Full Width [alt+shift+f] Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
30
After I put up a post about a Python gotcha, someone remarked that "there are very few interpreted languages in common usage," and that they "wish Python was more widely recognized as a compiled language." This got me thinking: what is the distinction between a compiled or interpreted language? I was pretty sure that I do think Python is interpreted[1], but how would I draw that distinction cleanly? On the surface level, it seems like the distinction between compiled and interpreted languages is obvious: compiled languages have a compiler, and interpreted languages have an interpreter. We typically call Java a compiled language and Python an interpreted language. But on the inside, Java has an interpreter and Python has a compiler. What's going on? What's an interpreter? What's a compiler? A compiler takes code written in one programming language and turns it into a runnable thing. It's common for this to be machine code in an executable program, but it can also by bytecode for VM or...
2 months ago

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from ntietz.com blog - technically a blog

That boolean should probably be something else

One of the first types we learn about is the boolean. It's pretty natural to use, because boolean logic underpins much of modern computing. And yet, it's one of the types we should probably be using a lot less of. In almost every single instance when you use a boolean, it should be something else. The trick is figuring out what "something else" is. Doing this is worth the effort. It tells you a lot about your system, and it will improve your design (even if you end up using a boolean). There are a few possible types that come up often, hiding as booleans. Let's take a look at each of these, as well as the case where using a boolean does make sense. This isn't exhaustive—[1]there are surely other types that can make sense, too. Datetimes A lot of boolean data is representing a temporal event having happened. For example, websites often have you confirm your email. This may be stored as a boolean column, is_confirmed, in the database. It makes a lot of sense. But, you're throwing away data: when the confirmation happened. You can instead store when the user confirmed their email in a nullable column. You can still get the same information by checking whether the column is null. But you also get richer data for other purposes. Maybe you find out down the road that there was a bug in your confirmation process. You can use these timestamps to check which users would be affected by that, based on when their confirmation was stored. This is the one I've seen discussed the most of all these. We run into it with almost every database we design, after all. You can detect it by asking if an action has to occur for the boolean to change values, and if values can only change one time. If you have both of these, then it really looks like it is a datetime being transformed into a boolean. Store the datetime! Enums Much of the remaining boolean data indicates either what type something is, or its status. Is a user an admin or not? Check the is_admin column! Did that job fail? Check the failed column! Is the user allowed to take this action? Return a boolean for that, yes or no! These usually make more sense as an enum. Consider the admin case: this is really a user role, and you should have an enum for it. If it's a boolean, you're going to eventually need more columns, and you'll keep adding on other statuses. Oh, we had users and admins, but now we also need guest users and we need super-admins. With an enum, you can add those easily. enum UserRole { User, Admin, Guest, SuperAdmin, } And then you can usually use your tooling to make sure that all the new cases are covered in your code. With a boolean, you have to add more booleans, and then you have to make sure you find all the places where the old booleans were used and make sure they handle these new cases, too. Enums help you avoid these bugs. Job status is one that's pretty clearly an enum as well. If you use booleans, you'll have is_failed, is_started, is_queued, and on and on. Or you could just have one single field, status, which is an enum with the various statuses. (Note, though, that you probably do want timestamp fields for each of these events—but you're still best having the status stored explicitly as well.) This begins to resemble a state machine once you store the status, and it means that you can make much cleaner code and analyze things along state transition lines. And it's not just for storing in a database, either. If you're checking a user's permissions, you often return a boolean for that. fn check_permissions(user: User) -> bool { false // no one is allowed to do anything i guess } In this case, true means the user can do it and false means they can't. Usually. I think. But you can really start to have doubts here, and with any boolean, because the application logic meaning of the value cannot be inferred from the type. Instead, this can be represented as an enum, even when there are just two choices. enum PermissionCheck { Allowed, NotPermitted(reason: String), } As a bonus, though, if you use an enum? You can end up with richer information, like returning a reason for a permission check failing. And you are safe for future expansions of the enum, just like with roles. You can detect when something should be an enum a proliferation of booleans which are mutually exclusive or depend on one another. You'll see multiple columns which are all changed at the same time. Or you'll see a boolean which is returned and used for a long time. It's important to use enums here to keep your program maintainable and understandable. Conditionals But when should we use a boolean? I've mainly run into one case where it makes sense: when you're (temporarily) storing the result of a conditional expression for evaluation. This is in some ways an optimization, either for the computer (reuse a variable[2]) or for the programmer (make it more comprehensible by giving a name to a big conditional) by storing an intermediate value. Here's a contrived example where using a boolean as an intermediate value. fn calculate_user_data(user: User, records: RecordStore) { // this would be some nice long conditional, // but I don't have one. So variables it is! let user_can_do_this: bool = (a && b) && (c || !d); if user_can_do_this && records.ready() { // do the thing } else if user_can_do_this && records.in_progress() { // do another thing } else { // and something else! } } But even here in this contrived example, some enums would make more sense. I'd keep the boolean, probably, simply to give a name to what we're calculating. But the rest of it should be a match on an enum! * * * Sure, not every boolean should go away. There's probably no single rule in software design that is always true. But, we should be paying a lot more attention to booleans. They're sneaky. They feel like they make sense for our data, but they make sense for our logic. The data is usually something different underneath. By storing a boolean as our data, we're coupling that data tightly to our application logic. Instead, we should remain critical and ask what data the boolean depends on, and should we maybe store that instead? It comes easier with practice. Really, all good design does. A little thinking up front saves you a lot of time in the long run. I know that using an em-dash is treated as a sign of using LLMs. LLMs are never used for my writing. I just really like em-dashes and have a dedicated key for them on one of my keyboard layers. ↩ This one is probably best left to the compiler. ↩

2 days ago 4 votes
Proving that every program halts

One of the best known hard problems in computer science is the halting problem. In fact, it's widely thought[1] that you cannot write a program that will, for any arbitrary program as input, tell you correctly whether or not it will terminate. This is written from the framing of computers, though: can we do better with a human in the loop? It turns out, we can. And we can use a method that's generalizable, which many people can follow for many problems. Not everyone can use the method, which you'll see why in a bit. But lots of people can apply this proof technique. Let's get started. * * * We'll start by formalizing what we're talking about, just a little bit. I'm not going to give the full formal proof—that will be reserved for when this is submitted to a prestigious conference next year. We will call the set of all programs P. We want to answer, for any p in P, whether or not p will eventually halt. We will call this h(p) and h(p) = true if p eventually finished and false otherwise. Actually, scratch that. Let's simplify it and just say that yes, every program does halt eventually, so h(p) = true for all p. That makes our lives easier. Now we need to get from our starting assumptions, the world of logic we live in, to the truth of our statement. We'll call our goal, that h(p) = true for all p, the statement H. Now let's start with some facts. Fact one: I think it's always an appropriate time to play the saxophone. *honk*! Fact two: My wife thinks that it's sometimes inappropriate to play the saxophone, such as when it's "time for bed" or "I was in the middle of a sentence![2] We'll give the statement "It's always an appropriate time to play the saxophone" the name A. We know that I believe A is true. And my wife believes that A is false. So now we run into the snag: Fact three: The wife is always right. This is a truism in American culture, useful for settling debates. It's also useful here for solving major problems in computer science because, babe, we're both the wife. We're both right! So now that we're both right, we know that A and !A are both true. And we're in luck, we can apply a whole lot of fancy classical logic here. Since A and !A we know that A is true and we also know that !A is true. From A being true, we can conclude that A or H is true. And then we can apply disjunctive syllogism[3] which says that if A or H is true and !A is true, then H must be true. This makes sense, because if you've excluded one possibility then the other must be true. And we do have !A, so that means: H is true! There we have it. We've proved our proposition, H, which says that for any program p, p will eventually halt. The previous logic is, mostly, sound. It uses the principle of explosion, though I prefer to call it "proof by married lesbian." * * * Of course, we know that this is wrong. It falls apart with our assumptions. We built the system on contradictory assumptions to begin with, and this is something we avoid in logic[4]. If we allow contradictions, then we can prove truly anything. I could have also proved (by married lesbian) that no program will terminate. This has been a silly traipse through logic. If you want a good journey through logic, I'd recommend Hillel Wayne's Logic for Programmers. I'm sure that, after reading it, you'll find absolutely no flaws in my logic here. After all, I'm the wife, so I'm always right. It's widely thought because it's true, but we don't have to let that keep us from a good time. ↩ I fact checked this with her, and she does indeed hold this belief. ↩ I had to look this up, my uni logic class was a long time ago. ↩ The real conclusion to draw is that, because of proof by contradiction, it's certainly not true that the wife is always right. Proved that one via married lesbians having arguments. Or maybe gay relationships are always magical and happy and everyone lives happily ever after, who knows. ↩

a week ago 10 votes
Taking a break

I've been publishing at least one blog post every week on this blog for about 2.5 years. I kept it up even when I was very sick last year with Lyme disease. It's time for me to take a break and reset. This is the right time, because the world is very difficult for me to move through right now and I'm just burnt out. I need to focus my energy on things that give me energy and right now, that's not writing and that's not tech. I'll come back to this, and it might look a little different. This is my last post for at least a month. It might be longer, if I still need more time, but I won't return before the end of May. I know I need at least that long to heal, and I also need that time to focus on music. I plan to play a set at West Philly Porchfest, so this whole month I'll be prepping that set. If you want to follow along with my music, you can find it on my bandcamp (only one track, but I'll post demos of the others that I prepare for Porchfest as they come together). And if you want to reach out, my inbox is open. Be kind to yourself. Stay well, drink some water. See you in a while.

a month ago 14 votes
Measuring my Framework laptop's performance in 3 positions

A few months ago, I was talking with a friend about my ergonomic setup and they asked if being vertical helps it with cooling. I wasn't sure, because it seems like it could help but it was probably such a small difference that it wouldn't matter. So, I did what any self-respecting nerd would do: I procrastinated. The question didn't leave me, though, so after those months passed, I did the second thing any self-respecting nerd would do: benchmarks. The question and the setup What we want to find out is whether or not the position of the laptop would affect its CPU performance. I wanted to measure it in three positions: normal: using it the way any normal person uses their laptop, with the screen and keyboard at something like a 90-degree angle closed: using it like a tech nerd, closed but plugged into a monitor and peripherals vertical: using it like a weird blogger who has sunk a lot of time into her ergonomic setup and wants to justify it even further My hypothesis was that using it closed would slightly reduce CPU performance, and that using it normal or vertical would be roughly the same. For this experiment, I'm using my personal laptop. It's one of the early Framework laptops (2nd batch of shipments) which is about four years old. It has an 11th gen Intel CPU in it, the i7-1165G7. My laptop will be sitting on a laptop riser for the closed and normal positions, and it will be sitting in my ergonomic tray for the vertical one. For all three, it will be connected to the same set of peripherals through a single USB-C cable, and the internal display is disabled for all three. Running the tests I'm not too interested in the initial boost clock. I'm more interested in what clock speeds we can sustain. What happens under a sustained, heavy load, when we hit a saturation point and can't shed any more heat? To test that, I'm doing a test using heavy CPU load. The load is generated by stress-ng, which also reports some statistics. Most notably, it reports CPU temperatures and clock speeds during the tests. Here's the script I wrote to make these consistent. To skip the boost clock period, I warm it up first with a 3-minute load Then I do a 5-minute load and measure the CPU clock frequency and CPU temps every second along the way. #!/bin/bash # load the CPU for 3 minutes to warm it up sudo stress-ng --matrix $2 -t 3m --tz --raplstat 1 --thermalstat 1 -Y warmup-$1.yaml --log-file warmup-$1.log --timestamp --ignite-cpu # run for 5 minutes to gather our averages sudo stress-ng --matrix $2 -t 5m --tz --raplstat 1 --thermalstat 1 -Y cputhermal-$1.yaml --log-file cputhermal-$1.log --timestamp --ignite-cpu We need sudo since we're using an option (--ignite-cpu) which needs root privileges[1] and attempts to make the CPU run harder/hotter. Then we specify the stressor we're using with --matrix $2, which does some matrix calculations over a number of cores we specify. The remaining options are about reporting and logging. I let the computer cool for a minute or two between each test, but not for a scientific reason. Just because I was doing other things. Since my goal was to saturate the temperatures, and they got stable within each warmup period, cooldowh time wasn't necessary—we'd warm it back up anyway. So, I ran this with the three positions, and with two core count options: 8, one per thread on my CPU; and 4, one per physical core on my CPU. The results Once it was done, I analyzed the results. I took the average clock speed across the 5 minute test for each of the configurations. My hypothesis was partially right and partially wrong. When doing 8 threads, each position had different results: Our baseline normal open position had an average clock speed of 3.44 GHz and an average CPU temp of 91.75 F. With the laptop closed, the average clock speed was 3.37 GHz and the average CPU temp was 91.75 F. With the laptop open vertical, the average clock speed was 3.48 GHz and the average CPU temp was 88.75 F. With 4 threads, the results were: For the baseline normal open position, the average clock speed was 3.80 GHz with average CPU temps of 91.11 F. With the laptop closed, the average clock speed was 3.64 GHz with average CPU temps of 90.70 F. With the laptop open vertical, the average clock speed was 3.80 GHz with average CPU temps of 86.07 F. So, I was wrong in one big aspect: it does make a clearly measurable difference. Having it open and vertical reduces temps by 3 degrees in one test and 5 in the other, and it had a higher clock speed (by 0.05 GHz, which isn't a lot but isn't nothing). We can infer that, since clock speeds improved in the heavier load test but not in the lighter load test, that the lighter load isn't hitting our thermal limits—and when we do, the extra cooling from the vertical position really helps. One thing is clear: in all cases, the CPU ran slower when the laptop was closed. It's sorta weird that the CPU temps went down when closed in the second test. I wonder if that's from being able to cool down more when it throttled down a lot, or if there was a hotspot that throttled the CPU but which wasn't reflected in the temp data, maybe a different sensor. I'm not sure if having my laptop vertical like I do will ever make a perceptible performance difference. At any rate, that's not why I do it. But it does have lower temps, and that should let my fans run less often and be quieter when they do. That's a win in my book. It also means that when I run CPU-intensive things (say hi to every single Rust compile!) I should not close the laptop. And hey, if I decide to work from my armchair using my ergonomic tray, I can argue it's for efficiency: boss, I just gotta eke out those extra clock cycles. I'm not sure that this made any difference on my system. I didn't want to rerun the whole set without it, though, and it doesn't invalidate the tests if it simply wasn't doing anything. ↩

2 months ago 10 votes
The five stages of incident response

The scene: you're on call for a web app, and your pager goes off. Denial. No no no, the app can't be down. There's no way it's down. Why would it be down? It isn't down. Sure, my pager went off. And sure, the metrics all say it's down and the customer is complaining that it's down. But it isn't, I'm sure this is all a misunderstanding. Anger. Okay so it's fucking down. Why did this have to happen on my on-call shift? This is so unfair. I had my dinner ready to eat, and *boom* I'm paged. It's the PM's fault for not prioritizing my tech debt, ugh. Bargaining. Okay okay okay. Maybe... I can trade my on-call shift with Sam. They really know this service, so they could take it on. Or maybe I can eat my dinner while we respond to this... Depression. This is bad, this is so bad. Our app is down, and the customer knows. We're totally screwed here, why even bother putting it back up? They're all going to be mad, leave, the company is dead... There's not even any point. Acceptance. You know, it's going to be okay. This happens to everyone, apps go down. We'll get it back up, and everything will be fine.

2 months ago 24 votes

More in programming

Digital hygiene: Emails

Email is your most important online account, so keep it clean.

15 hours ago 4 votes
Building a container orchestrator

Kubernetes is not exactly the most fun piece of technology around. Learning it isn’t easy, and learning the surrounding ecosystem is even harder. Even those who have managed to tame it are still afraid of getting paged by an ETCD cluster corruption, a Kubelet certificate expiration, or the DNS breaking down (and somehow, it’s always the DNS). Samuel Sianipar If you’re like me, the thought of making your own orchestrator has crossed your mind a few times. The result would, of course, be a magical piece of technology that is both simple to learn and wouldn’t break down every weekend. Sadly, the task seems daunting. Kubernetes is a multi-million lines of code project which has been worked on for more than a decade. The good thing is someone wrote a book that can serve as a good starting point to explore the idea of building our own container orchestrator. This book is named “Build an Orchestrator in Go”, written by Tim Boring, published by Manning. The tasks The basic unit of our container orchestrator is called a “task”. A task represents a single container. It contains configuration data, like the container’s name, image and exposed ports. Most importantly, it indicates the container state, and so acts as a state machine. The state of a task can be Pending, Scheduled, Running, Completed or Failed. Each task will need to interact with a container runtime, through a client. In the book, we use Docker (aka Moby). The client will get its configuration from the task and then proceed to pull the image, create the container and start it. When it is time to finish the task, it will stop the container and remove it. The workers Above the task, we have workers. Each machine in the cluster runs a worker. Workers expose an API through which they receive commands. Those commands are added to a queue to be processed asynchronously. When the queue gets processed, the worker will start or stop tasks using the container client. In addition to exposing the ability to start and stop tasks, the worker must be able to list all the tasks running on it. This demands keeping a task database in the worker’s memory and updating it every time a task change’s state. The worker also needs to be able to provide information about its resources, like the available CPU and memory. The book suggests reading the /proc Linux file system using goprocinfo, but since I use a Mac, I used gopsutil. The manager On top of our cluster of workers, we have the manager. The manager also exposes an API, which allows us to start, stop, and list tasks on the cluster. Every time we want to create a new task, the manager will call a scheduler component. The scheduler has to list the workers that can accept more tasks, assign them a score by suitability and return the best one. When this is done, the manager will send the work to be done using the worker’s API. In the book, the author also suggests that the manager component should keep track of every tasks state by performing regular health checks. Health checks typically consist of querying an HTTP endpoint (i.e. /ready) and checking if it returns 200. In case a health check fails, the manager asks the worker to restart the task. I’m not sure if I agree with this idea. This could lead to the manager and worker having differing opinions about a task state. It will also cause scaling issues: the manager workload will have to grow linearly as we add tasks, and not just when we add workers. As far as I know, in Kubernetes, Kubelet (the equivalent of the worker here) is responsible for performing health checks. The CLI The last part of the project is to create a CLI to make sure our new orchestrator can be used without having to resort to firing up curl. The CLI needs to implement the following features: start a worker start a manager run a task in the cluster stop a task get the task status get the worker node status Using cobra makes this part fairly straightforward. It lets you create very modern feeling command-line apps, with properly formatted help commands and easy argument parsing. Once this is done, we almost have a fully functional orchestrator. We just need to add authentication. And maybe some kind of DaemonSet implementation would be nice. And a way to handle mounting volumes…

18 hours ago 3 votes
Bugs I fixed in SumatraPDF

Unexamined life is not worth living said Socrates. I don’t know about that but to become a better, faster, more productive programmer it pays to examine what makes you un-productive. Fixing bugs is one of those un-productive activities. You have to fix them but it would be even better if you didn’t write them in the first place. Therefore it’s good to reflect after fixing a bug. Why did the bug happen? Could I have done something to not write the bug in the first place? If I did write the bug, could I do something to diagnose or fix it faster? This seems like a great idea that I wasn’t doing. Until now. Here’s a random selection of bugs I found and fixed in SumatraPDF, with some reflections. SumatraPDF is a C++ win32 Windows app. It’s a small, fast, open-source, multi-format PDF/eBook/Comic Book reader. To keep the app small and fast I generally avoid using other people’s code. As a result most code is mine and most bugs are mine. Let’s reflect on those bugs. TabWidth doesn’t work A user reported that TabWidth advanced setting doesn’t work in 3.5.2 but worked in 3.4.6. I looked at the code and indeed: the setting was not used anywhere. The fix was to use it. Why did the bug happen? It was a refactoring. I heavily refactored tabs control. Somehow during the rewrite I forgot to use the advanced setting when creating the new tabs control, even though I did write the code to support it in the control. I guess you could call it sloppiness. How could I not write the bug? I could review the changes more carefully. There’s no-one else working on this project so there’s no one else to do additional code reviews. I typically do a code review by myself with webdiff but let’s face it: reviewing changes right after writing them is the worst possible time. I’m biased to think that the code I just wrote is correct and I’m often mentally exhausted. Maybe I should adopt a process when I review changes made yesterday with fresh, un-tired eyes? How could I detect the bug earlier?. 3.5.2 release happened over a year ago. Could I have found it sooner? I knew I was refactoring tabs code. I knew I have a setting for changing the look of tabs. If I connected the dots at the time, I could have tested if the setting still works. I don’t make releases too often. I could do more testing before each release and at the very least verify all advanced settings work as expected. The real problem In retrospect, I shouldn’t have implemented that feature at all. I like Sumatra’s customizability and I think it’s non-trivial contributor to it’s popularity but it took over a year for someone to notice and report that particular bug. It’s clear it’s not a frequently used feature. I implemented it because someone asked and it was easy. I should have said no to that particular request. Fix printing crash by correctly ref-counting engine Bugs can crash your program. Users rarely report crashes even though I did put effort into making it easy. When I a crash happens I have a crash handler that saves the diagnostic info to a file and I show a message box asking users to report the crash and with a press of a button I launch a notepad with diagnostic info and a browser with a page describing how to submit that as a GitHub issue. The other button is to ignore my pleas for help. Most users overwhelmingly choose to ignore. I know that because I also have crash reporting system that sends me a crash report. I get thousands of crash reports for every crash reported by the user. Therefore I’m convinced that the single most impactful thing for making software that doesn’t crash is to have a crash reporting system, look at the crashes and fix them. This is not a perfect system because all I have is a call stack of crashed thread, info about the computer and very limited logs. Nevertheless, sometimes all it takes is a look at the crash call stack and inspection of the code. I saw a crash in printing code which I fixed after some code inspection. The clue was that I was accessing a seemingly destroyed instance of Engine. That was easy to diagnose because I just refactored the code to add ref-counting to Engine so it was easy to connect the dots. I’m not a fan of ref-counting. It’s easy to mess up ref-counting (add too many refs, which leads to memory leaks or too many releases which leads to premature destruction). I’ve seen codebases where developers were crazy in love with ref-counting: every little thing, even objects with obvious lifetimes. In contrast,, that was the first ref-counted object in over 100k loc of SumatraPDF code. It was necessary in this case because I would potentially hand off the object to a printing thread so its lifetime could outlast the lifetime of the window for which it was created. How could I not write the bug? It’s another case of sloppiness but I don’t feel bad. I think the bug existed there before the refactoring and this is the hard part about programming: complex interactions between distant, in space and time, parts of the program. Again, more time spent reviewing the change could have prevented it. As a bonus, I managed to simplify the logic a bit. Writing software is an incremental process. I could feel bad about not writing the perfect code from the beginning but I choose to enjoy the process of finding and implementing improvements. Making the code and the program better over time. Tracking down a chm thumbnail crash Not all crashes can be fixed given information in crash report. I saw a report with crash related to creating a thumbnail crash. I couldn’t figure out why it crashes but I could add more logging to help figure out the issue if it happens again. If it doesn’t happen again, then I win. If it does happen again, I will have more context in the log to help me figure out the issue. Update: I did fix the crash. Fix crash when viewing favorites menu A user reported a crash. I was able to reproduce the crash and fix it. This is the bast case scenario: a bug report with instructions to reproduce a crash. If I can reproduce the crash when running debug build under the debugger, it’s typically very easy to figure out the problem and fix it. In this case I’ve recently implemented an improved version of StrVec (vector of strings) class. It had a compatibility bug compared to previous implementation in that StrVec::InsertAt(0) into an empty vector would crash. Arguably it’s not a correct usage but existing code used it so I’ve added support to InsertAt() at the end of vector. How could I not write the bug? I should have written a unit test (which I did in the fix). I don’t blindly advocate unit tests. Writing tests has a productivity cost but for such low-level, relatively tricky code, unit tests are good. I don’t feel too bad about it. I did write lots of tests for StrVec and arguably this particular usage of InsertAt() was borderline correct so it didn’t occur to me to test that condition. Use after free I saw a crash in crash reports, close to DeleteThumbnailForFile(). I looked at the code: if (!fs->favorites->IsEmpty()) { // only hide documents with favorites gFileHistory.MarkFileInexistent(fs->filePath, true); } else { gFileHistory.Remove(fs); DeleteDisplayState(fs); } DeleteThumbnailForFile(fs->filePath); I immediately spotted suspicious part: we call DeleteDisplayState(fs) and then might use fs->filePath. I looked at DeleteDisplayState and it does, in fact, deletes fs and all its data, including filePath. So we use freed data in a classic use after free bug. The fix was simple: make a copy of fs->filePath before calling DeleteDisplayState and use that. How could I not write the bug? Same story: be more careful when reviewing the changes, test the changes more. If I fail that, crash reporting saves my ass. The bug didn’t last more than a few days and affected only one user. I immediately fixed it and published an update. Summary of being more productive and writing bug free software If many people use your software, a crash reporting system is a must. Crashes happen and few of them are reported by users. Code reviews can catch bugs but they are also costly and reviewing your own code right after you write it is not a good time. You’re tired and biased to think your code is correct. Maybe reviewing the code a day after, with fresh eyes, would be better. I don’t know, I haven’t tried it.

yesterday 1 votes
An Analysis of Links From The White House’s “Wire” Website

A little while back I heard about the White House launching their version of a Drudge Report style website called White House Wire. According to Axios, a White House official said the site’s purpose was to serve as “a place for supporters of the president’s agenda to get the real news all in one place”. So a link blog, if you will. As a self-professed connoisseur of websites and link blogs, this got me thinking: “I wonder what kind of links they’re considering as ‘real news’ and what they’re linking to?” So I decided to do quick analysis using Quadratic, a programmable spreadsheet where you can write code and return values to a 2d interface of rows and columns. I wrote some JavaScript to: Fetch the HTML page at whitehouse.gov/wire Parse it with cheerio Select all the external links on the page Return a list of links and their headline text In a few minutes I had a quick analysis of what kind of links were on the page: This immediately sparked my curiosity to know more about the meta information around the links, like: If you grouped all the links together, which sites get linked to the most? What kind of interesting data could you pull from the headlines they’re writing, like the most frequently used words? What if you did this analysis, but with snapshots of the website over time (rather than just the current moment)? So I got to building. Quadratic today doesn’t yet have the ability for your spreadsheet to run in the background on a schedule and append data. So I had to look elsewhere for a little extra functionality. My mind went to val.town which lets you write little scripts that can 1) run on a schedule (cron), 2) store information (blobs), and 3) retrieve stored information via their API. After a quick read of their docs, I figured out how to write a little script that’ll run once a day, scrape the site, and save the resulting HTML page in their key/value storage. From there, I was back to Quadratic writing code to talk to val.town’s API and retrieve my HTML, parse it, and turn it into good, structured data. There were some things I had to do, like: Fine-tune how I select all the editorial links on the page from the source HTML (I didn’t want, for example, to include external links to the White House’s social pages which appear on every page). This required a little finessing, but I eventually got a collection of links that corresponded to what I was seeing on the page. Parse the links and pull out the top-level domains so I could group links by domain occurrence. Create charts and graphs to visualize the structured data I had created. Selfish plug: Quadratic made this all super easy, as I could program in JavaScript and use third-party tools like tldts to do the analysis, all while visualizing my output on a 2d grid in real-time which made for a super fast feedback loop! Once I got all that done, I just had to sit back and wait for the HTML snapshots to begin accumulating! It’s been about a month and a half since I started this and I have about fifty days worth of data. The results? Here’s the top 10 domains that the White House Wire links to (by occurrence), from May 8 to June 24, 2025: youtube.com (133) foxnews.com (72) thepostmillennial.com (67) foxbusiness.com (66) breitbart.com (64) x.com (63) reuters.com (51) truthsocial.com (48) nypost.com (47) dailywire.com (36) From the links, here’s a word cloud of the most commonly recurring words in the link headlines: “trump” (343) “president” (145) “us” (134) “big” (131) “bill” (127) “beautiful” (113) “trumps” (92) “one” (72) “million” (57) “house” (56) The data and these graphs are all in my spreadsheet, so I can open it up whenever I want to see the latest data and re-run my script to pull the latest from val.town. In response to the new data that comes in, the spreadsheet automatically parses it, turn it into links, and updates the graphs. Cool! If you want to check out the spreadsheet — sorry! My API key for val.town is in it (“secrets management” is on the roadmap). But I created a duplicate where I inlined the data from the API (rather than the code which dynamically pulls it) which you can check out here at your convenience. Email · Mastodon · Bluesky

2 days ago 2 votes
AmigaGuide Reference Library

As I slowly but surely work towards the next release of my setcmd project for the Amiga (see the 68k branch for the gory details and my total noob-like C flailing around), I’ve made heavy use of documentation in the AmigaGuide format. Despite it’s age, it’s a great Amiga-native format and there’s a wealth of great information out there for things like the C API, as well as language guides and tutorials for tools like the Installer utility - and the AmigaGuide markup syntax itself. The only snag is, I had to have access to an Amiga (real or emulated), or install one of the various viewer programs on my laptops. Because like many, I spend a lot of time in a web browser and occasionally want to check something on my mobile phone, this is less than convenient. Fortunately, there’s a great AmigaGuideJS online viewer which renders AmigaGuide format documents using Javascript. I’ve started building up a collection of useful developer guides and other files in my own reference library so that I can access this documentation whenever I’m not at my Amiga or am coding in my “modern” dev environment. It’s really just for my own personal use, but I’ll be adding to it whenever I come across a useful piece of documentation so I hope it’s of some use to others as well! And on a related note, I now have a “unified” code-base so that SetCmd now builds and runs on 68k-based OS 3.x systems as well as OS 4.x PPC systems like my X5000. I need to: Tidy up my code and fix all the “TODO” stuff Update the Installer to run on OS 3.x systems Update the documentation Build a new package and upload to Aminet/OS4Depot Hopefully I’ll get that done in the next month or so. With the pressures of work and family life (and my other hobbies), progress has been a lot slower these last few years but I’m still really enjoying working on Amiga code and it’s great to have a fun personal project that’s there for me whenever I want to hack away at something for the sheer hell of it. I’ve learned a lot along the way and the AmigaOS is still an absolute joy to develop for. I even brought my X5000 to the most recent Kickstart Amiga User Group BBQ/meetup and had a fun day working on the code with fellow Amigans and enjoying some classic gaming & demos - there was also a MorphOS machine there, which I think will be my next target as the codebase is slowly becoming more portable. Just got to find some room in the “retro cave” now… This stuff is addictive :)

2 days ago 4 votes