More from Christian Selig
My favorite memory of my M1 Pro MacBook Pro was the whole sensation of “holy crap, you never hear the fans in this thing”, which was very novel in 2021. Four years later, this MacBook Pro is still a delight. It’s the longest I’ve ever owned a laptop, and while I’d love to pick up the new M4 goodness, this dang thing still seems to just shrug at basically anything I throw at it. Video editing, code compiling, CAD models, the works. (My desire to update is helped though by the fact I got the 2TB SSD, 32GB RAM option, and upgrading to those on new MacBooks is still eye wateringly expensive.) But my MacBook is starting to show its age in one area: it’s not quiet anymore. If you’re doing anything too intensive like compiling code for awhile, or converting something in Handbrake, the age of the fans being quiet is long past. The fans are properly loud. (And despite having two cats, it’s not them! I clean out the fans pretty regularly.) Enter the thermal paste Everyone online seems to point toward one thing: the thermal paste on computers tends to dry up over the years. What the heck is thermal paste? Well, components on your computer that generate a lot of heat are normally made to touch something like a copper heatsink that is really good at pulling that heat away from it. The issue is, when you press these two metal surfaces against each other, even the best machining isn’t perfect and you there’s microscopic gaps between them meaning there’s just air at those parts, and air is a terrible conductor of heat. The solution is to put a little bit of thermal paste (basically a special grey toothpaste gunk that is really good at transferring heat) between them, and it fills in any of those microscopic gaps. The problem with this solution is after hundreds and hundreds of days of intense heat, the paste can dry up into something closer to almost a powder, and it’s not nearly as good at filling in those gaps. Replacement time The logic board! MacBook thermal paste isn’t anything crazy (for the most part, see below), custom PC builders use thermal paste all the time so incredibly performant options are available online. I grabbed a tube of Noctua NT-H2 for about $10 and set to taking apart my MacBook to swap out the aging thermal paste. And thankfully, iFixit has a tremendous, in depth guide on the disassembly required, so I got to it. Indeed, that grey thermal paste looked quite old, but also above and below it (on the RAM chips) I noticed something that didn’t quite seem like thermal paste, it was far more… grainy almost? Spottiness is due to half of it being on the heatsink It turns out, ending with my generation of MacBooks (lucky me!) Apple used a very special kind of thermal compound often called “Carbon Black”, which is basically designed to be able to bridge an even thicker gap than traditional thermal paste. I thought about replacing it, but it seems really hard to come across that special thermal compound (and do not do it with normal thermal paste) and my RAM temperatures always seemed fine (65°C is fine… right?) so I just made sure to not touch that. For the regular grey thermal paste, I used some cotton swabs and isopropyl alcohol to remove the dried up existing thermal paste, then painted on a bit of the new stuff. Disaster To get to the underside of the CPU, you basically need to disassemble the entire MacBook. It’s honestly not that hard, but iFixit warned that the fan cables (which also need to be unclipped) are incredibly delicate. And they’re not wrong, seriously they have the structural integrity of the half-ply toilet paper available at gas stations. So, wouldn’t you know it, I moved the left fan’s cable a bit too hard and it completely tore in half. Gah. I found a replacement fan online (yeah you can’t just buy the cable, need a whole new fan) and in the meantime I just kept an eye on my CPU thermals. As long as I wasn’t doing anything too intensive it honestly always stayed around 65° which was warm, but not terrifying (MacBook Airs completely lack a fan, after all). Take two A few days later, the fans arrived, and I basically had to redo the entire disassembly process to get to the fans. At least I was a lot faster this time. The fan was incredibly easy to swap out (hats off there, Apple!) and I screwed everything back together and began reconnecting all the little connectors. Until I saw it: the tiny (made of the same half ply material as the fan cable) Touch ID sensor cable was inexpicably torn in half, the top half just hanging out. I didn’t even half to touch this thing really, and I hadn’t even got to the stage of reconnecting it (I was about to!), it comes from underneath the logic board and I guess just the movement of sliding the logic board back in sheared it in half. me Bah. I looked up if I could just grab another replacement cable here, and sure enough you can… but the Touch ID chip is cryptographically paired to your MacBook so you’d have to take it into an Apple Store. Estimates seemed to be in the hundreds of dollars, so if anyone has any experience there let me know, but for now I’m just going to live happily without a Touch ID sensor… or the button because the button also does not work. RIP little buddy (And yeah I’m 99.9% sure I can’t solder this back together, there’s a bunch of tiny lanes that make up the cable that you would need experience with proper micro-soldering to do.) Honestly, the disassembly process for my MacBook was surprisingly friendly and not very difficult, I just really wish they beefed up some of the cables even slightly so they weren’t so delicate. The results I was going to cackle if I went through all that just to have identical temperatures as before, but I’m very happy to say they actually improved a fair bit. I ran a Cinebench test before disassembling the MacBook the very first time to establish a baseline: Max CPU temperature: 102°C Max fan speed: 6,300 RPM Cinbench score: 12,252 After the new thermal paste (and the left fan being new): Max CPU temperature: 96°C Max fan speed: 4,700 RPM Cinbench score: 12,316 Now just looking at those scores you might be like… so? But let me tell you, dropping 1,600 RPM on the fan is a noticeable change, it goes from “Oh my god this is annoyingly loud” to “Oh look the fans kicked in”, and despite slower fan speeds there was still a decent drop in CPU temperature! And a 0.5% higher Cinebench score! But where I also really notice it is in idling: just writing this blog post my CPU was right at 46°C the whole time, where previously my computer idled right aroud 60°C. The whole computer just feels a bit healthier. So… should you do it? Honestly, unless you’re very used to working on small, delicate electronics, probably not. But if you do have that experience and are very careful, or have a local repair shop that can do it for a reasonable fee (and your MacBook is a few years old so as to warrant it) it’s honestly a really nice tweak that I feel will hopefully at least get me to the M5 generation. I do miss Touch ID, though.
I uploaded YouTube videos from time to time, and a fun comment I often get is “Whoa, this is in 8K!”. Even better, I’ve had comments from the like, seven people with 8K TVs that the video looks awesome on their TV. And you guessed it, I don’t record my videos in 8K! I record them in 4K and upscale them to 8K after the fact. There’s no shortage of AI video upscaling tools today, but they’re of varying quality, and some are great but quite expensive. The legendary Finn Voorhees created a really cool too though, called fx-upscale, that smartly leverages Apple’s built-in MetalFX framework. For the unfamiliar, this library is an extensive of Apple’s Metal graphics library, and adds functionality similar to NVIDIA’s DLSS where it intelligently upscales video using machine learning (AI), so rather than just stretching an image, it uses a model to try to infer what the frame would look like at a higher resolution. It’s primarily geared toward video game use, but Finn’s library shows it does an excellent job for video too. I think this is a really killer utility, and use it for all my videos. I even have a license for Topaz Video AI, which arguably works better, but takes an order of magnitude longer. For instance my recent 38 minute, 4K video took about an hour to render to 8K via fx-upscale on my M1 Pro MacBook Pro, but would take over 24 hours with Topaz Video AI. # Install with homebrew brew install finnvoor/tools/fx-upscale # Outputs a file named my-video Upscaled.mov fx-upscale my-video.mov --width 7680 --codec h265 Anyway, just wanted to give a tip toward a really cool tool! Finn’s even got a [version in the Mac App Store called Unsqueeze](https://apps.apple.com/ca/app/unsqueeze/id6475134617 Unsqueeze) with an actual GUI that’s even easier to use, but I really like the command line version because you get a bit more control over the output. 8K is kinda overkill for most use cases, so to be clear you can go from like, 1080p to 4K as well if you’re so inclined. I just really like 8K for the future proofing of it all, in however many years when 8K TVs are more common I’ll be able to have some of my videos already able to take advantage of that. And it takes long enough to upscale that I’d be surprised to see TVs or YouTube offering that upscaling natively in a way that looks as good given the amount of compute required currently. Obviously very zoomed in to show the difference easier If you ask me, for indie creators, even when 8K displays are more common, the future of recording still probably won’t be in native 8K. 4K recording gives so much detail still that have more than enough details to allow AI to do a compelling upscale to 8K. I think for my next camera I’m going to aim for recording in 6K (so I can still reframe in post), and then continue to output the final result in 4K to be AI upscaled. I’m coming for you, Lumix S1ii.
Spoiler: 3D printed! The colored ports really sell the effect If you’re anything like me, you’ve found the new, tinier Mac mini to be absolutely adorable. But you might also be like me that you either already have an awesome M1 Mac mini that you have no real reason to replace, or the new Mac mini just isn’t something you totally need. While that logic might be sound, but it doesn’t make you want one any less. To help cure this FOMO, I made a cute little 3D printable Mac mini that can sit on your desk and be all cute. But then I had an even better idea, the new Mac mini is powerful sure, but it can’t hold snacks. Or a plant. Or your phone. Or pens/pencils. So I also made some versions you can print that add some cute utility to your desk in the form of the new Mac mini. They’re free of course! Just chuck ’em into your (or your friend’s) 3D printer. It even has all the little details modeled, like the power button, ports (including rear), and fan holes! They’re pretty easy to print, it’s in separate parts for ease of printing the bottom a different color (black) versus the top, then just put a dab of glue (or just use gravity) to keep them together. If you have a multi-color 3D printer, you can color the ports and power LED to make it look extra cool (or just do it after the fact with paint). Here are the different options for your desk! Secret item stash The possibilities for what you can store on your desk are now truly endless. Individually wrapped mints? Key switches? Screws? Paper clips? Rubber bands? Flash drives? Download link: https://makerworld.com/en/models/793456 A very green sorta Mac First carbon neutral Mac is cool and all but what if your Mac mini literally had a plant in it? Every desk needs a cute little plant. Download link: https://makerworld.com/en/models/793464 Phone holder A phone/tablet holder is an essential item on my desk for debugging things, watching a video, or just keeping an eye on an Uber Eats order. Before, guests came over and saw my boring phone stand and judged me, now they come over and think I’m exciting and well-traveled. You can even charge your phone/tablet in portrait mode by pushing the cable through a tunnel made through the Ethernet port that then snakes up to the surface. Download link: https://makerworld.com/en/models/793495 Pen holder The Playdate had the cutest little pen/pencil holder accessory but it unfortunately never shipped and my desk is sad. This will be a nice stand in for your beloved pens, pencils, markers, and Apple Pencils. Download link: https://makerworld.com/en/models/793470 A solid model Or if you just want to stare at it without any frills, you can just print the normal model too! Download link: https://makerworld.com/en/models/793447 Printer recommendation Whenever I post about 3D printing I understandably get a bunch of “Which 3D printer should I buy??” questions. This isn’t sponsored, but I’ve found over the last few years the answer has been pretty easy: something from Bambu Lab. Their printers are somehow super easy to use, well designed, and reasonably priced. Prusas are great too, but I think Bambu is hard to beat for the price. Don’t get an Ender. So if you’re looking for a printer now, Black Friday deals are aplenty so it’s pretty much the best time to pick one up. I’d grab something in their A series if you’re on a budget, or the P1S for a bit more if you can swing it (that’s what I use). https://bambulab.com On the other hand if you just want to print one thing now and again, a lot of local libraries are starting to have 3D printers so that might be worth looking into! And online services exist too (eg: JLCPCB and PCBWay), but if you do it with any regularity a 3D printer is a really fun thing to pick up. Enjoy! ❤️ Learning 3D modeling over the last year has been a ton of fun so I love a good excuse to practice, and shout out to Jerrod Hofferth and his amazing 3D printable Mac mini tower (that you should totally download) for the idea to solve my desire with some 3D printing! Also, the models are almost certainly not accurate down to the micrometer as I don’t actually have one, they’re based off Apple’s measurements as well as measuring screenshots. But it should be close! If you have a multi-color 3D printer, the linked models have the colors built-in for your ready to go, but if you want to print it in single-colors I also made versions available with the top and bottom separate as well as the logo, so you can print them separately in the individual colors then connect them with a touch of super glue or something.
Hey I'm a developer not an artist Following my last blog post about difficulties surrounding UserDefaults and edge cases that lead to data loss (give it a read if you haven’t, it’s an important precursor to this post!), I wanted to build something small and lightweight that would serve to fix the issues I was encountering with UserDefaults and thus TinyStorage was born! It’s open source so you can use it in your projects too if would like. GitHub link 🐙 Overview As mentioned in that blog post, UserDefaults has more and more issues as of late with returning nil data when the device is locked and iOS “prelaunches” your app, leaving me honestly sort of unable to trust what UserDefaults returns. Combined with an API that doesn’t really do a great job of surfacing whether it’s available, you can quite easily find yourself in a situation with difficult to track down bugs and data loss. This library seeks to address that fundamentally by not encrypting the backing file, allowing more reliable access to your saved data (if less secure, so don’t store sensitive data), with some niceties sprinkled on top. This means it’s great for preferences and collections of data like bird species the user likes, but not for sensitive details. Do not store passwords/keys/tokens/secrets/diary entries/grammy’s spaghetti recipe, anything that could be considered sensitive user information, as it’s not encrypted on the disk. But don’t use UserDefaults for sensitive details either as UserDefaults data is still fully decrypted when the device is locked so long as the user has unlocked the device once after reboot. Instead use Keychain for sensitive data. As with UserDefaults, TinyStorage is intended to be used with relatively small, non-sensitive values. Don’t store massive databases in TinyStorage as it’s not optimized for that, but it’s plenty fast for retrieving stored Codable types. As a point of reference I’d say keep it under 1 MB. This reliable storing of small, non-sensitive data (to me) is what UserDefaults was always intended to do well, so this library attempts to realize that vision. It’s pretty simple and just a few hundred lines, far from a marvel of filesystem engineering, but just a nice little utility hopefully! (Also to be clear, TinyStorage is not a wrapper for UserDefaults, it is a full replacement. It does not interface with the UserDefaults system in any way.) Features Reliable access: even on first reboot or in application prewarming states, TinyStorage will read and write data properly Read and write Swift Codable types easily with the API Similar to UserDefaults uses an in-memory cache on top of the disk store to increase performance Thread-safe through an internal DispatchQueue so you can safely read/write across threads without having to coordinate that yourself Supports storing backing file in shared app container Uses NSFileCoordinator for coordinating reading/writing to disk so can be used safely across multiple processes at the same time (main target and widget target, for instance) When using across multiple processes, will automatically detect changes to file on disk and update accordingly SwiftUI property wrapper for easy use in a SwiftUI hierarchy (Similar to @AppStorage) Uses OSLog for logging A function to migrate your UserDefaults instance to TinyStorage Limitations Unlike UserDefaults, TinyStorage does not support mixed collections, so if you have a bunch of strings, dates, and integers all in the same array in UserDefaults without boxing them in a shared type, TinyStorage won’t work. Same situation with dictionaries, you can use them fine with TinyStorage but the key and value must both be a Codable type, so you can’t use [String: Any] for instance where each string key could hold a different type of value. Installation Simply add a Swift Package Manager dependency for https://github.com/christianselig/TinyStorage.git Usage First, either initialize an instance of TinyStorage or create a singleton and choose where you want the file on disk to live. To keep with UserDefaults convention I normally create a singleton for the app container: extension TinyStorage { static let appGroup: TinyStorage = { let appGroupID = "group.com.christianselig.example" let containerURL = FileManager.default.containerURL(forSecurityApplicationGroupIdentifier: appGroupID)! return .init(insideDirectory: containerURL) }() } (You can store it wherever you see fit though, in URL.documentsDirectory is also an idea for instance!) Then, decide how you want to reference your keys, similar to UserDefaults you can use raw strings, but I recommend a more strongly-typed approach, where you simply conform a type to TinyStorageKey and return a var rawValue: String and then you can use it as a key for your storage without worrying about typos. If you’re using something like an enum, making it a String enum gives you this for free, so no extra work! After that you can simply read/write values in and out of your TinyStorge instance: enum AppStorageKeys: String, TinyStorageKey { case likesIceCream case pet case hasBeatFirstLevel } // Read let pet: Pet? = TinyStorage.appGroup.retrieve(type: Pet.self, forKey: AppStorageKeys.pet) // Write TinyStorage.appGroup.store(true, forKey: AppStorageKeys.likesIceCream) (If you have some really weird type or don’t want to conform to Codable, just convert the type to Data through whichever means you prefer and store that, as Data itself is Codable.) If you want to use it in SwiftUI and have your view automatically respond to changes for an item in your storage, you can use the @TinyStorageItem property wrapper. Simply specify your storage, the key for the item you want to access, and specify a default value. @TinyStorageItem(key: AppStorageKey.pet, storage: .appGroup) var pet: = Pet(name: "Boots", species: .fish, hasLegs: false) var body: some View { Text(pet.name) } You can even use Bindings to automatically read/write. @TinyStorageItem(key: AppStorageKeys.message, storage: .appGroup) var message: String = "" var body: some View { VStack { Text("Stored Value: \(message)") TextField("Message", text: $message) } } It also addresses some of the annoyances of @AppStorage, such as not being able to store collections: @TinyStorageItem(key: "names", storage: .appGroup) var names: [String] = [] Or better support for optional values: @TinyStorageItem(key: "nickname", storage: .appGroup) var nickname: String? = nil // or "Cool Guy" Hope it’s handy! If you like it or have any feedback let me know! I’m going to start slowly integrating it into Pixel Pals and hopefully solve a few bugs in the process.
More in technology
We’re excited to welcome a new member to the Arduino Nano family – the Nano R4. Powered by the same RA4M1 microcontroller that’s at the core of the popular UNO R4 boards, this tiny-yet-mighty module is here to help you take your projects from prototype to product, smoothly and efficiently. If you’re already prototyping with […] The post Introducing the Arduino Nano R4: small in size, big on possibilities appeared first on Arduino Blog.
The cost effective solution to your computer needs for only £1,450
IoT (Internet of Things) devices can be very useful, but they do, by definition, require internet access. That’s easy enough when Wi-Fi® is available, and it is even possible to rely on LoRa® and cellular data connections to transmit data outside of urban areas. However, deploying an IoT device to a truly remote location has […] The post Dive into satellite IoT with the new Arduino-compatible Iridium Certus 9704 Development Kit appeared first on Arduino Blog.
Today I learned that Kagi uses Yandex as part of its search infrastructure, making up about 2% of their costs, and their CEO has confirmed that they do not plan to change that. To quote: Yandex represents about 2% of our total costs and is only one of dozens of sources we use. To put this in perspective: removing any single source would degrade search quality for all users while having minimal economic impact on any particular region. The world doesn’t need another politicized search engine. It needs one that works exceptionally well, regardless of the political climate. That’s what we’re building. That is unfortunate, as I found Kagi to be a good product with an interesting take on utilizing LLM models with search that is kind of useful, but I cannot in good heart continue to support it while they unapologetically finance a major company that has ties to the Russian government, the same country that is actively waging a war against Ukraine, an European country, for over 11 years, during which they’ve committed countless war crimes against civilians and military personnel. Kagi has the freedom to decide how they build the best search engine, and I have the freedom to use something else. Please send all your whataboutisms to /dev/null.
What happens when you hand an educational robot to a group of developers and ask them to build something fun? At Arduino, you get a multiplayer robot showdown that’s part battle, part programming lesson, and entirely Alvik. The idea for Alvik Fight Club first came to life during one of our internal Make Tanks, in […] The post Alvik Fight Club: A creative twist on coding, competition, and collaboration appeared first on Arduino Blog.