Full Width [alt+shift+f] Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
12
Night is falling on Cerro Pachón. Stray clouds reflect the last few rays of golden light as the sun dips below the horizon. I focus my camera across the summit to the westernmost peak of the mountain. Silhouetted within a dying blaze of red and orange light looms the sphinxlike shape of the Vera C. Rubin Observatory. “Not bad,” says William O’Mullane, the observatory’s deputy project manager, amateur photographer, and master of understatement. We watch as the sky fades through reds and purples to a deep, velvety black. It’s my first night in Chile. For O’Mullane, and hundreds of other astronomers and engineers, it’s the culmination of years of work, as the Rubin Observatory is finally ready to go “on sky.” Rubin is unlike any telescope ever built. Its exceptionally wide field of view, extreme speed, and massive digital camera will soon begin the 10-year Legacy Survey of Space and Time (LSST) across the entire southern sky. The result will be a high-resolution movie of how our solar...
a week ago

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from IEEE Spectrum

This 1945 TV Console Showed Two Programs at Once

As I try to write this article, my friend and I have six different screens attached to three types of devices. We’re working in the same room but on our own projects—separate yet together, a comfortable companionship. I had never really thought of the proliferation of screens as a peacekeeping tool until I stumbled across one of Allen B. DuMont’s 1950s dual-screen television sets. DuMont’s idea was to let two people in the same room watch different programs. It reminded me of my early childhood and my family’s one TV set, and the endless arguments with my sisters and parents over what to watch. Dad always won, and his choice was rarely mine. The DuMont Duoscopic Was 2 TVs in 1 Allen B. DuMont was a pioneer of commercial television in the United States. His eponymous company manufactured cathode-ray tubes and in 1938 introduced one of the earliest electronic TV sets. He understood how human nature and a shortage of TV screens could divide couples, siblings, and friends. Accordingly, he built at least two prototype TVs that could play two shows at once. In the 1945 prototype shown at top, DuMont retrofitted a maple-finished cabinet that originally held a single 15-inch Plymouth TV receiver to house two black-and-white 12-inch receivers. Separate audio could be played with or without earpieces. Viewers used a 10-turn dial to tune into TV channel 1 (which went off the air in 1948) and VHF channels 2 through 13. As radio was still much more popular than television, the dial also included FM from 88 to 108 megahertz, plus a few channels used for weather and aviation. The lower left drawer held a phonograph. It was an all-in-one entertainment center. To view their desired programs on the DuMont Duoscopic TV set, this family wore polarized glasses and listened through earpieces.Allen DuMont/National Museum of American History/Smithsonian In 1954, DuMont introduced a different approach. With the DuMont Duoscopic, two different channels were broadcast on a single screen. To the naked eye, the images appeared superimposed on one another. But a viewer who wore polarized glasses or looked at the screen through a polarized panel saw just one of the images. Duoscopic viewers could use an earpiece to listen to the audio of their choice. You could also use the TV set to watch a single program by selecting only one channel and playing the audio through one speaker. DuMont seemed committed to the idea that family members should spend time together, even if they were engaged in different activities. An image of the Duoscopic sent out by the Associated Press Wirephoto Service heralded “No more lonely nights for the missus.” According to the caption, she could join “Hubby,” who was already relaxing in his comfy armchair enjoying his favorite show, but now watch something of her own choosing. “Would you believe it?” a Duoscopic brochure asks. “While HE sees and hears the fights, SHE sees and hears her play…. Separate viewing and solo sound allows your family a choice.” The technology to separate and isolate the images and audio was key. The Duoscopic had two CRTs, each with its own feed, set at right angles to each other. A half-silvered mirror superimposed the two images onto a single screen, which could then be filtered with polarized glasses or screens. TV pioneer Allen B. DuMont designed and manufactured cathode ray tubes and TV sets and launched an early TV network.Science History Images/Alamy A separate box could be conveniently placed nearby to control the volume of each program. Users could toggle between the two programs with the flick of a switch. Each set came with eight earpieces with long cords. A short note in the March 1954 issue of Electrical Engineering praises the engineers who crafted the sound system to eliminate sound bleed from the speakers. It notes that a viewer “very easily could watch one television program and listen to the audio content of a second.” Or, as a United Press piece published in the Panama City News Herald suggested, part of the family could use the earpieces to watch and listen to the TV while others in the room could “read, play bridge, or just sit and brood.” I suspect the brooders were the children who still didn’t get to watch their favorite show. Of course, choice was a relative matter. In the 1950s, many U.S. television markets were lucky to have even two channels. Only in major metropolitan areas were there more programming options. The only known example of DuMont’s side-by-side version resides at the South Carolina State Museum, in Columbia. But sources indicate that DuMont planned to manufacture about 30 Duoscopics for demonstration purposes, although it’s unclear how many were actually made. (The Smithsonian’s National Museum of American History has a Duoscopic in its collections.) Alas, neither version ever went into mainstream production. Perhaps that’s because the economics didn’t make sense: Even in the early 1950s, it would have been easier and cheaper for families to simply purchase two television sets and watch them in different rooms. Who Was Early TV Pioneer Allen DuMont? DuMont is an interesting figure in the history of television because he was actively engaged in the full spectrum of the industry. Not only did he develop and manufacture receivers, he also conducted broadcasting experiments, published papers on transmission and reception, ran a television network, and produced programming. After graduating from Rensselaer Polytechnic Institute in 1924 with a degree in electrical engineering, DuMont worked in a plant that manufactured vacuum tubes. Four years later, he joined the De Forest Radio Co. as chief engineer. With Lee de Forest, DuMont helped design an experimental mechanical television station, but he was unconvinced by the technology and advocated for all-electric TV for its crisper image. RELATED: In 1926, TV Was Mechanical When the Radio Corporation of America acquired De Forest Radio in 1931, DuMont started his own laboratory in his basement, where he worked on improving cathode ray tubes. In 1932 he invented the “magic eye,” a vacuum tube that was a visual tuning aid in radio receivers. He sold the rights to RCA. In 1935, DuMont moved the operation to a former pickle factory in Passaic, N.J., and incorporated it as the Allen B. DuMont Laboratories. The company produced cathode ray oscilloscopes, which helped finance his experiments with television. He debuted the all-electronic DuMont 180 TV set in June 1938. It cost US $395, or almost $9,000 today—so not exactly an everyday purchase for most people. Although DuMont was quick to market, RCA and the Television Corp. of America were right on his tail. RELATED: RCA’s Lucite Phantom Teleceiver Introduced the Idea of TV Of course, if companies were going to sell televisions, consumers had to have programs to watch. So in 1939, DuMont launched his own television network, starting with station W2XWV, broadcasting from Passaic. The Federal Communications Commission licensed W2XWV as an experimental station for television research. DuMont received a commercial license and changed its call sign to WABD on 2 May 1944, three years after NBC’s and CBS’s commercial stations went into operation in New York City. Due to wartime restrictions and debates over industry standards, television remained mostly experimental during World War II. As of September 1944, there were only six stations operating—three in New York City and one each in Chicago, Los Angeles, and Philadelphia. There were approximately 7,000 TV sets in personal use. The DuMont Television Network’s variety show hosted by Jackie Gleason [left, hands raised] featured a recurring skit that later gave rise to “The Honeymooners.”Left: CBS/Getty Images; Right: Garry Winogrand/Picture Post/Hulton Archive/Getty Images While other networks focused on sports, movies, or remote broadcasts, the DuMont Television Network made its mark with live studio broadcasts. In April 1946, WABD moved its studios to the Wanamaker Department Store in Manhattan. DuMont converted the 14,200-cubic-meter (500,000-cubic-foot) auditorium into the world’s largest television studio. The network’s notable programming included “The Original Amateur Hour,” which started as a radio program; “The Johns Hopkins Science Review,” which had a surprisingly progressive take on women’s health; “Life Is Worth Living,” a devotional show hosted by Catholic Bishop Fulton Sheen (that garnered DuMont’s only Emmy Award); “Cavalcade of Stars,” a variety show hosted by Jackie Gleason that birthed “The Honeymooners”; and “Captain Video and His Video Rangers,” a children’s science fiction series, the first of its genre. My grandmother, who loved ballroom dancing, was a big fan of “The Arthur Murray Party,” a dance show hosted by Arthur’s wife, Kathryn; my mom fondly recalls Kathryn’s twirling skirts. While NBC, CBS, and the other major television players built their TV networks on their existing radio networks, DuMont was starting fresh. To raise capital for his broadcast station, he sold a half-interest in his company to Paramount Pictures in 1938. The partnership was contentious from the start. There were disputes over money, the direction of the venture, and stock. But perhaps the biggest conflict was when Paramount and some of its subsidiaries began applying for FCC licenses in the same markets as Dumont’s. This ate into the DuMont network’s advertising and revenue and its plans to expand. In August 1955, Paramount gained full control over the DuMont network and proceeded to shut it down. DuMont continued to manufacture television receivers until 1958, when he sold the business to the Emerson Radio & Phonograph Corp. Two years later, the remainder of DuMont Labs merged with the Fairchild Camera and Instrument Corp. (whose founder, Sherman Fairchild, had in 1957 helped a group of ambitious young scientists and engineers known as the “Traitorous Eight” set up Fairchild Semiconductor). Allen DuMont served as general manager of the DuMont division for a year and then became a technical consultant to Fairchild. He died in 1965. One Thing Allen DuMont Missed My family eventually got a second and then a third television, but my dad always had priority. He watched the biggest set from his recliner in the family room, while my mom made do with the smaller sets in the kitchen and bedroom. He was relaxing, while she was usually doing chores. As a family, we would watch different shows in separate places. An ad for the DuMont Duoscopic touted it as a device for household harmony: “While HE sees and hears the fights, SHE sees and hears her play.” National Museum of American History/Smithsonian These days, with so many screens on so many devices and so many programming options, we may have finally achieved DuMont’s vision of separate but together. While I was writing this piece, my friend was watching the French Open on the main TV, muted so she didn’t disturb me. She streamed the same channel on her tablet and routed the audio to her headset. We both worked on our respective laptops and procrastinated by checking messages on our phones. But there’s one aspect of human nature that DuMont’s prototypes and promotional materials failed to address—that moment when someone sees something so exciting that they just have to share it. Sarah and I were barely getting any work done in this separate-but-together setting because we kept interrupting each other with questions, comments, and the occasional tennis update. We’ve been friends too long; we can’t help but chitchat. The only way for me to actually finish this article will be to go to a room by myself with no other screens or people to distract me. Part of a continuing series looking at historical artifacts that embrace the boundless potential of technology. An abridged version of this article appears in the July 2025 print issue as “The 2-in-1 TV.” References I first learned about the Duoscopic in a short article in the March 1954 issue of Electrical Engineering, a precursor publication to Spectrum. My online research turned up several brochures and newspaper articles from the Early Television Museum, which surprisingly led me to the dual-screen DuMont at the South Carolina State Museum in my hometown of Columbia, S.C. Museum objects are primary sources, and I was fortunate to be able to visit this amazing artifact and examine it with Director of Collections Robyn Thiesbrummel. I also consulted the museum’s accession file, which gave additional information about the receiver from the time of acquisition. I took a look at Gary Newton Hess’s 1960 dissertation, An Historical Study of the Du Mont Television Network, as well as several of Allen B. DuMont’s papers published in the Proceedings of the IRE and Electrical Engineering.

2 days ago 7 votes
Why JPEGs Still Rule the Web

A version of this post originally appeared on Tedium, Ernie Smith’s newsletter, which hunts for the end of the long tail. For roughly three decades, the JPEG has been the World Wide Web’s primary image format. But it wasn’t the one the Web started with. In fact, the first mainstream graphical browser, NCSA Mosaic, didn’t initially support inline JPEG files—just inline GIFs, along with a couple of other formats forgotten to history. However, the JPEG had many advantages over the format it quickly usurped. aspect_ratio Despite not appearing together right away—it first appeared in Netscape in 1995, three years after the image standard was officially published—the JPEG and web browser fit together naturally. JPEG files degraded more gracefully than GIFs, retaining more of the picture’s initial form—and that allowed the format to scale to greater levels of success. While it wasn’t capable of animation, it progressively expanded from something a modem could pokily render to a format that was good enough for high-end professional photography. For the internet’s purposes, the degradation was the important part. But it wasn’t the only thing that made the JPEG immensely valuable to the digital world. An essential part was that it was a documented standard built by numerous stakeholders. The GIF was a de facto standard. The JPEG was an actual one How important is it that JPEG was a standard? Let me tell you a story. During a 2013 New York Times interview conducted just before he received an award honoring his creation, GIF creator Steve Wilhite stepped into a debate he unwittingly created. Simply put, nobody knew how to pronounce the acronym for the image format he had fostered, the Graphics Interchange Format. He used the moment to attempt to set the record straight—it was pronounced like the peanut butter brand: “It is a soft ‘G,’ pronounced ‘jif.’ End of story,” he said. I posted a quote from Wilhite on my popular Tumblr around that time, a period when the social media site was the center of the GIF universe. And soon afterward, my post got thousands of reblogs—nearly all of them disagreeing with Wilhite. Soon, Wilhite’s quote became a meme. The situation paints how Wilhite, who died in 2022, did not develop his format by committee. He could say it sounded like “JIF” because he built it himself. He was handed the project as a CompuServe employee in 1987; he produced the object, and that was that. The initial document describing how it works? Dead simple. 38 years later, we’re still using the GIF—but it never rose to the same prevalence of JPEG. The JPEG, which formally emerged about five years later, was very much not that situation. Far from it, in fact—it’s the difference between a de facto standard and an actual one. And that proved essential to its eventual ubiquity. We’re going to degrade the quality of this image throughout this article. At its full image size, it’s 13.7 megabytes.Irina Iriser How the JPEG format came to life Built with input from dozens of stakeholders, the Joint Photographic Experts Group ultimately aimed to create a format that fit everyone’s needs. (Reflecting its committee-led roots, there would be no confusion about the format’s name—an acronym of the organization that designed it.) And when the format was finally unleashed on the world, it was the subject of a more than 600-page book. JPEG: Still Image Data Compression Standard, written by IBM employees and JPEG organization stakeholders William B. Pennebaker and Joan L. Mitchell, describes a landscape of multimedia imagery, held back without a way to balance the need for photorealistic images and immediacy. Standardization, they believed, could fix this. “The problem was not so much the lack of algorithms for image compression (as there is a long history of technical work in this area),” the authors wrote, “but, rather, the lack of a standard algorithm—one which would allow an interchange of images between diverse applications.” And they were absolutely right. For more than 30 years, JPEG has made high-quality, high-resolution photography accessible in operating systems far and wide. Although we no longer need to compress JPEGs to within an inch of their life, having that capability helped enable the modern internet. As the book notes, Mitchell and Pennebaker were given IBM’s support to follow through this research and work with the JPEG committee, and that support led them to develop many of the JPEG format’s foundational patents. Described in patents filed by Mitchell and Pennebaker in 1988, IBM and other members of the JPEG standards committee, such as AT&T and Canon, were developing ways to use compression to make high-quality images easier to deliver in confined settings. Each member brought their own needs to the process. Canon, obviously, was more focused on printers and photography, while AT&T’s interests were tied to data transmission. Together, the companies left behind a standard that has stood the test of time. All this means, funnily enough, that the first place that a program capable of using JPEG compression appeared was not MacOS or Windows, but OS/2—a fascinating-but-failed graphical operating system created by Pennebaker and Mitchell’s employer, IBM. As early as 1990, OS/2 supported the format through the OS/2 Image Support application. At 50 percent of its initial quality, the image is down to about 2.6 MB. By dropping half of the image’s quality, we brought it down to one-fifth of the original file size. Original image: Irina Iriser What a JPEG does when you heavily compress it The thing that differentiates a JPEG file from a PNG or a GIF is how the data degrades as you compress it. The goal for a JPEG image is to still look like a photo when all is said and done, even if some compression is necessary to make it all work at a reasonable size. That way, you can display something that looks close to the original image in fewer bytes. Or, as Pennebaker and Mitchell put it, “the most effective compression is achieved by approximating the original image (rather than reproducing it exactly).” Central to this is a compression process called discrete cosine transform (DCT), a lossy form of compression encoding heavily used in all sorts of compressed formats, most notably in digital audio and signal processing. Essentially, it delivers a lower-quality product by removing details, while still keeping the heart of the original product through approximation. The stronger the cosine transformation, the more compressed the final result. The algorithm, developed by researchers in the 1970s, essentially takes a grid of data and treats it as if you’re controlling its frequency with a knob. The data rate is controlled like water from a faucet: The more data you want, the higher the setting. DCT allows a trickle of data to still come out in highly compressed situations, even if it means a slightly compromised result. In other words, you may not keep all the data when you compress it, but DCT allows you to keep the heart of it. (See this video for a more technical but still somewhat easy-to-follow description of DCT.) DCT is everywhere. If you have ever seen a streaming video or an online radio stream that degraded in quality because your bandwidth suddenly declined, you’ve witnessed DCT being utilized in real time. A JPEG file doesn’t have to leverage the DCT with just one method, as JPEG: Still Image Data Compression Standard explains: The JPEG standard describes a family of large image compression techniques, rather than a single compression technique. It provides a “tool kit” of compression techniques from which applications can select elements that satisfy their particular requirements. The toolkit has four modes: Sequential DCT, which displays the compressed image in order, like a window shade slowly being rolled down Progressive DCT, which displays the full image in the lowest-resolution format, then adds detail as more information rolls in Sequential lossless, which uses the window shade format but doesn’t compress the image Hierarchical mode, which combines the prior three modes—so maybe it starts with a progressive mode, then loads DCT compression slowly, but then reaches a lossless final result At the time the JPEG was being created, modems were extremely common. That meant images loaded slowly, making Progressive DCT the most fitting format for the early internet. Over time, the progressive DCT mode has become less common, as many computers can simply load the sequential DCT in one fell swoop. That same forest, saved at 5 percent quality. Down to about 419 kilobytes.Original image: Irina Iriser When an image is compressed with DCT, the change tends to be less noticeable in busier, more textured areas of the picture, like hair or foliage. Those areas are harder to compress, which means they keep their integrity longer. It tends to be more noticeable, however, with solid colors or in areas where the image sharply changes from one color to another—like text on a page. Ever screenshot a social media post, only for it to look noisy? Congratulations, you just made a JPEG file. Other formats, like PNG, do better with text, because their compression format is intended to be non-lossy. (Side note: PNG’s compression format, DEFLATE, was designed by Phil Katz, who also created the ZIP format. The PNG format uses it in part because it was a license-free compression format. So it turns out the brilliant coder with the sad life story improved the internet in multiple ways before his untimely passing.) In many ways, the JPEG is one tool in our image-making toolkit. Despite its age and maturity, it remains one of our best options for sharing photos on the internet. But it is not a tool for every setting—despite the fact that, like a wrench sometimes used as a hammer, we often leverage it that way. Forgent Networks claimed to own the JPEG’s defining algorithm The JPEG format gained popularity in the ’90s for reasons beyond the quality of the format. Patents also played a role: Starting in 1994, the tech company Unisys attempted to bill individual users who relied on GIF files, which used a patent the company owned. This made the free-to-use JPEG more popular. (This situation also led to the creation of the patent-free PNG format.) While the JPEG was standards-based, it could still have faced the same fate as the GIF, thanks to the quirks of the patent system. A few years before the file format came to life, a pair of Compression Labs employees filed a patent application that dealt with the compression of motion graphics. By the time anyone noticed its similarity to JPEG compression, the format was ubiquitous. Our forest, saved at 1 percent quality. This image is only about 239 KB in size, yet it’s still easily recognizable as the same photo. That’s the power of the JPEG.Original image: Irina Iriser Then in 1997, a company named Forgent Networks acquired Compression Labs. The company eventually spotted the patent and began filing lawsuits over it, a series of events it saw as a stroke of good luck. “The patent, in some respects, is a lottery ticket,” Forgent Chief Financial Officer Jay Peterson told CNET in 2005. “If you told me five years ago that ‘You have the patent for JPEG,’ I wouldn’t have believed it.” While Forgent’s claim of ownership of the JPEG compression algorithm was tenuous, it ultimately saw more success with its legal battles than Unisys did. The company earned more than $100 million from digital camera makers before the patent finally ran out of steam around 2007. The company also attempted to extract licensing fees from the PC industry. Eventually, Forgent agreed to a modest $8 million settlement. As the company took an increasingly aggressive approach to its acquired patent, it began to lose battles both in the court of public opinion and in actual courtrooms. Critics pounced on examples of prior art, while courts limited the patent’s use to motion-based uses like video. By 2007, Forgent’s compression patent expired—and its litigation-heavy approach to business went away. That year, the company became Asure Software, which now specializes in payroll and HR solutions. Talk about a reboot. Why the JPEG won’t die The JPEG file format has served us well. It’s been difficult to remove the format from its perch. The JPEG 2000 format, for example, was intended to supplant it by offering more lossless options and better performance. The format is widely used by the Library of Congress and specialized sites like the Internet Archive, however, it is less popular as an end-user format. See the forest JPEG degrade from its full resolution to 1 percent quality in this GIF. Original image: Irina Iriser Other image technologies have had somewhat more luck getting past the JPEG format. The Google-supported WebP is popular with website developers (and controversial with end users). Meanwhile, the formats AVIF and HEIC, each developed by standards bodies, have largely outpaced both JPEG and JPEG 2000. Still, the JPEG will be difficult to kill at this juncture. These days, the format is similar to MP3 or ZIP files—two legacy formats too popular and widely used to kill. Other formats that compress the files better and do the same things more efficiently are out there, but it’s difficult to topple a format with a 30-year head start. Shaking off the JPEG is easier said than done. I think most people will be fine to keep it around. Ernie Smith is the editor of Tedium, a long-running newsletter that hunts for the end of the long tail.

2 weeks ago 11 votes
The Birth of the University as Innovation Incubator

This article is excerpted from Every American an Innovator: How Innovation Became a Way of Life, by Matthew Wisnioski (The MIT Press, 2025). Imagine a point-to-point transportation service in which two parties communicate at a distance. A passenger in need of a ride contacts the service via phone. A complex algorithm based on time, distance, and volume informs both passenger and driver of the journey’s cost before it begins. This novel business plan promises efficient service and lower costs. It has the potential to disrupt an overregulated taxi monopoly in cities across the country. Its enhanced transparency may even reduce racial discrimination by preestablishing pickups regardless of race. aspect_ratio Every American an Innovator: How Innovation Became a Way of Life, by Matthew Wisnioski (The MIT Press, 2025).The MIT Press Carnegie Mellon University. The dial-a-ride service was designed to resurrect a defunct cab company that had once served Pittsburgh’s African American neighborhoods. National Science Foundation, the CED was envisioned as an innovation “hatchery,” intended to challenge the norms of research science and higher education, foster risk-taking, birth campus startups focused on market-based technological solutions to social problems, and remake American science to serve national needs. Are innovators born or made? During the Cold War, the model for training scientists and engineers in the United States was one of manpower in service to a linear model of innovation: Scientists pursued “basic” discovery in universities and federal laboratories; engineer–scientists conducted “applied” research elsewhere on campus; engineers developed those ideas in giant teams for companies such as Lockheed and Boeing; and research managers oversaw the whole process. This model dictated national science policy, elevated the scientist as a national hero in pursuit of truth beyond politics, and pumped hundreds of millions of dollars into higher education. In practice, the lines between basic and applied research were blurred, but the perceived hierarchy was integral to the NSF and the university research culture that it helped to foster. RELATED: Innovation Magazine and the Birth of a Buzzword The question was, how? And would the universities be willing to remake themselves to support innovation? The NSF experiments with innovation At the Utah Innovation Center, engineering students John DeJong and Douglas Kihm worked on a programmable electronics breadboard.Special Collections, J. Willard Marriott Library, The University of Utah In 1972, NSF director H. Guyford Stever established the Office of Experimental R&D Incentives to “incentivize” innovation for national needs by supporting research on “how the government [could] most effectively accelerate the transfer of new technology into productive enterprise.” Stever stressed the experimental nature of the program because many in the NSF and the scientific community resisted the idea of goal-directed research. Innovation, with its connotations of profit and social change, was even more suspect. To lead the initiative, Stever appointed C.B. Smith, a research manager at United Aircraft Corp., who in turn brought in engineers with industrial experience, including Robert Colton, an automotive engineer. Colton led the university Innovation Center experiment that gave rise to Carnegie Mellon’s CED. The NSF chose four universities that captured a range of approaches to innovation incubation. MIT targeted undergrads through formal coursework and an innovation “co-op” that assisted in turning ideas into products. The University of Oregon evaluated the ideas of garage inventors from across the country. The University of Utah emphasized an ecosystem of biotech and computer graphics startups coming out of its research labs. And Carnegie Mellon established a nonprofit corporation to support graduate student ventures, including the dial-a-ride service. Grad student Fritz Faulhaber holds one of the radio-coupled taxi meters that Carnegie Mellon students installed in Pittsburgh cabs in the 1970s.Ralph Guggenheim;Jerome McCavitt/Carnegie-Mellon Alumni News Carnegie Mellon got one of the first university incubators Carnegie Mellon had all the components that experts believed were necessary for innovation: strong engineering, a world-class business school, novel approaches to urban planning with a focus on community needs, and a tradition of industrial design and the practical arts. CMU leaders claimed that the school was smaller, younger, more interdisciplinary, and more agile than MIT. Dwight Baumann. Baumann exemplified a new kind of educator-entrepreneur. The son of North Dakota farmers, he had graduated from North Dakota State University, then headed to MIT for a Ph.D. in mechanical engineering, where he discovered a love of teaching. He also garnered a reputation as an unusually creative engineer with an interest in solving problems that addressed human needs. In the 1950s and 1960s, first as a student and then as an MIT professor, Baumann helped develop one of the first computer-aided-design programs, as well as computer interfaces for the blind and the nation’s first dial-a-ride paratransit system. Dwight Baumann, director of Carnegie Mellon’s Center for Entrepreneurial Development, believed that a modern university should provide entrepreneurial education. Carnegie Mellon University Archives The CED’s mission was to support entrepreneurs in the earliest stages of the innovation process when they needed space and seed funding. It created an environment for students to make a “sequence of nonfatal mistakes,” so they could fail and develop self-confidence for navigating the risks and uncertainties of entrepreneurial life. It targeted graduate students who already had advanced scientific and engineering training and a viable idea for a business. Carnegie Mellon’s dial-a-ride service replicated the Peoples Cab Co., which had provided taxi service to Black communities in Pittsburgh. Charles “Teenie” Harris/Carnegie Museum of Art/Getty Images A few CED students did create successful startups. The breakout hit was Compuguard, founded by electrical engineering Ph.D. students Romesh Wadhwani and Krishnahadi Pribad, who hailed from India and Indonesia, respectively. The pair spent 18 months developing a security bracelet that used wireless signals to protect vulnerable people in dangerous work environments. But after failing to convert their prototype into a working design, they pivoted to a security- and energy-monitoring system for schools, prisons, and warehouses. Wadhwani Foundation supports innovation and entrepreneurship education worldwide, particularly in emerging economies. Wharton School and elsewhere. In 1983, Baumann’s onetime partner Jack Thorne took the lead of the new Enterprise Corp., which aimed to help Pittsburgh’s entrepreneurs raise venture capital. Baumann was kicked out of his garage to make room for the initiative. Was the NSF’s experiment in innovation a success? As the university Innovation Center experiment wrapped up in the late 1970s, the NSF patted itself on the back in a series of reports, conferences, and articles. “The ultimate effect of the Innovation Centers,” it stated, would be “the regrowth of invention, innovation, and entrepreneurship in the American economic system.” The NSF claimed that the experiment produced dozens of new ventures with US $20 million in gross revenue, employed nearly 800 people, and yielded $4 million in tax revenue. Yet, by 1979, license returns from intellectual property had generated only $100,000. “Today, the legacies of the NSF experiment are visible on nearly every college campus.” Critics included Senator William Proxmire of Wisconsin, who pointed to the banana peelers, video games, and sports equipment pursued in the centers to lambast them as “wasteful federal spending” of “questionable benefit to the American taxpayer.” And so the impacts of the NSF’s Innovation Center experiment weren’t immediately obvious. Many faculty and administrators of that era were still apt to view such programs as frivolous, nonacademic, or not worth the investment.

a month ago 15 votes
The Data Reveals Top Patent Portfolios

Eight years is a long time in the world of patents. When we last published what we then called the Patent Power Scorecard, in 2017, it was a different technological and social landscape—Google had just filed a patent application on the transformer architecture, a momentous advance that spawned the generative AI revolution. China was just beginning to produce quality, affordable electric vehicles at scale. And the COVID pandemic wasn’t on anyone’s dance card. Eight years is also a long time in the world of magazines, where we regularly play around with formats for articles and infographics. We now have more readers online than we do in print, so our art team is leveraging advances in interactive design software to make complex datasets grokkable at a glance, whether you’re on your phone or flipping through the pages of the magazine. The scorecard’s return in this issue follows the return last month of The Data, which ran as our back page for several years; it’s curated by a different editor every month and edited by Editorial Director for Content Development Glenn Zorpette. As we set out to recast the scorecard for this decade, we sought to strike the right balance between comprehensiveness and clarity, especially on a mobile-phone screen. As our Digital Product Designer Erik Vrielink, Assistant Editor Gwendolyn Rak, and Community Manager Kohava Mendelsohn explained to me, they wanted something that would be eye-catching while avoiding information overload. The solution they arrived at—a dynamic sunburst visualization—lets readers grasp the essential takeaways at glance in print, while the digital version, allows readers to dive as deep as they want into the data. Working with sci-tech-focused data-mining company 1790 Analytics, which we partnered with on the original Patent Power Scorecard, the team prioritized three key metrics or characteristics: patent Pipeline Power (which goes beyond mere quantity to assess quality and impact), number of patents, and the country where companies are based. This last characteristic has become increasingly significant as geopolitical tensions reshape the global technology landscape. As 1790 Analytics cofounders Anthony Breitzman and Patrick Thomas note, the next few years could be particularly interesting as organizations adjust their patenting strategies in response to changing market access. Some trends leap out immediately. In consumer electronics, Apple dominates Pipeline Power despite having a patent portfolio one-third the size of Samsung’s—a testament to the Cupertino company’s focus on high-impact innovations. The aerospace sector has seen dramatic consolidation, with RTX (formerly Raytheon Technologies) now encompassing multiple subsidiaries that appear separately on our scorecard. And in the university rankings, Harvard has seized the top spot from traditional tech powerhouses like MIT and Stanford, driven by patents that are more often cited as prior art in other recent patents. And then there are the subtle shifts that become apparent only when you dig deeper into the data. The rise of SEL (Semiconductor Energy Laboratory) over TSMC (Taiwan Semiconductor Manufacturing Co.) in semiconductor design, despite having far fewer patents, suggests again that true innovation isn’t just about filing patents—it’s about creating technologies that others build upon. Looking ahead, the real test will be how these patent portfolios translate into actual products and services. Patents are promises of innovation; the scorecard helps us see what companies are making those promises and the R&D investments to realize them. As we enter an era when technological leadership increasingly determines economic and strategic power, understanding these patterns is more crucial than ever.

a month ago 7 votes

More in science

How Smell Guides Our Inner World

A better understanding of human smell is emerging as scientists interrogate its fundamental elements: the odor molecules that enter your nose and the individual neurons that translate them into perception in your brain. The post How Smell Guides Our Inner World first appeared on Quanta Magazine

2 days ago 3 votes
This 1945 TV Console Showed Two Programs at Once

As I try to write this article, my friend and I have six different screens attached to three types of devices. We’re working in the same room but on our own projects—separate yet together, a comfortable companionship. I had never really thought of the proliferation of screens as a peacekeeping tool until I stumbled across one of Allen B. DuMont’s 1950s dual-screen television sets. DuMont’s idea was to let two people in the same room watch different programs. It reminded me of my early childhood and my family’s one TV set, and the endless arguments with my sisters and parents over what to watch. Dad always won, and his choice was rarely mine. The DuMont Duoscopic Was 2 TVs in 1 Allen B. DuMont was a pioneer of commercial television in the United States. His eponymous company manufactured cathode-ray tubes and in 1938 introduced one of the earliest electronic TV sets. He understood how human nature and a shortage of TV screens could divide couples, siblings, and friends. Accordingly, he built at least two prototype TVs that could play two shows at once. In the 1945 prototype shown at top, DuMont retrofitted a maple-finished cabinet that originally held a single 15-inch Plymouth TV receiver to house two black-and-white 12-inch receivers. Separate audio could be played with or without earpieces. Viewers used a 10-turn dial to tune into TV channel 1 (which went off the air in 1948) and VHF channels 2 through 13. As radio was still much more popular than television, the dial also included FM from 88 to 108 megahertz, plus a few channels used for weather and aviation. The lower left drawer held a phonograph. It was an all-in-one entertainment center. To view their desired programs on the DuMont Duoscopic TV set, this family wore polarized glasses and listened through earpieces.Allen DuMont/National Museum of American History/Smithsonian In 1954, DuMont introduced a different approach. With the DuMont Duoscopic, two different channels were broadcast on a single screen. To the naked eye, the images appeared superimposed on one another. But a viewer who wore polarized glasses or looked at the screen through a polarized panel saw just one of the images. Duoscopic viewers could use an earpiece to listen to the audio of their choice. You could also use the TV set to watch a single program by selecting only one channel and playing the audio through one speaker. DuMont seemed committed to the idea that family members should spend time together, even if they were engaged in different activities. An image of the Duoscopic sent out by the Associated Press Wirephoto Service heralded “No more lonely nights for the missus.” According to the caption, she could join “Hubby,” who was already relaxing in his comfy armchair enjoying his favorite show, but now watch something of her own choosing. “Would you believe it?” a Duoscopic brochure asks. “While HE sees and hears the fights, SHE sees and hears her play…. Separate viewing and solo sound allows your family a choice.” The technology to separate and isolate the images and audio was key. The Duoscopic had two CRTs, each with its own feed, set at right angles to each other. A half-silvered mirror superimposed the two images onto a single screen, which could then be filtered with polarized glasses or screens. TV pioneer Allen B. DuMont designed and manufactured cathode ray tubes and TV sets and launched an early TV network.Science History Images/Alamy A separate box could be conveniently placed nearby to control the volume of each program. Users could toggle between the two programs with the flick of a switch. Each set came with eight earpieces with long cords. A short note in the March 1954 issue of Electrical Engineering praises the engineers who crafted the sound system to eliminate sound bleed from the speakers. It notes that a viewer “very easily could watch one television program and listen to the audio content of a second.” Or, as a United Press piece published in the Panama City News Herald suggested, part of the family could use the earpieces to watch and listen to the TV while others in the room could “read, play bridge, or just sit and brood.” I suspect the brooders were the children who still didn’t get to watch their favorite show. Of course, choice was a relative matter. In the 1950s, many U.S. television markets were lucky to have even two channels. Only in major metropolitan areas were there more programming options. The only known example of DuMont’s side-by-side version resides at the South Carolina State Museum, in Columbia. But sources indicate that DuMont planned to manufacture about 30 Duoscopics for demonstration purposes, although it’s unclear how many were actually made. (The Smithsonian’s National Museum of American History has a Duoscopic in its collections.) Alas, neither version ever went into mainstream production. Perhaps that’s because the economics didn’t make sense: Even in the early 1950s, it would have been easier and cheaper for families to simply purchase two television sets and watch them in different rooms. Who Was Early TV Pioneer Allen DuMont? DuMont is an interesting figure in the history of television because he was actively engaged in the full spectrum of the industry. Not only did he develop and manufacture receivers, he also conducted broadcasting experiments, published papers on transmission and reception, ran a television network, and produced programming. After graduating from Rensselaer Polytechnic Institute in 1924 with a degree in electrical engineering, DuMont worked in a plant that manufactured vacuum tubes. Four years later, he joined the De Forest Radio Co. as chief engineer. With Lee de Forest, DuMont helped design an experimental mechanical television station, but he was unconvinced by the technology and advocated for all-electric TV for its crisper image. RELATED: In 1926, TV Was Mechanical When the Radio Corporation of America acquired De Forest Radio in 1931, DuMont started his own laboratory in his basement, where he worked on improving cathode ray tubes. In 1932 he invented the “magic eye,” a vacuum tube that was a visual tuning aid in radio receivers. He sold the rights to RCA. In 1935, DuMont moved the operation to a former pickle factory in Passaic, N.J., and incorporated it as the Allen B. DuMont Laboratories. The company produced cathode ray oscilloscopes, which helped finance his experiments with television. He debuted the all-electronic DuMont 180 TV set in June 1938. It cost US $395, or almost $9,000 today—so not exactly an everyday purchase for most people. Although DuMont was quick to market, RCA and the Television Corp. of America were right on his tail. RELATED: RCA’s Lucite Phantom Teleceiver Introduced the Idea of TV Of course, if companies were going to sell televisions, consumers had to have programs to watch. So in 1939, DuMont launched his own television network, starting with station W2XWV, broadcasting from Passaic. The Federal Communications Commission licensed W2XWV as an experimental station for television research. DuMont received a commercial license and changed its call sign to WABD on 2 May 1944, three years after NBC’s and CBS’s commercial stations went into operation in New York City. Due to wartime restrictions and debates over industry standards, television remained mostly experimental during World War II. As of September 1944, there were only six stations operating—three in New York City and one each in Chicago, Los Angeles, and Philadelphia. There were approximately 7,000 TV sets in personal use. The DuMont Television Network’s variety show hosted by Jackie Gleason [left, hands raised] featured a recurring skit that later gave rise to “The Honeymooners.”Left: CBS/Getty Images; Right: Garry Winogrand/Picture Post/Hulton Archive/Getty Images While other networks focused on sports, movies, or remote broadcasts, the DuMont Television Network made its mark with live studio broadcasts. In April 1946, WABD moved its studios to the Wanamaker Department Store in Manhattan. DuMont converted the 14,200-cubic-meter (500,000-cubic-foot) auditorium into the world’s largest television studio. The network’s notable programming included “The Original Amateur Hour,” which started as a radio program; “The Johns Hopkins Science Review,” which had a surprisingly progressive take on women’s health; “Life Is Worth Living,” a devotional show hosted by Catholic Bishop Fulton Sheen (that garnered DuMont’s only Emmy Award); “Cavalcade of Stars,” a variety show hosted by Jackie Gleason that birthed “The Honeymooners”; and “Captain Video and His Video Rangers,” a children’s science fiction series, the first of its genre. My grandmother, who loved ballroom dancing, was a big fan of “The Arthur Murray Party,” a dance show hosted by Arthur’s wife, Kathryn; my mom fondly recalls Kathryn’s twirling skirts. While NBC, CBS, and the other major television players built their TV networks on their existing radio networks, DuMont was starting fresh. To raise capital for his broadcast station, he sold a half-interest in his company to Paramount Pictures in 1938. The partnership was contentious from the start. There were disputes over money, the direction of the venture, and stock. But perhaps the biggest conflict was when Paramount and some of its subsidiaries began applying for FCC licenses in the same markets as Dumont’s. This ate into the DuMont network’s advertising and revenue and its plans to expand. In August 1955, Paramount gained full control over the DuMont network and proceeded to shut it down. DuMont continued to manufacture television receivers until 1958, when he sold the business to the Emerson Radio & Phonograph Corp. Two years later, the remainder of DuMont Labs merged with the Fairchild Camera and Instrument Corp. (whose founder, Sherman Fairchild, had in 1957 helped a group of ambitious young scientists and engineers known as the “Traitorous Eight” set up Fairchild Semiconductor). Allen DuMont served as general manager of the DuMont division for a year and then became a technical consultant to Fairchild. He died in 1965. One Thing Allen DuMont Missed My family eventually got a second and then a third television, but my dad always had priority. He watched the biggest set from his recliner in the family room, while my mom made do with the smaller sets in the kitchen and bedroom. He was relaxing, while she was usually doing chores. As a family, we would watch different shows in separate places. An ad for the DuMont Duoscopic touted it as a device for household harmony: “While HE sees and hears the fights, SHE sees and hears her play.” National Museum of American History/Smithsonian These days, with so many screens on so many devices and so many programming options, we may have finally achieved DuMont’s vision of separate but together. While I was writing this piece, my friend was watching the French Open on the main TV, muted so she didn’t disturb me. She streamed the same channel on her tablet and routed the audio to her headset. We both worked on our respective laptops and procrastinated by checking messages on our phones. But there’s one aspect of human nature that DuMont’s prototypes and promotional materials failed to address—that moment when someone sees something so exciting that they just have to share it. Sarah and I were barely getting any work done in this separate-but-together setting because we kept interrupting each other with questions, comments, and the occasional tennis update. We’ve been friends too long; we can’t help but chitchat. The only way for me to actually finish this article will be to go to a room by myself with no other screens or people to distract me. Part of a continuing series looking at historical artifacts that embrace the boundless potential of technology. An abridged version of this article appears in the July 2025 print issue as “The 2-in-1 TV.” References I first learned about the Duoscopic in a short article in the March 1954 issue of Electrical Engineering, a precursor publication to Spectrum. My online research turned up several brochures and newspaper articles from the Early Television Museum, which surprisingly led me to the dual-screen DuMont at the South Carolina State Museum in my hometown of Columbia, S.C. Museum objects are primary sources, and I was fortunate to be able to visit this amazing artifact and examine it with Director of Collections Robyn Thiesbrummel. I also consulted the museum’s accession file, which gave additional information about the receiver from the time of acquisition. I took a look at Gary Newton Hess’s 1960 dissertation, An Historical Study of the Du Mont Television Network, as well as several of Allen B. DuMont’s papers published in the Proceedings of the IRE and Electrical Engineering.

2 days ago 7 votes
The end of lead

How a single taxi ride saved millions of lives

2 days ago 5 votes
Meta Said A.I. Could Help Tackle Warming. An Early Experiment Underwhelmed

Last year Meta identified 135 materials that could potentially be used to draw down carbon dioxide, work it described as "groundbreaking." But when scientists tried to reproduce the results, they found that none of the materials could perform as promised and that some did not even exist. Read more on E360 →

2 days ago 3 votes
Physicists Start To Pin Down How Stars Forge Heavy Atoms

The precursors of heavy elements might arise in the plasma underbellies of swollen stars or in smoldering stellar corpses. They definitely exist in East Lansing, Michigan. The post Physicists Start To Pin Down How Stars Forge Heavy Atoms first appeared on Quanta Magazine

3 days ago 4 votes