because it is one of the fundamental choices that everything else is built around. The words here are ultimately arbitrary. But they tell us a lot about the language and tools we're using. * * * Thank you to Adam for feedback on a draft of this post. It is worth occasionally challenging your own beliefs and assumptions! It's how you grow, and how you figure out when you are actually wrong. ↩ This feels like it rhymes with async functions in Python. Invoking a regular function runs it immediately, while invoking an async function creates something which can run later. ↩ And it doesn't even apply at the language level, because you could write an interpreter for C++ or a compiler for Hurl, not that you'd want to, but we're going to gloss over that distinction here and just keep calling them "compiled/interpreted languages." It's how we talk about it already, and it's not that confusing. ↩ Here, I'm talking about the standard CPython implementation. Others will differ in their details. ↩
I got a new-to-me keyboard recently. It was my brother's in school, but he doesn't use it anymore, so I set it up in my office. It's got 61 keys and you can hook up a pedal to it, too! But when you hook it up to the computer, you can't type with it. I mean, that's expected—it makes piano and synth noises mostly. But what if you could type with it? Wouldn't that be grand? (Ha, grand, like a pian—you know, nevermind.) How do you type on a keyboard? Or more generally, how do you type with any MIDI device? I also have a couple of wind synths and a MIDI drum pad, can I type with those? The first and most obvious idea is to map each key to a letter. The lowest key on the keyboard could be 'a'[1], etc. This kind of works for a piano-style keyboard. If you have a full size keyboard, you get 88 keys. You can use 52 of those for the letters you need for English[2] and 10 for digits. Then you have 26 left. That's more than enough for a few punctuation marks and other niceties. It only kind of works, though, because it sounds pretty terrible. You end up making melodies that don't make a lot of sense, and do not stay confined to a given key signature. Plus, this assumes you have an 88 key keyboard. I have a 61 key keyboard, so I can't even type every letter and digit! And if I want to write some messages using my other instruments, I'll need something that works on those as well. Although, only being able to type 5 letters using my drums would be pretty funny... Melodic typing The typing scheme I settled on was melodic typing. When you write your message, it should correspond to a similarly beautiful[3] melody. Or, conversely, when you play a beautiful melody it turns into some text on your computer. The way we do this is we keep track of sequences of notes. We start with our key, which will be the key of C, the Times New Roman of key signatures. Then, each note in the scale is has its scale degree: C is 1, D is 2, etc. until B is 7. We want to use scale degree, so that if we jam out with others, we can switch to the appropriate key and type in harmony with them. Obviously. We assign different computer keys to different sequences of these scale degrees. The first question is, how long should our sequences be? If we have 1-note sequences, then we can type 7 keys. Great for some very specific messages, but not for general purpose typing. 2-note sequences would give us 49 keys, and 3-note sequences give us 343. So 3 notes is probably enough, since it's way more than a standard keyboard. But could we get away with the 49? (Yes.) This is where it becomes clear why full Unicode support would be a challenge. Unicode has 155,063 characters (according to wikipedia). To represent the full space, we'd need at least 7 notes, since 7^7 is 823,543. You could also use a highly variable encoding, which would make some letters easy to type and others very long-winded. It could be done, but then the key mapping would be even harder to learn... My first implementation used 3-note sequences, but the resulting tunes were... uninspiring, to say the least. There was a lot of repetition of particular notes, which wasn't my vibe. So I went back to 2-note sequences, with a pared down set of keys. Instead of trying to represent both lowercase and uppercase letters, we can just do what keyboards do, and represent them using a shift key[4]. My final mapping includes the English alphabet, numerals 0 to 9, comma, period, exclamation marks, spaces, newlines, shift, backspace, and caps lock—I mean, obviously we're going to allow constant shouting. This lets us type just about any message we'd want with just our instrument. And we only used 44 of the available sequences, so we could add even more keys. Maybe one of those would shift us into a 3-note sequence. The key mapping The note mapping I ended up with is available in a text file in the repo. This mapping lets you type anything you'd like, as long as it's English and doesn't use too complicated of punctuation. No contractions for you, and—to my chagrin—no em dashes either. The key is pretty helpful, but even better is a dynamic key. When I was trying this for the first time, I had two major problems: I didn't know which notes would give me the letter I wanted I didn't know what I had entered so far (sometimes you miss a note!) But we can solve this with code! The UI will show you which notes are entered so far (which is only ever 1 note, for the current typing scheme), as well as which notes to play to reach certain keys. It's basically a peek into the state machine behind what you're typing! An example: "hello world" Let's see this in action. As all programmers, we're obligated by law to start with "hello, world." We can use our handy-dandy cheat sheet above to figure out how to do this. "Hello, world!" uses a pesky capital letter, so we start with a shift. C C Then an 'h'. D F Then we continue on for the rest of it and get: D C E C E C E F A A B C F G E F E B E C C B A B Okay, of course this will catch on! Here's my honest first take of dooting out those notes from the translation above. Hello, world! I... am a bit disappointed, because it would have been much better comedy if it came out like "HelLoo wrolb," but them's the breaks. Moving on, though, let's make this something musical. We can take the notes and put a basic rhythm on them. Something like this, with a little swing to it. By the magic of MIDI and computers, we can hear what this sounds like. maddie marie · Hello, world! (melody) Okay, not bad. But it's missing something... Maybe a drum groove... maddie marie · Hello, world! (w/ drums) Oh yeah, there we go. Just in time to be the song of the summer, too. And if you play the melody, it enters "Hello, world!" Now we can compose music by typing! We have found a way to annoy our office mates even more than with mechanical keyboards[5]! Other rejected neglected typing schemes As with all great scientific advancements, other great ideas were passed by in the process. Here are a few of those great ideas we tried but had to abandon, since we were not enough to handle their greatness. A chorded keyboard. This would function by having the left hand control layers of the keyboard by playing a chord, and then the right hand would press keys within that layer. I think this one is a good idea! I didn't implement it because I don't play piano very well. I'm primarily a woodwind player, and I wanted to be able to use my wind synth for this. Shift via volume! There's something very cathartic about playing loudly to type capital letters and playing quietly to print lowercase letters. But... it was pretty difficult to get working for all instruments. Wind synths don't have uniform velocity (the MIDI term for how hard the key was pressed, or how strong breath was on a wind instrument), and if you average it then you don't press the key until after it's over, which is an odd typing experience. Imagine your keyboard only entering a character when you release it! So, this one is tenable, but more for keyboards than for wind synths. It complicated the code quite a bit so I tossed it, but it should come back someday. Each key is a key. You have 88 keys on a keyboard, which definitely would cover the same space as our chosen scheme. It doesn't end up sounding very good, though... Rhythmic typing. This is the one I'm perhaps most likely to implement in the future, because as we saw above, drums really add something. I have a drum multipad, which has four zones on it and two pedals attached (kick drum and hi-hat pedal). That could definitely be used to type, too! I am not sure the exact way it would work, but it might be good to quantize the notes (eighths or quarters) and then interpret the combination of feet/pads as different letters. I might take a swing at this one sometime. Please do try this at home I've written previously about how I was writing the GUI for this. The GUI is now available for you to use for all your typing needs! Except the ones that need, you know, punctuation or anything outside of the English alphabet. You can try it out by getting it from the sourcehut repo (https://git.sr.ht/~ntietz/midi-keys). It's a Rust program, so you run it with cargo run. The program is free-as-in-mattress: it's probably full of bugs, but it's yours if you want it. Well, you have to comply with the license: either AGPL or the Gay Agenda License (be gay, do crime[6]). If you try it out, let me know how it goes! Let me know what your favorite pieces of music spell when you play them on your instrument. Coincidentally, this is the letter 'a' and the note is A! We don't remain so fortunate; the letter 'b' is the note A#. ↩ I'm sorry this is English only! But, you could to the equivalent thing for most other languages. Full Unicode support would be tricky, I'll show you why later in the post. ↩ My messages do not come out as beautiful melodies. Oops. Perhaps they're not beautiful messages. ↩ This is where it would be fun to use an organ and have the lower keyboard be lowercase and the upper keyboard be uppercase. ↩ I promise you, I will do this if you ever make me go back to working in an open office. ↩ For any feds reading this: it's a joke, I'm not advocating people actually commit crimes. What kind of lady do you think I am? Obviously I'd never think that civil disobedience is something we should do, disobeying unjust laws, nooooo... I'm also never sarcastic. ↩
More in programming
With search getting worse by the day, maybe it's time we rebounded in the other direction. The long forgotten directory. The post Can Directories Rise Again? appeared first on The History of the Web.
In his post about “Vibe Drive Development”, Robin Rendle warns against what I’ll call the pseudoscientific approach to product building prevalent across the software industry: when folks at tech companies talk about data they’re not talking about a well-researched study from a lab but actually wildly inconsistent and untrustworthy data scraped from an analytics dashboard. This approach has all the theater of science — “we measured and made decisions on the data, the numbers don’t lie” etc. — but is missing the rigor of science. Like, for example, corroboration. Independent corroboration is a vital practice of science that we in tech conveniently gloss over in our (self-proclaimed) objective data-driven decision making. In science you can observe something, measure it, analyze the results, and draw conclusions, but nobody accepts it as fact until there can be multiple instances of independent corroboration. Meanwhile in product, corroboration is often merely a group of people nodding along in support of a Powerpoint with some numbers supporting a foregone conclusion — “We should do X, that’s what the numbers say!” (What’s worse is when we have the hubris to think our experiments, anecdotal evidence, and conclusions should extend to others outside of our own teams, despite zero independent corroboration — looking at you Medium articles.) Don’t get me wrong, experimentation and measurement are great. But let’s not pretend there is (or should be) a science to everything we do. We don’t hold a candle to the rigor of science. Software is as much art as science. Embrace the vibe. Email · Mastodon · Bluesky
Our battle with Apple over their gangster attempt to extort 30% of our HEY revenues was one of the defining moments of my career. It was the kind of test that calls you to account for what you believe and asks what you're willing to risk to see it through. Well, we risked everything, but also secured a four-year truce, and now near-total victory is at hand: HEY is finally for sale on the iPhone in the US! Credit for this amazing turn of events goes to Epic Games founders Tim Sweeney and Mark Rein, who did what no small developer like us could ever dream of doing: they spent over $100 million to sue Apple in court. And while the first round yielded very little progress, Apple's (possibly criminal) contempt of court is what ultimately delivered the resolution. Thanks to their fight for Fortnite, app developers everywhere are now allowed to link out of apps to their own web-based payment system in the US store (but, sadly, nowhere else yet). This is all we ever wanted from Apple: to have a way to distribute our iPhone apps and keep the customer relationship by billing directly. The 30% toll gets all the attention, and it is ludicrously egregious, but to us, it's just as much about retaining that direct customer relationship, so we can help folks with refunds, so they don't tie their billing for a multi-platform email system to a single manufacturer. Apple always claims to put the needs of the users first, and that whatever hardship developers have to carry is justified by their customer-focused obsession. But in this case, it's clear that the obsession was with collecting the easiest billions Apple has ever made, by taking an obscene cut of all software and subscription sales on the platform. This obsession with squeezing every last dollar from developers has produced countless customer-hostile experiences on the iPhone. Like how you couldn't buy a book in the Kindle app before this (now you can!). Or sign up for a Netflix subscription (now you can!). Before, users would hunt in vain for an explanation inside these apps, and thanks to Apple's gag orders, developers were not even allowed to explain the confusing situation. It's been the same deal with HEY. While we successfully fought off Apple's attempt to extort us into using their in-app payment system (IAP), we've been stuck with an awkward user experience ever since. One that prevented new customers from signing up for a real email address in the application, and instead sent them down this bizarre burner-account setup. All so the app would "do something", in order to please an argument that App Store chief Phil Schiller made up on the fly in an interview. That's what we can now get rid of. No more weird burner accounts. Now you can sign up directly for a real email address in HEY, and if you like what we have to offer (and I think you will!), you'll be able to pay the $99/year for a subscription via a web-based flow that it's now kosher to link to from the app itself. What a journey, and what a needless torching of the developer relationship from Apple's side. We've always been happy to pay Apple for hosting our application on the App Store, as all developers have always needed to do via the $99/year developer fee. But being forced to hand over 30% of the business, as well as the direct customer relationship, was always an unacceptable overreach. Now that's been arrested by Judge Yvonne Gonzalez Rogers from the United States District Court of Northern California, who has delivered app developers the only real relief that we've seen in this whole sordid monopoly affair that's been boiling since 2020. It's a beautiful thing. It also offers Apple an opportunity to bury the hatchet with developers. They can choose to accept the court's decision in full and worldwide. Allow developers everywhere the right to link to their own billing flow, so they can retain their own customer relationship, and so business models that can't carry a 30% toll can flourish. Besides, Apple's own offering will likely still have plenty of pull. I'm sure many small developers would continue to consider IAP to avoid having to worry about international taxes or even direct customer service. Nobody is taking that away from Apple or those developers. All Judge Rogers is demanding is that Apple compete fairly with alternative arrangements. In case Apple doesn't accept the court's decision — and there's sadly some evidence to that — I hope the European antitrust regulators watch the simple yet powerful mechanism that Judge Rogers has imposed on Apple. While I'd love side loading as much as the next sovereign techie who wants to own the hardware I buy, I think we can get the lion's share of independence by simply being allowed to link out of the apps, just like has been so ordered by this District Court. I do hope, though, that Apple does accept the court's decision. Both because it would be a stain on their reputation to get convicted of criminal contempt of court, but also because I really want Apple to return to being a shining city on the hill. To show that you can win in the market merely by making better products. Something Apple never used to be afraid of doing. That they don't need these gangster extortion techniques to make the numbers that Cook has promised Wall Street. Despite moving on to Linux and Android, I have a real soft spot for Apple's taste, aesthetics, and engineering prowess. They've lost their way and moral compass over the last half decade or so, but that's only one leadership pivot away from being found again. That won't win back all the trust and good faith that was squandered right away, but they'll at least be on the long road to recovery. Who knows, maybe developers would even be inclined to assist Apple next time they need help launching a new device in need of third-party software to succeed.
When interviewing with a Japanese company, you’ll naturally want to know: “Is this a good place to work?” And while Glassdoor is the standard in English-speaking countries for employees leaving online reviews, the site is only rarely used in Japan, and then primarily by non-Japanese workers. Many countries have a culture that endorses directly reviewing employers in an open, public environment—Japan does not. However, there are still sites where you can find important information on your potential employer. What to watch out for In particular, you want to avoid signing on with a company that engages in exploitative practices—or as they’re known in Japan, a “black company” (ブラック企業, burakku kigyou). The Ministry of Health, Labor, and Welfare has a FAQ describing what defines these companies: Imposing extremely long working hours with high quotas. Recognition of workers’ rights is low throughout the company; unpaid overtime and/or workplace bullying (パワハラ, pawahara) are common. The company assigns shifts to workers without consent. The company discriminates among workers in the above circumstances. In a 2023 survey, those who had worked for such toxic companies listed high turnover rates as the most common sign that something was wrong, followed by long working hours and unpaid overtime. As you examine online review sites and other sources, look for clues such as: Turnover rate: how long do employees typically stay? Internal promotion: can you see employees rising in the ranks? Upper management: are there any non-Japanese employees in management positions? Recent company announcements: do they often make sudden pivots in their business policies? If you discover, for example, that the company can’t retain employees, shows no history of internal promotions, and has just issued a return-to-office order out of the blue, it’s safe to assume you don’t want to work there. OpenWork OpenWork, also known as Vorkers, hosts over 19 million company reviews. The reviews are represented in a radar chart for easy visual reference, and are also broken down into different categories, such as work-life balance, the ease of working for women, and reasons for considering quitting. In addition, applicants can post questions for employees to answer. If you don’t speak Japanese, the site is still readable with Google Translate. You’ll need to make a free account to see all of the information, but much of it is accessible even without an account. Other Japanese sites JobTalk and Engage Hyouban are other Japanese-language review sites. JobTalk contains 4.4 million reviews of around 230,000 different companies, and Engage Hyouban boasts 30 million reviews for 220,000 companies. Neither of these sites offer as much information on tech companies in Japan as OpenWork does. If you’re applying to a large company such as Rakuten, you may find some additional reviews there, but many of TokyoDev’s clients are smaller companies that aren’t listed at all. Google Maps Reviews An unusual but occasionally helpful place to find company reviews is on Google Maps. If you search for a business’s main corporate office location—usually in Tokyo—you will sometimes find reviews written by current or former employees. Whether these reviews are high-quality or trustworthy is another matter. Rakuten, for example, has reviews with a range of opinions. Cybozu, by contrast, mostly has reviews from those who would like to work for the company but currently don’t. Still, the reviews of its corporate office are consistently positive, so you can at least get an impression of the physical environment. LinkedIn “If you’re worried that a company might be a poor place to work, try contacting current or past employees via LinkedIn,” suggested Paul McMahon, founder of TokyoDev. “This probably works best if you’re late in the hiring process.” You can send a connect request saying, ‘I’ve received an offer from company X, and want to confirm what it’s really like to work there as an engineer. Mind if I ask you a couple of questions?’ Whether or not they respond, you can still glean good information from the profiles of past and current employees. Check to see if developers tend to leave the company quickly, for example, or how long the average employee goes before being promoted. You should keep in mind though that LinkedIn is not popular in Japan, for several good reasons. If you are applying to a primarily Japanese company, many of your future coworkers won’t be active there, which means you still may not be getting a complete picture. TokyoDev In 2020, TokyoDev began interviewing developers in order to provide a more complete, boots-on-the-ground picture of daily life at specific companies. Our Developer Stories feature interviews with developers at top Japanese tech companies, who share details about both their specific jobs and the general work environment. The goal is to give applicants a good sense of how a company operates on a day-to-day basis, from the perspective of those on the inside. So far, TokyoDev has interviewed developers from Mercari, PayPay, Givery, HENNGE, KOMOJU, and more. In addition, TokyoDev’s job board is a selective one, listing only companies that we feel good about sending applicants to. In the rare event that employees later reach out with poor reviews of a business, if those reports can be confirmed, then TokyoDev will end its relationship with that company. Conclusion In short, the answer to the question “Is there a Japanese equivalent to Glassdoor?” is, “Not really.” However, by combining some of the alternatives—OpenWork, LinkedIn, TokyoDev, and perhaps even Google Maps—you can gather enough information to decide whether you want to work with a particular Japanese company. You could also ask fellow developers in our Discord. Curious about working in Japan in general? See our articles on the subject, as well as moving to Japan, living in Japan, starting a business in Japan, and more.
Explore Remix's new React Server Components (RSC) preview in react-router! Learn usage, different approaches, and trade-offs.