More from nanoscale views
The Scientia Institute at Rice sponsors series of public lectures annually, centered around a theme. The intent is to get a wide variety of perspectives spanning across the humanities, social sciences, arts, sciences, and engineering, presented in an accessible way. The youtube channel with recordings of recent talks is here. This past year, the theme was "democracy" in its broadest sense. I was honored to be invited last year to contribute a talk, which I gave this past Tuesday, following a presentation by my CS colleague Rodrigo Ferreira about whether AI has politics. Below I've embedded the video, with the start time set where I begin (27:00, so you can rewind to see Rodrigo). Which (macroscopic) states of matter to we see? The ones that "win the popular vote" of the microscopic configurations.
Many things have been happening in and around US science. This is a non-exhaustive list of recent developments and links: There have been very large scale personnel cuts across HHS, FDA, CDC, NIH - see here. This includes groups like the people who monitor lead in drinking water. There is reporting about the upcoming presidential budget requests about NASA and NOAA. The requested cuts are very deep. To quote Eric Berger's article linked above, for the science part of NASA, "Among the proposals were: A two-thirds cut to astrophysics, down to $487 million; a greater than two-thirds cut to heliophysics, down to $455 million; a greater than 50 percent cut to Earth science, down to $1.033 billion; and a 30 percent cut to Planetary science, down to $1.929 billion." The proposed cuts to NOAA are similarly deep, seeking to end climate study in the agency, as Science puts it. The full presidential budget request, including NSF, DOE, NIST, etc. is still to come. Remember, Congress in the past has often essentially ignored presidential budget requests. It is unclear if the will exists to do so now. Speaking of NSF, the graduate research fellowship program award announcements for this year came out this past week. The agency awarded slightly under half as many of these prestigious 3-year fellowships as in each of the last 15 years. I can only presume that this is because the agency is deeply concerned about its budgets for the next couple of fiscal years. Grants are being frozen at several top private universities - these include Columbia (new cancellations), the University of Pennsylvania (here), Harvard (here), Northwestern and Cornell (here), and Princeton (here). There are various law suits filed about all of these. Princeton and Harvard have been borrowing money (issuing bonds) to partly deal with the disruption as litigation continues. The president of Princeton has been more vocal than many about this. There has been a surge in visa revocations and unannounced student status changes in SEVIS for international students in the US. To say that this is unsettling is an enormous understatement. See here for a limited discussion. There seems to be deep reluctance for universities to speak out about this, presumably from the worry that saying the wrong thing will end up placing their international students and scholars at greater exposure. On Friday evening, the US Department of Energy put out a "policy flash", stating that indirect cost rates on its grants would be cut immediately to 15%. This sounds familiar. Legal challenges are undoubtedly beginning. Added bonus: According to the Washington Post, DOGE (whatever they say they are this week) is now in control of grants.gov, the website that posts funding opportunities. As the article says, "Now the responsibility of posting these grant opportunities is poised to rest with DOGE — and if its employees delay those postings or stop them altogether, 'it could effectively shut down federal-grant making,' said one federal official who spoke on the condition of anonymity to describe internal operations." None of this is good news for the future of science and engineering research in the US. If you are a US voter and you think that university-based research is important, I encourage you to contact your legislators and make your opinions heard. (As I have put in my profile, what I write here are my personal opinions; I am not in any way speaking for my employer. That should be obvious, but it never hurts to state it explicitly.)
(A post summarizing recent US science-related events will be coming later. For now, here is my promised post about multiferroics, inspired in part by a recent visit to Rice by Yoshi Tokura.) Electrons carry spins and therefore magnetic moments (that is, they can act in some ways like little bar magnets), and as I was teaching undergrads this past week, under certain conditions some of the electrons in a material can spontaneously develop long-range magnetic order. That is, rather than being, on average, randomly oriented, instead below some critical temperature the spins take on a pattern that repeats throughout the material. In the ordered state, if you know the arrangement of spins in one (magnetic) unit cell of the material, that pattern is repeated over many (perhaps all, if the system is a single domain) the unit cells. In picking out this pattern, the overall symmetry of the material is lowered compared to the non-ordered state. (There can be local moment magnets, when the electrons with the magnetic moments are localized to particular atoms; there can also be itinerant magnets, when the mobile electrons in a metal take on a net spin polarization.) The most famous kind of magnetic order is ferromagnetism, when the magnetic moments spontaneously align along a particular direction, often leading to magnetic fields projected out of the material. Magnetic materials can be metals, semiconductors, or insulators. In insulators, an additional kind of order is possible, based on electric polarization, \(\mathbf{P}\). There is subtlety about defining polarization, but for the purposes of this discussion, the question is whether the atoms within each unit cell bond appropriately and are displaced below some critical temperature to create a net electric dipole moment, leading to ferroelectricity. (Antiferroelectricity is also possible.) Again, the ordered state has lower symmetry than the non-ordered state. Ferroelectric materials have some interesting applications. BiFeO3, a multiferroic antiferromagnet, image from here. Multiferroics are materials that have simultaneous magnetic order and electric polarization order. A good recent review is here. For applications, obviously it would be convenient if both the magnetic and polarization ordering happened well above room temperature. There can be deep connections between the magnetic order and the electric polarization - see this paper, and this commentary. Because of these connections, the low energy excitations of multiferroics can be really complicated, like electromagnons. Similarly, there can be combined "spin textures" and polarization textures in such materials - see here and here. Multiferroics raise the possibility of using applied voltages (and hence electric fields) to flip \(\mathbf{P}\), and thus toggle around \(\mathbf{M}\). This has been proposed as a key enabling capability for information processing devices, as in this approach. These materials are extremely rich, and it feels like their full potential has not yet been realized.
Here are a couple of neat papers that I came across in the last week. (Planning to write something about multiferroics as well, once I have a bit of time.) The idea of directly extracting useful energy from the rotation of the earth sounds like something out of an H. G. Wells novel. At a rough estimate (and it's impressive to me that AI tools are now able to provide a convincing step-by-step calculation of this; I tried w/ gemini.google.com) the rotational kinetic energy of the earth is about \(2.6 \times 10^{29}\) J. The tricky bit is, how do you get at it? You might imagine constructing some kind of big space-based pick-up coil and getting some inductive voltage generation as the earth rotates its magnetic field past the coil. Intuitively, though, it seems like while sitting on the (rotating) earth, you should in some sense be comoving with respect to the local magnetic field, so it shouldn't be possible to do anything clever that way. It turns out, though, that Lorentz forces still apply when moving a wire through the axially symmetric parts of the earth's field. This has some conceptual contact with Faraday's dc electric generator. With the right choice of geometry and materials, it is possible to use such an approach to extract some (tiny at the moment) power. For the theory proposal, see here. For an experimental demonstration, using thermoelectric effects as a way to measure this (and confirm that the orientation of the cylindrical shell has the expected effect), see here. I need to read this more closely to decide if I really understand the nuances of how it works. On a completely different note, this paper came out on Friday. (Full disclosure: The PI is my former postdoc and the second author was one of my students.) It's an impressive technical achievement. We are used to the fact that usually macroscopic objects don't show signatures of quantum interference. Inelastic interactions of the object with its environment effectively suppress quantum interference effects on some time scale (and therefore some distance scale). Small molecules are expected to still show electronic quantum effects at room temperature, since they are tiny and their electronic levels are widely spaced, and here is a review of what this could do in electronic measurements. Quantum interference effects should also be possible in molecular vibrations at room temperature, and they could manifest themselves through the vibrational thermal conduction through single molecules, as considered theoretically here. This experimental paper does a bridge measurement to compare the thermal transport between a single-molecule-containing junction between a tip and a surface, and an empty (farther spaced) twin tip-surface geometry. They argue that they see differences between two kinds of molecules that originate from such quantum interference effects. As for more global issues about the US research climate, there will be more announcements soon about reductions in force and the forthcoming presidential budget request. (Here is an online petition regarding the plan to shutter the NIST atomic spectroscopy group.) Please pay attention to these issues, and if you're a US citizen, I urge you to contact your legislators and make your voice heard.
I saw a couple of interesting talks this morning before heading out: Alessandro Chiesa of Parma spoke about using spin-containing molecules potentially as qubits, and about chiral-induced spin selectivity (CISS) in electron transfer. Regarding the former, here is a review. Spin-containing molecules can have interesting properties as single qubits, or, for spins higher than 1/2, qudits, with unpaired electrons often confined to a transition metal or rare earth ion somewhat protected from the rest of the universe by the rest of the molecule. The result can be very long coherence times for their spins. Doing multi-qubit operations is very challenging with such building blocks, however. There are some theory proposals and attempts to couple molecular qubits to superconducting resonators, but it's tough! Regarding chiral induced spin selectivity, he discused recent work trying to use molecules where a donor region is linked to an acceptor region via a chiral bridge, and trying to manipulate spin centers this way. A question in all the CISS work is, how can the effects be large when spin-orbit coupling is generally very weak in light, organic molecules? He has a recent treatment of this, arguing that if one models the bridge as a chain of sites with large \(U/t\), where \(U\) is the on-site repulsion energy and \(t\) is the hopping contribution, then exchange processes between sites can effectively amplify the otherwise weak spin-orbit effects. I need to read and think more about this. Richard Schlitz of Konstanz gave a nice talk about some pretty recent research using a scanning tunneling microscope tip (with magnetic iron atoms on the end) to drive electron paramagnetic resonance in a single pentacene molecule (sitting on MgO on Ag, where it tends to grab an electron from the silver and host a spin). The experimental approach was initially explained here. The actual polarized tunneling current can drive the resonance, and exactly how depends on the bias conditions. At high bias, when there is strong resonant tunneling, the current exerts a damping-like torque, while at low bias, when tunneling is far off resonance, the current exerts a field-like torque. Neat stuff. Leah Weiss from Chicago gave a clear presentation about not-yet-published results (based on earlier work), doing optically detected EPR of Er-containing molecules. These condense into mm-sized molecular crystals, with the molecular environment being nice and clean, leading to very little inhomogeneous broadening of the lines. There are spin-selective transitions that can be driven using near telecom-wavelength (1.55 \(\mu m\)) light. When the (anisotropic) \(g\)-factors of the different levels are different, there are some very promising ways to do orientation-selective and spin-selective spectroscopy. Looking forward to seeing the paper on this. And that's it for me for the meeting. A couple of thoughts: I'm not sold on the combined March/April meeting. Six years ago when I was a DCMP member-at-large, the discussion was all about how the March Meeting was too big, making it hard to find and get good deals on host sites, and maybe the meeting should split. Now they've made it even bigger. Doesn't this make planning more difficult and hosting more expensive since there are fewer options? (I'm not an economist, but....) A benefit for the April meeting attendees is that grad students and postdocs get access to the career/networking events held at the MM. If you're going to do the combination, then it seems like you should have the courage of your convictions and really mingle the two, rather than keeping the March talks in the convention center and the April talks in site hotels. I understand that van der Waals/twisted materials are great laboratories for physics, and that topological states in these are exciting. Still, by my count there were 7 invited sessions broadly about this topic, and 35 invited talks on this over four days seems a bit extreme. By my count, there were eight dilution refrigerator vendors at the exhibition (Maybell, Bluefors, Ice, Oxford, Danaher/Leiden, Formfactor, Zero-Point Cryo, and Quantum Design if you count their PPMS insert). Wow. I'm sure there will be other cool results presented today and tomorrow that I am missing - feel free to mention them in the comments.
More in science
According to mathematical legend, Peter Sarnak and Noga Alon made a bet about optimal graphs in the late 1980s. They’ve now both been proved wrong. The post New Proof Settles Decades-Old Bet About Connected Networks first appeared on Quanta Magazine
This year, Bell Labs celebrates its hundredth birthday. In a centennial celebration held last week at the Murray Hill, New Jersey campus, the lab’s impressive technological history was celebrated with talks, panels, demos, and over a half dozen gracefully aging Nobel laureates. During its impressive 100 year tenure, Bell Labs scientists invented the transistor, laid down the theoretical grounding for the digital age, discovered radio astronomy which led to the first evidence in favor of the big bang theory, contributed to the invention of the laser, developed the Unix operating system, invented the charge-coupled device (CCD) camera, and many more scientific and technological contributions that have earned Bell Labs ten Noble prizes and five Turing awards. “I normally tell people, this is the ‘Bell Labs invented everything’ tour,” said Nokia Bell Labs archivist Ed Eckert as he led a tour through the lab’s history exhibit. The lab is smaller than it once was. The main campus in Murray Hill, New Jersey appears like a bit of a ghost town, with empty cubicles and offices lining the halls. Now, it’s planning a move to a smaller facility in New Brunswick, New Jersey sometime in 2027. In its heyday, Bell Labs boasted around 6,000 workers at the Murray Hill location. Although that number has now dwindled to about 1,000, more work at other locations around the world The Many Accomplishments of Bell Labs Despite its somewhat diminished size, Bell Labs, now owned by Nokia, is alive and kicking. “As Nokia Bell Labs, we have a dual mission,” says Bell Labs president Peter Vetter. “On the one hand, we need to support the longevity of the core business. That is networks, mobile networks, optical networks, the networking at large, security, device research, ASICs, optical components that support that network system. And then we also have the second part of the mission, which is help the company grow into new areas.” Some of the new areas for growth were represented in live demonstrations at the centennial. A team at Bell Labs is working on establishing the first cellular network on the moon. In February, Intuitive Machines sent their second lunar mission, Athena, with Bell Labs’ technology on board. The team fit two full cellular networks into a briefcase-sized box, the most compact networking system ever made. This cell network was self-deploying: Nobody on Earth needs to tell it what to do. The lunar lander tipped on its side upon landing and quickly went offline due to lack of solar power, Bell Labs’ networking module had enough time to power up and transmit data back to Earth. Another Bell Labs group is focused on monitoring the world’s vast network of undersea fiber-optic cables. Undersea cables are subject to interruptions, be it from adversarial sabotage, undersea weather events like earthquakes or tsunamis, or fishing nets and ship anchors. The team wants to turn these cables into a sensor network, capable of monitoring the environment around a cable for possible damage. The team has developed a real-time technique for monitoring mild changes in cable length, so sensitive that the lab-based demo was able to pick up tiny vibrations from the presenter’s speaking voice. This technique can pin changes down to a 10 kilometer interval of cable, greatly simplifying the search for affected regions. Nokia is taking the path less travelled when it comes to quantum computing, pursuing so-called topological quantum bits. These qubits, if made, would be much more robust to noise than other approaches, and are more readily amenable to scaling. However, building even a single qubit of this kind has been elusive. Nokia Bell Labs’ Robert Willett has been at it since his graduate work in 1988, and the team expect to demonstrate the first NOT gate with this architecture later this year. Beam-steering antennas for point-to-point fixed wireless are normally made on printed circuit boards. But as the world goes to higher frequencies, toward 6G, conventional printed circuit board materials are no longer cutting it—the signal loss makes them economically unviable. That’s why a team at Nokia Bell Labs has developed a way to print circuit boards on glass instead. The result is a small glass chip that has 64 integrated circuits on one side and the antenna array on the other. A 100 gigahertz link using the tech was deployed at the Paris Olympics in 2024, and a commercial product is on the roadmap for 2027. Mining, particularly autonomous mining that avoids putting humans in harm’s way, relies heavily on networking. That’s why Nokia has entered the mining business, developing smart digital twin technology that models the mine and the autonomous trucks that work on it. Their robo-truck system features two cellular modems, three Wifi cards, and twelve ethernet ports. The system collects different types of sensor data and correlates them on a virtual map of the mine (the digital twin). Then, it uses AI to suggest necessary maintenance and to optimize scheduling. The lab is also dipping into AI. One team is working on integrating large language models with robots for industrial applications. These robots have access to a digital twin model of the space they are in and have a semantic representation of certain objects in their surroundings. In a demo, a robot was verbally asked to identify missing boxes in a rack, and it successfully pointed out which box wasn’t found in its intended place, and when prompted travelled to the storage area and identified the replacement. The key is to build robots that can “reason about the physical world,” says Matthew Andrews, a researcher in the AI lab. A test system will be deployed in a warehouse in the United Arab Emirates in the next six months. Despite impressive scientific demonstrations, there was an air of apprehension about the event. In a panel discussion about the future of innovation, Princeton engineering dean Andrea Goldsmith said, “I’ve never been more worried about the innovation ecosystem in the US.” Former Google CEO Eric Schmidt said in a keynote that “The current administration seems to be trying to destroy university R&D.” Nevertheless, Schmidt and others expressed optimism about the future of innovation at Bell Labs and the US more generally. “We will win, because we are right and R&D is the foundation of economic growth,” he said.
As part of ongoing outreach efforts by Tropical Weather Analytics (TWA) to the meteorological community, TWA’s Chief Scientist, Andrew LePage, attended the National Tropical Weather Conference […]
Quantum gravity could help physicists unite the currently incompatible worlds of quantum mechanics and gravity. In this episode, Monika Schleier-Smith discusses her pioneering experimental approach, using laser-cooled atoms to explore whether gravity could emerge from quantum entanglement. The post Can Quantum Gravity Be Created in the Lab? first appeared on Quanta Magazine
What we’ve been reading: urbanism, science, tech, aesthetics and more …