Full Width [alt+shift+f] FOCUS MODE Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
44
window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-1XJMTJ5KCK'); Increased efficiency can sometimes, counterintuitively, lead to worse outcomes. This is true almost everywhere. We will name this phenomenon the strong version of [Goodhart's law](https://en.wikipedia.org/wiki/Goodhart%27s_law). As one example, more efficient centralized tracking of student progress by standardized testing seems like such a good idea that well-intentioned laws [mandate it](https://en.wikipedia.org/wiki/No_Child_Left_Behind_Act). However, testing also incentivizes schools to focus more on teaching students to test well, and less on teaching broadly useful skills. As a result, it can cause overall educational outcomes to become worse. Similar examples abound, in politics, economics, health, science, and many other fields. This same counterintuitive relationship between efficiency and outcome occurs in machine...
over a year ago

Comments

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from Jascha’s blog

Neural network training makes beautiful fractals

window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-1XJMTJ5KCK'); .md h2 { font-size: 20px; } .vimeo-player { position: relative; width: 444px; height: 444px; margin: auto; } .vimeo-player iframe { position: absolute; top: 0; left: 0; width: 100%; height: 100%; } My five year old daughter came home from kindergarten a few months ago, and told my partner and I that math was stupid (!). We have since been working (so far successfully) to make her more excited about all things math, and more proud of her math accomplishments. One success we've had is that she is now very interested in fractals in general, and in particular enjoys watching deep zoom videos into [Mandelbrot](https://youtu.be/8cgp2WNNKmQ?si=PD7W2q4qDNY9AgzD) and [Mandelbulb](https://youtu.be/BLmAV6O_ea0?si=4iyAFMgzde0mTmsq) fractal sets, and eating [romanesco broccoli](https://en.wikipedia.org/wiki/Romanesco_broccoli). My daughter's interest has made me think a lot about fractals, and about the ways in which fractals relate to a passion of mine, which is artificial neural networks. I've realized that there are similarities between the way in which many fractals are generated, and the way in which we train neural networks. Both involve repeatedly applying a function to its own output. In both cases, that function has hyperparameters that control its behavior. In both cases the repeated function application can produce outputs that either diverge to infinity or remain happily bounded depending on those hyperparameters. Fractals are often defined by the boundary between hyperparameters where function iteration diverges or remains bounded. Motivated by these similarities, I looked for fractal structure in the hyperparameter landscapes of neural network training. And I found it! The boundary between hyperparameters for which neural network training succeeds or fails has (gorgeous, organic) fractal structure. Details, and beautiful videos, below. For a more technical presentation, see the short paper [*The boundary of neural network trainability is fractal*](https://arxiv.org/abs/2402.06184). # Neural network training and hyperparameters In order to train an artificial neural network, we iteratively update its parameters to make it perform better. We often do this by performing [gradient descent](https://en.wikipedia.org/wiki/Gradient_descent) steps on a loss function. The loss function is a measure of the neural network's performance. By descending the loss by gradient descent, we find values of the parameters for which the neural network performs well. Training depends on *hyperparameters*, which specify details about how parameter update steps should be performed and how the network should be initialized. For instance, one common hyperparameter is the learning rate, which sets the magnitude of the update we make to the model’s parameters at every training step. If the learning rate is too large, then the parameter update steps are too large. This causes the parameters to diverge (grow towards infinity) during training, and as a result causes the training loss to become very bad. If the learning rate is too small, the training steps are too short, and it takes a very large number of training steps to train the neural network. Requiring a very large number of training steps makes training slow and expensive. In practice, we often want to make the learning rate as large as possible, without making it so large that the parameters diverge. # Visualizing the hyperparameter landscape We can visualize how adjusting hyperparameters (like the learning rate) affects how quickly a neural network either trains or diverges. In the following image, each pixel corresponds to training the same neural network from the same initialization on the same data -- but with *different hyperparameters*. Blue-green colors mean that training *converged* for those hyperparameters, and the network successfully trained. Red-yellow colors mean that training *diverged* for those hyperparameters. The paler the color the faster the convergence or divergence The neural network I used in this experiment is small and simple; it consists of an input layer, a $\operatorname{tanh}$ nonlinearity, and an output layer[^netdetails]. In the image, the x-coordinate changes the learning rate for the input layer’s parameters, and the y-coordinate changes the learning rate for the output layer’s parameters. ![Figure [p_ml]: **Hyperparameter landscape: A visualization of how neural network training success depends on learning rate hyperparameters.** Each pixel corresponds to a training run with the specified input and output layer learning rates. Training runs shown in blue-green converged, while training runs shown in red-yellow diverged.[^saturation] Hyperparameters leading to the best performance (lightest blue-green) are typically very close to hyperparameters for which training diverges, so the boundary region is of particular interest.](/assets/fractal/zoom_sequence_width-16_depth-2_datasetparamratio-1.0_minibatch-None_nonlinearity-tanh_phasespace-lr_vs_lr_step-0.png width="444px" border="1") The best performing hyperparameters -- those that are shown with the palest blue-green shade, and for which the neural network trains the most quickly -- are near the boundary between hyperparameters for which training converges and for which it diverges. This is a general property. The best hyperparameters for neural network training are usually very near the edge of stability. For instance, as suggested above, the best learning rate in a grid search is typically the largest learning rate for which training converges rather than diverges. # The boundary of neural network trainability is fractal Because it is where we find the best hyperparameters, the boundary between hyperparameters that lead to converging or diverging training is of particular interest to us. Let’s take a closer look at it. Play the following video (I recommend playing it full screen, and increasing the playback resolution): As we zoom into the boundary between hyperparameter configurations where training succeeds (blue) and fails (red), we find intricate structure at every scale. The boundary of neural network trainability is fractal! 🤯 (If you watched the video to the end, you saw it turn blocky in the last frames. During network training I used the $\operatorname{float64}$ numeric type, which stores numbers with around 16 decimal digits of precision. The blockiness is what happens when we zoom in so far that we need more than 16 digits of precision to tell pixels apart.) This behavior is general. We see fractals if we change the data, change the architecture, or change the hyperparameters we look at. The fractals look qualitatively different for different choices though. Network and training design decisions also have artistic consequences! ![Figure [paper]: **Neural network training produces fractals in all of the experimental configurations I tried.** The figure is taken from the [companion paper](https://arxiv.org/abs/2402.06184), and shows a region of the fractal resulting from each experimental condition. Experimental conditions changed the nonlinearity in the network, changed the dataset size, changed between minibatch and full batch training, and changed the hyperparameters we look at.](/assets/fractal/fractal_tiles_midres.png width="444px" border="1") Here are the remaining fractal zoom videos for the diverse configurations summarized in Figure [paper]. You can find code for these experiments in [this colab](https://colab.research.google.com/github/Sohl-Dickstein/fractal/blob/main/the_boundary_of_neural_network_trainability_is_fractal.ipynb)[^beware]. - **Changing the activation function to the identity function:** i.e. the network is a deep linear network, with no nonlinearity. - **Change the activation function to $\operatorname{ReLU}$:** This is a neat fractal, since the piecewise linear structure of the $\operatorname{ReLU}$ is visually apparent in the straight lines dividing regions of the fractal. - **Train with a dataset size of 1:** i.e. only train on a single datapoint. Other experiments have a number of training datapoints which is the same as the free parameter count of the model. - **Train with a minibatch size of 16:** Other experiments use full batch training. - **Look at different hyperparameters:** I add a hyperparameter which sets the mean value of the neural network weights at initialization. I visualize training success in terms of this weight initialization hyperparameter (*x-axis*) and a single learning rate hyperparameter (*y-axis*). Other experiments visualize training success in terms of learning rate hyperparameters for each layer. This fractal is **extra pretty** -- I like how it goes through cycles where what seems like noise is resolved to be structure at a higher resolution. # This isn’t so strange after all Now that I’ve shown you something surprising and beautiful, let me tell you why we should have expected it all along. In an academic paper I would put this section first, and tell the story as if I knew fractals would be there -- but of course I didn't know what I would find until I ran the experiment! ## Fractals result from repeated iteration of a function One common way to make a fractal is to iterate a function repeatedly, and identify boundaries where the behavior of the iterated function changes. We can refer to these boundaries as bifurcation boundaries of the iterated function; the dynamics bifurcate at this boundary, in that function iteration leads to dramatically different sequences on either side of the boundary. For instance, to generate the Mandelbrot set, we iterate the function $f( z; c ) = z^2 + c$ over and over again. The Mandelbrot fractal is the bifurcation boundary between the values of $c$ in the complex plane for which this iterated function diverges, and for which it remains bounded. The parameter $c$ is a (hyper)parameter of the function $f( z; c )$, similarly to how learning rates are hyperparameters for neural network training. ![Figure [mandelbrot fractal]: **The Mandelbrot fractal is generated by iterating a simple function, similar to the way in which update steps are iterated when training a neural network.** The image is color coded by whether iterations started at a point diverge (red-yellow colors) or remain bounded (blue-green colors). The boundary between the diverging and bounded regions is fractal. This image was generated by [this colab](https://colab.research.google.com/github/Sohl-Dickstein/fractal/blob/main/the_boundary_of_neural_network_trainability_is_fractal.ipynb).](/assets/fractal/mandelbrot_midres.png width="444px" border="1") Other examples of fractals which are formed by bifurcation boundaries include [magnet fractals](https://paulbourke.net/fractals/magnet/), [Lyapunov fractals](https://en.wikipedia.org/wiki/Lyapunov_fractal), the [quadratic Julia set](https://mathworld.wolfram.com/JuliaSet.html), and the [Burning Ship fractal](Burning Ship fractal). ## Fractals can result from optimization One particularly relevant class of bifurcation fractals are [Newton fractals](https://en.wikipedia.org/wiki/Newton_fractal). These are generated by iterating Newton's method to find the roots of a polynomial. [Newton's method is an optimization algorithm](https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization). Newton fractals are thus a proof of principle that fractals can result from iterating steps of an optimization algorithm. ![Figure [newton fractal]: **Newton fractals, like the one shown, are formed by iterating Newton's method to find roots of a polynomial, and color coding initial conditions by the specific root the iterates converge to.** Newton fractals are a proof of principle that optimization can generate a fractal, since Newton's method is an optimization procedure. They motivate the idea of fractal behavior resulting from training (i.e. optimizing) a neural network.](/assets/fractal/Julia_set_for_the_rational_function.png width="444px" border="1") ## Artificial neural networks are trained by repeatedly iterating a function When we train a neural network by iterating steps of gradient descent, we are iterating a fixed function, the same as for Mandelbrot, Newton, and other fractals. Like for Newton fractals, this fixed function corresponds to an optimization algorithm. Specifically, when we train a neural network using steepest gradient descent with a constant learning rate, we iterate the fixed function $f(\theta; \eta ) = \theta( \eta ) - \eta\, g( \theta )$. Here $\eta$ is the learning rate hyperparameter, $\theta$ are the parameters of the neural network, and $g( \theta )$ is the gradient of the loss function. There are many differences between neural network training and traditional fractal generation. The fractals I just discussed all involve iterating a function of a single (complex valued) number. The equation defining the iterated function is short and simple, and takes less than a line of text to write down. On the other hand, neural network training iterates a function for all the parameters in the neural network. Some neural networks have trillions of parameters, which means the input and output of the iterated function is described with *trillions* of numbers, one for each parameter. The equation for a neural network training update is similarly far more complex than the function which is iterated for traditional fractals; it would require many lines, or possibly many pages, to write down the parameter update equations for a large neural network. Nonetheless, training a neural network can be seen as a scaled up version of the type of iterative process that generates traditional fractals. We should not be surprised that it produces fractals in a similar way to simpler iterative processes.[^symmetry] # Closing thoughts ## Meta-learning is hard Meta-learning is a research area that I believe will transform AI over the next several years. In meta-learning we *learn* aspects of AI pipelines which are traditionally hand designed. For instance, we might meta-train functions to initialize, [optimize](https://github.com/google/learned_optimization/tree/main/learned_optimization/research/general_lopt), or regularize neural networks. If deep learning has taught us one thing, it's that with enough compute and data, trained neural networks can outperform and replace hand-designed heuristics; in meta-learning, we apply the same lesson to replace the hand-designed heuristics we use to train the neural networks themselves. Meta-learning is the reason I became interested in hyperparameter landscapes. The fractal hyperparameter landscapes we saw above help us understand some of the challenges we face in meta-learning. The process of meta-training usually involves optimizing hyperparameters (or meta-parameters) by gradient descent. The loss function we perform meta-gradient-descent on is called the meta-loss. The fractal landscapes we have been visualizing are also meta-loss landscapes; we are visualizing how well training succeeds (or fails) as we change hyperparameters. In practice, we often find the meta-loss atrocious to work with. It is often *chaotic* in the hyperparameters, which makes it [very difficult to descend](https://arxiv.org/abs/1810.10180)[^meta-descent]. Our results suggest a more nuanced and also more general perspective; meta-loss landscapes are chaotic because they are fractal. At every length scale, small changes in the hyperparameters can lead to large changes in training dynamics. ![Figure [meta landscape]: **Chaotic meta-loss landscapes make meta-learning challenging.** The image shows an example meta-loss landscape for a learned optimizer, with darker colors corresponding to better meta-loss. The two axes correspond to two of the meta-parameters of the learned optimizer (similar to the visualization in Figure [p_ml], where axes correspond to two hyperparameters). See [this paper](https://arxiv.org/abs/1810.10180) for details. This meta-loss landscape is difficult to meta-train on, since steepest gradient descent will become stuck in valleys or local minima, and because the gradients of the rapidly changing meta-loss function are exceptionally high variance.](/assets/fractal/meta-loss-landscape.png width="444px" border="1") ## Fractals are beautiful and relaxing Recent AI projects I have collaborated on have felt freighted with historical significance. We are building tools that will change people's lives, and maybe bend the arc of history, for both [better and worse](/2023/09/10/diversity-ai-risk.html). This is incredibly exciting! But it is often also stressful. This project on the other hand ... was just fun. I started the project because my daughter thought fractals were mesmerizing, and I think the final results are gorgeous. I hope you enjoy it in the same spirit! ----- # Acknowledgements Thank you to Maika Mars Miyakawa Sohl-Dickstein for inspiring the original idea, and for detailed feedback on the generated fractals. Thank you to Asako Miyakawa for providing feedback on a draft of this post. In more detail, the baseline neural network architecture, design, and training configuration is as follows: - Two layer fully connected neural network, with 16 units in the input and hidden layers, and with no bias parameters. The only parameters are the input layer weight matrix, and the output layer weight matrix. - $\operatorname{tanh}$ nonlinearity in the single hidden layer - Mean square error loss - Fixed random training dataset, with number of datapoints the same as the number of free parameters in the network - Full batch steepest descent training, with a constant learning rate - **A different learning rate for each layer.** That is rather than training the input and output layer weight matrices with the same learning rate, each weight matrix has its own learning rate hyperparameter. All experiments change one aspect of this configuration, except for the baseline experiment, which follows this configuration without change. If you want even more detail, see the [arXiv note](https://arxiv.org/abs/2402.06184) or the [colab notebook I used for all experiments](https://colab.research.google.com/github/Sohl-Dickstein/fractal/blob/main/the_boundary_of_neural_network_trainability_is_fractal.ipynb). [^saturation]: The discerning reader may have noticed that training diverges when the output learning rate is made large, but that if the input learning rate is made large, performance worsens but nothing diverges. This is due to the $\operatorname{tanh}$ nonlinearity saturating. When the input learning rate is large, the input weights become large, the hidden layer pre-activations become large, and the $\operatorname{tanh}$ units saturate (their outputs grow very close to either -1 or 1). The output layer can still train on the (essentially frozen) $[-1, 1]$ activations from the first layer, and so some learning can still occur. [^beware]: Like the fractals, the research code in the colab has vibes of layered organic complexity ... user beware! [^symmetry]: Many fractals are generated by iterating simple functions, such as low order polynomials, or ratios of low order polynomials. Iterating these simple functions often generates simple symmetries, that are visually obvious when looking at the resulting fractals. The fractals resulting from neural networks are more organic, with fewer visually obvious symmetries. This is likely due to the higher complexity of the iterated functions themselves, as well as the many random parameters in the function definitions, stemming from the random initialization of the neural network and random training data. [^meta-descent]: My collaborators and I have done more research into how to optimize a chaotic meta-loss. Especially see the papers: [*Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies*](https://icml.cc/virtual/2021/poster/10175), and [*Variance-Reduced Gradient Estimation via Noise-Reuse in Online Evolution Strategies*](https://openreview.net/forum?id=VhbV56AJNt). body{visibility:hidden;white-space:pre;font-family:monospace} window.markdeepOptions = {mode: 'html', tocStyle: 'medium'}; window.alreadyProcessedMarkdeep||(document.body.style.visibility="visible")

a year ago 47 votes
Brain dump on the diversity of AI risk

window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-1XJMTJ5KCK'); .md h2 { font-size: 20px; } AI has the power to change the world in both wonderful and terrible ways. We should try to make the wonderful outcomes more likely than the terrible ones. Towards that end, here is a brain dump of my thoughts about how AI might go wrong, in rough outline form. I am not the first person to have any of these thoughts, but collecting and structuring these risks was useful for me. Hopefully reading them will be useful for you. My top fears include targeted manipulation of humans, autonomous weapons, massive job loss, AI-enabled surveillance and subjugation, widespread failure of societal mechanisms, extreme concentration of power, and loss of human control. I want to emphasize -- I expect AI to lead to far more good than harm, but part of achieving that is thinking carefully about risk. # Warmup: Future AI capabilities and evaluating risk 1. Over the last several years, AI has developed remarkable new capabilities. These include [writing software](https://github.com/features/copilot), [writing essays](https://www.nytimes.com/2023/08/24/technology/how-schools-can-survive-and-maybe-even-thrive-with-ai-this-fall.html), [passing the bar exam](https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4389233), [generating realistic images](https://imagen.research.google/), [predicting how proteins will fold](https://www.deepmind.com/research/highlighted-research/alphafold), and [drawing unicorns in TikZ](https://arxiv.org/abs/2303.12712). (The last one is only slightly tongue in cheek. Controlling 2d images after being trained only on text is impressive.) 1. AI will continue to develop remarkable new capabilities. * Humans aren't irreplicable. There is no fundamental barrier to creating machines that can accomplish anything a group of humans can accomplish (excluding tasks that rely in their definition on being performed by a human). * For intellectual work, AI will become cheaper and faster than humans * For physical work, we are likely to see a sudden transition, from expensive robots that do narrow things in very specific situations, to cheap robots that can be repurposed to do many things. * The more capable and adaptable the software controlling a robot is, the cheaper, less reliable, and less well calibrated the sensors, actuators, and body need to be. * Scaling laws teach us that AI models can be improved by scaling up training data. I expect a virtuous cycle where somewhat general robots become capable enough to be widely deployed, enabling collection of much larger-scale diverse robotics data, leading to more capable robots. * The timeline for broadly human-level capabilities is hard to [predict](https://bounded-regret.ghost.io/scoring-ml-forecasts-for-2023/). My guess is more than 4 years and less than 40. * AI will do things that no human can do. * Operate faster than humans. * Repeat the same complex operation many times in a consistent and reliable way. * Tap into broader capabilities than any single human can tap into. e.g. the same model can [pass a medical exam](https://arxiv.org/abs/2303.13375), answer questions about [physics](https://benathi.github.io/blogs/2023-03/gpt4-physics-olympiad/) and [cosmology](https://www.linkedin.com/pulse/asking-gpt-4-cosmology-gabriel-altay/), [perform mathematical reasoning](https://blog.research.google/2022/06/minerva-solving-quantitative-reasoning.html?m=1), read [every human language](https://www.reddit.com/r/OpenAI/comments/13hvqfr/native_bilinguals_is_gpt4_equally_as_impressive/) ... and make unexpected connections between these fields. * Go deeper in a narrow area of expertise than a human could. e.g. an AI can read every email and calendar event you've ever received, web page you've looked at, and book you've read, and remind you of past context whenever anything -- person, topic, place -- comes up that's related to your past experience. Even the most dedicated personal human assistant would be unable to achieve the same degree of familiarity. * Share knowledge or capabilities directly, without going through a slow and costly teaching process. If an AI model gains a skill, that skill can be shared by copying the model's parameters. Humans are unable to gain new skills by copying patterns of neural connectivity from each other. 1. AI capabilities will have profound effects on the world. * Those effects have the possibility of being wonderful, terrible, or (most likely) some complicated mixture of the two. * There is not going to be just one consequence from advanced AI. AI will produce lots of different profound side effects, **all at once**. The fears below should not be considered as competing scenarios. You should rather imagine the chaos that will occur when variants of many of the below fears materialize simultaneously. (see the concept of [polycrisis](https://www.weforum.org/agenda/2023/03/polycrisis-adam-tooze-historian-explains/)) 1. When deciding what AI risks to focus on, we should evaluate: * **probability:** How likely are the events that lead to this risk? * **severity:** If this risk occurs, how large is the resulting harm? (Different people will assign different severities based on different value systems. This is OK. I expect better outcomes if different groups focus on different types of risk.) * **cascading consequences:** Near-future AI risks could lead to the disruption of the social and institutional structures that enable us to take concerted rational action. If this risk occurs, how will it impact our ability to handle later AI risks? * **comparative advantage:** What skills or resources do I have that give me unusual leverage to understand or mitigate this particular risk? 1. We should take *social disruption* seriously as a negative outcome. This can be far worse than partisans having unhinged arguments in the media. If the mechanisms of society are truly disrupted, we should expect outcomes like violent crime, kidnapping, fascism, war, rampant addiction, and unreliable access to essentials like food, electricity, communication, and firefighters. 1. Mitigating most AI-related risks involves tackling a complex mess of overlapping social, commercial, economic, religious, political, geopolitical, and technical challenges. I come from an ML science + engineering background, and I am going to focus on suggesting mitigations in the areas where I have expertise. *We desperately need people with diverse interdisciplinary backgrounds working on non-technical mitigations for AI risk.* # Specific risks and harms stemming from AI 1. The capabilities and limitations of present day AI are already causing or exacerbating harms. * Harms include: generating socially biased results; generating (or failing to recognize) toxic content; generating bullshit and lies (current large language models are poorly grounded in the truth even when used and created with the best intents); causing addiction and radicalization (through gamification and addictive recommender systems). * These AI behaviors are already damaging lives. e.g. see the use of racially biased ML to [recommend criminal sentencing](https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing) * I am not going to focus on this class of risk, despite its importance. These risks are already a topic of research and concern, though more resources are needed. I am going to focus on future risks, where less work is (mostly) being done towards mitigations. 1. AI will do most jobs that are currently done by humans. * This is likely to lead to massive unemployment. * This is likely to lead to massive social disruption. * I'm unsure in what order jobs will be supplanted. The tasks that are hard or easy for an AI are different than the tasks that are hard or easy for a person. We have terrible intuition for this difference. * Five years ago I would have guessed that generating commissioned art from a description would be one of the last, rather than one of the first, human tasks to be automated. * Most human jobs involve a diversity of skills. We should expect many jobs to [transform as parts of them are automated, before they disappear](https://www.journals.uchicago.edu/doi/full/10.1086/718327). * Most of the mitigations for job loss are social and political. * [Universal basic income](https://en.wikipedia.org/wiki/Universal_basic_income). * Technical mitigations: * Favor research and product directions that seem likely to be more complementary and enabling, and less competitive, with human job roles. Almost everything will have a little of both characters ... but the balance between enabling vs. competing with humans is a question we should be explicitly thinking about when we choose projects. 1. AI will enable extremely effective targeted manipulation of humans. * Twitter/X currently uses *primitive* machine learning models, and chooses a sequence of *pre-existing* posts to show me. This is enough to make me spend hours slowly scrolling a screen with my finger, receiving little value in return. * Future AI will be able to dynamically generate the text, audio, and video stimuli which is predicted to be most compelling to me personally, based upon the record of my past online interactions. * Stimuli may be designed to: * cause addictive behavior, such as compulsive app use * promote a political agenda * promote a religious agenda * promote a commercial agenda -- advertising superstimuli * Thought experiments * Have you ever met someone, and had an instant butterfly-in-the-stomach can't-quite-breathe feeling of attraction? Imagine if every time you load a website, there is someone who makes specifically you feel that way, telling you to drink coca-cola. * Have you ever found yourself obsessively playing an online game, or obsessively scrolling a social network or news source? Imagine if the intermittent rewards were generated based upon a model of your mental state, to be as addictive as possible to your specific brain at that specific moment in time. * Have you ever crafted an opinion to try to please your peers? Imagine that same dynamic, but where the peer feedback is artificial and chosen by an advertiser. * Have you ever listened to music, or looked at art, or read a passage of text, and felt like it was created just for you, and touched something deep in your identity? Imagine if every political ad made you feel that way. * I believe the social effects of this will be much, much more powerful and qualitatively different than current online manipulation. (*"[More is different](https://www.jstor.org/stable/pdf/1734697.pdf?casa_token=GDThS0md5IsAAAAA:cnx_fNDcb477G6-zU5qu0qC1tbKmgAhnIj_QecjFNwwYi3pge7vEWiaxIm4mAJqsatKbKnyMu-6ettZAtUDxysDPeFzAM736jpKJq-alTnjB4kCBAFrX3g)"*, or *"quantity has a quality all its own"*, depending on whether you prefer to quote P.W. Anderson or Stalin) * If our opinions and behavior are controlled by whomever pipes stimuli to us, then it breaks many of the basic mechanisms of democracy. Objective truth and grounding in reality will be increasingly irrelevant to societal decisions. * If the addictive potential of generated media is similar to or greater than that of hard drugs ... there are going to be a lot of addicts. * Class divides will grow worse, between people that are privileged enough to protect themselves from manipulative content, and those that are not. * Feelings of emotional connection or beauty may become vacuous, as they are mass produced. (see [parasocial relationships](https://en.wikipedia.org/wiki/Parasocial_interaction) for a less targeted present day example) * non-technical mitigations: * Advocate for laws that restrict stimuli and interaction dynamics which produce anomalous effects on human behavior. * Forbid apps on the Google or Apple storefront that produce anomalous effects on human behavior. (this will include forbidding extremely addictive apps -- so may be difficult to achieve given incentives) * Technical mitigations: * Develop tools to identify stimuli which will produce anomalous effects on human behavior, or anomalous affective response. * Protective filter: Develop models that rewrite stimuli (text or images or other modalities) to contain the same denoted information, but without the associated manipulative subtext. That is, rewrite stimuli to contain the parts you want to experience, but remove aspects which would make you behave in a strange way. * Study the ways in which human behavior and/or perception can be manipulated by optimizing stimuli, to better understand the problem. * I have done some work -- in a collaboration led by Gamaleldin Elsayed -- where we showed that adversarial attacks which cause image models to make incorrect predictions also bias the perception of human beings, even when the attacks are nearly imperceptible. See the Nature Communications paper [*Subtle adversarial image manipulations influence both human and machine perception*](https://www.nature.com/articles/s41467-023-40499-0). * Research scaling laws between model size, training compute, training data from an individual and from a population, and ability to influence a human. 1. AI will enable new weapons and new types of violence. * Autonomous weapons, i.e. weapons that can fight on their own, without requiring human controllers on the battlefield. * Autonomous weapons are difficult to attribute to a responsible group. No one can prove whose drones committed an assassination or an invasion. We should expect increases in deniable anonymous violence. * Removal of social cost of war -- if you invade a country with robots, none of your citizens die, and none of them see atrocities. Domestic politics may become more accepting of war. * Development of new weapons * e.g. new biological, chemical, cyber, or robotic weapons * AI will enable these weapons to be made more capable + deadly than if they were created solely by humans. * AI may lower the barriers to access, so smaller + less resourced groups can make them. * Technical mitigations: * Be extremely cautious of doing research which is dual use. Think carefully about potential violent or harmful applications of a capability, during the research process. * When training and releasing models, include safeguards to prevent them being used for violent purposes. e.g. large language models should refuse to provide instructions for building weapons. Protein/DNA/chemical design models should refuse to design molecules which match characteristics of bio-weapons. This should be integrated as much as possible into the entire training process, rather than tacked on via fine-tuning. 1. AI will enable qualitatively new kinds of surveillance and social control. * AI will have the ability to simultaneously monitor all electronic communications (email, chat, web browsing, ...), cameras, and microphones in a society. It will be able to use that data to build a personalized model of the likely motivations, beliefs, and actions of every single person. Actionable intelligence on this scale, and with this degree of personalization, is different from anything previously possible. * This domestic surveillance data will be useful and extremely tempting even in societies which aren't currently authoritarian. e.g. detailed surveillance data could be used to prevent crime, stop domestic abuse, watch for the sale of illegal drugs, or track health crises. * Once a society starts using this class of technology, it will be difficult to seek political change. Organized movements will be transparent to whoever controls the surveillance technology. Behavior that is considered undesirable will be easily policed. * This class of data can be used for commercial as well as political ends. The products that are offered to you may become hyper-specialized. The jobs that are offered to you may become hyper-specific and narrowly scoped. This may have negative effects on social mobility, and on personal growth and exploration. * Political mitigations: * Offer jobs in the US to all the AI researchers in oppressive regimes!! We currently make it hard for world class talent from countries with which we have a bad relationship to immigrate. We should instead be making it easy for the talent to defect. * Technical mitigations: * Don't design the technologies that are obviously best suited for a panopticon. * Can we design behavioral patterns that are adversarial examples, and will mislead surveillance technology? * Can we use techniques e.g. from differential privacy to technically limit the types of information available in aggregated surveillance data? 1. AI will catalyze failure of societal mechanisms through increased efficiency. I wrote a [blog post on this class of risk](https://sohl-dickstein.github.io/2022/11/06/strong-Goodhart.html). * Many, many parts of our society rely on people and organizations pursuing proxy goals that are aligned with true goals that are good for society. * For instance, in American democracy presidential candidates pursue the proxy goal of getting the majority of electoral votes. Our democracy's healthy functioning relies on that proxy goal being aligned with an actual goal of putting people in power who act in the best interest of the populace. * When we get very efficient at pursuing a proxy goal, we *overfit* to the proxy goal, and this often makes the true goal grow *much worse*. * For instance, in American democracy we begin selecting narrowly for candidates that are best at achieving 270 electoral votes. Focusing on this leads to candidates lying, sabotaging beneficial policies of competitors, and degrading the mechanics of the electoral system. * AI is a tool that can make almost anything much more efficient. When it makes pursuit of a proxy goal more efficient, it will often make the true goal get worse. * AI is going to make pursuit of many, many proxy goals more efficient, *all at once*. We should expect all kinds of unexpected parts of society, which rely on inefficient pursuit of proxy goals, to break, *all at once*. * This is likely to lead to societal disruption, in unexpected ways. * Technical mitigations: * Study the mechanisms behind overfitting, and generalize our understanding of overfitting beyond optimization of machine learning models. * Find mitigations for overfitting that apply to social systems. (see [blog post](https://sohl-dickstein.github.io/2022/11/06/strong-Goodhart.html) again) 1. AI will lead to concentration of power. * AI will create massive wealth, and may provide almost unimaginable (god-like?) power to manipulate the world. * If the most advanced AI is controlled by a small group, then the personal quirks, selfish interests, and internal politics of that small group may have massive (existential?) impact on the rest of the world. * Examples of small groups include the leadership of OpenAI, Anthropic, Alphabet, or China. * This is likely to be a strongly negative outcome for everyone not in the controlling group. *"Power tends to corrupt and absolute power corrupts absolutely."* * Even if AI is available to a larger group, there may be dramatic disparities in access and control. These will lead to dramatic disparities in wealth and quality of life between AI haves and have-nots. * Technical mitigations: * Release AI models as open source. But this comes with its own set of misuse risks that need to be balanced against the benefits! I have no idea if this is a good idea in general. * Improve AI efficiency, both at inference and training, so that there aren't cost barriers to providing AI tools to the entire world. As in the last point though, AI that is too cheap to meter and widely distributed will increase many other AI risks. It's unclear what the right balance is. * As a researcher, try to work for the most responsible organizations. Try also to work for organizations that will diversify the set of *responsible* players, so that there isn't just one winner of the AI race. As with open source though, diversifying the set of organizations with cutting edge AI introduces its own risks! 1. AI will create a slippery slope, where humans lose control of our society. * AI will become better and more efficient at decision making than humans. We will outsource more and more critical tasks that are currently performed by humans. e.g.: * corporations run and staffed by AIs * government agencies run and staffed by AIs * AIs negotiating international trade agreements and regulation with other AIs * AIs identifying crimes, providing evidence of guilt, recommending sentencing * AIs identifying the most important problems to spend research and engineering effort on * AIs selecting the political candidates most likely to win elections, and advising those candidates on what to say and do * As a result, less and less decision making will be driven by human input. Humans will eventually end up as passive passengers in a global society driven by AIs. * It’s not clear whether this is a dystopia. In many ways, it could be good for humanity! But I like our agency in the world, and would find this an unfortunate outcome. * If society moves in a bad or weird direction, humans will find themselves disempowered to do anything about it. * Legal mitigations: * Require that humans be an active part of the decision making loop for a broad array of tasks. These are likely to feel like silly jobs though, and may also put the jurisdiction that requires them at an economic disadvantage. * Technical mitigations: * Value alignment! If AIs are going to be making all of our decisions for us, we want to make sure they are doing so in a way that aligns with our ethics and welfare. It will be important to make this alignment to societal values, rather than individual values. (take home assignment: write out a list of universally accepted societal values we should align our AI to.) * Augment humans. Find ways to make humans more effective or smarter, so that we remain relevant agents. 1. AI will cause disaster by superhuman pursuit of an objective that is misaligned with human values * This category involves an AI becoming far more intelligent than humans, and pursuing some goal that is misaligned with human intention ... leading to the superintelligent AI doing things like destroying the Earth or enslaving all humans as an [instrumental sub-goal](https://en.wikipedia.org/wiki/Instrumental_convergence) to achieve its misaligned goal. * This is a popular and actively researched AI risk in technical circles. I think its popularity is because it's the unique AI risk which seems solvable just by thinking hard about the problem and doing good research. All the other problems are at least as much social and political as technical. * I think the probability of this class of risk is low. But, the severity is potentialy high. It is worth thinking about and taking seriously. * I have a blog post arguing for a [hot mess theory of AI misalignment](https://sohl-dickstein.github.io/2023/03/09/coherence.html) -- as AIs become smarter, I believe they will become less coherent in their behavior (ie, more of a hot mess), rather than engage in monomanical pursuit of a slightly incorrect objective. That is, I believe we should be more worried about the kind of alignment failure where AIs simply behave in unpredictable ways that don't pursue any consistent objective. 1. AI will lead to unexpected harms. * The actual way in which the future plays out will be different from anyone's specific predictions. AI is a transformative and disruptive, but still *unpredictable*, technology. Many of the foundational capabilities and behaviors AI systems will exhibit are still unclear. It is also unclear how those capabilities and behaviors will interact with society. * Depending on the types of AI we build, and the ethics we choose, we may decide that AI has moral standing. If this happens, we will need to consider harm done to, as well as enabled by, AI. The types of harms an AI might experience are difficult to predict, since they will be unlike harms experienced by humans. (I don't believe near-future AI systems will have significant moral standing.) * Some of the greatest risks are likely to be things we haven't even thought of yet. We should prioritize identifying new risks. # Parting thoughts 1. If AI produces profound social effects, AI developers may be blamed. * This could lead to attacks on AI scientists and engineers, and other elites. This is especially likely if the current rule of law is one of the things disrupted by AI. (The Chinese cultural revolution and the Khmer Rouge regime are examples of cultural disruption that was not good for intellectual elites.) * It is in our own direct, as well as enlightened, self-interest to make the consequences of our technology as positive as possible. 1. Mitigating existential risks requires solving intermediate risks. * Many non-existential, intermediate time-scale, risks would damage our society's ability to act in the concerted thoughtful way required to solve later risks. * If you think existential risks like extinction or permanent dystopia are overriding, it is important to also work to solve earlier risks. If we don't solve the earlier risks, we won't achieve the level of cooperation required to solve the big ones. 1. It is important that we ground our risk assessments in experiment and theory. * Thinking carefully about the future is a valuable exercise, but is not enough on its own. Fields which are not grounded in experiments or formal validation [make silently incorrect conclusions](https://sohl-dickstein.github.io/2023/03/09/coherence.html#endnote-compneuro). * Right now, we are almost certainly making many silently incorrect conclusions about the shape of AI risk, because we base most of our AI risk scenarios on elaborate verbal arguments, without experimental validation. It is dangerous for us to be silently wrong about AI risks. * As we work to mitigate AI risk, we must try hard to validate the risks themselves. It is difficult -- but possible! -- to validate risks posed by technology that doesn't exist yet. We must work to find aspects of risk scenarios we can measure now or formally prove. 1. We have a lot of leverage, and we should use it to make the future we want. * AI will bend the arc of history, and we are early in the process of creating it. Small interventions at the beginning of something huge have enormous consequences. We can make small choices now that will make the future much better, or much worse. * AI has the potential to unlock astounding wealth, and do awesome (in the original sense of the word) good in the world. It can provide a personal tutor for every student, eliminate traffic accidents, solve cancer, solve aging, provide enough excess resources to easily feed the 700+ million people who live in hunger, make work an optional recreational activity, propel us to the planets and the stars, and more. * Building AI is also the most fascinating scientific endeavor of my lifetime. * We have a unique opportunity to build the future we want to live in. Thinking about how to avoid bad outcomes, and achieve good outcomes, is a necessary step in building it. # Acknowledgements Thank you to Asako Miyakawa, Meredith Ringel Morris, Noah Fiedel, Fernando Diaz, Rif, Sebastian Farquhar, Peter Liu, Dave Orr, Lauren Wilcox, Simon Kornblith, Gamaleldin Elsayed, and Toby Shevlane for valuable feedback on ideas in this post! body{visibility:hidden;white-space:pre;font-family:monospace} window.markdeepOptions = {mode: 'html', tocStyle: 'medium'}; window.alreadyProcessedMarkdeep||(document.body.style.visibility="visible")

a year ago 40 votes
The hot mess theory of AI misalignment: More intelligent agents behave less coherently

window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-1XJMTJ5KCK'); .md h2 { font-size: 20px; } Many machine learning researchers worry about risks from building artificial intelligence (AI). This includes me -- I think AI has the potential to change the world in both wonderful and terrible ways, and we will need to work hard to get to the wonderful outcomes. Part of that hard work involves doing our best to experimentally ground and scientifically evaluate potential risks. One popular AI risk centers on [AGI misalignment](https://en.wikipedia.org/wiki/AI_alignment). It posits that we will build a superintelligent, super-capable, AI, but that the AI's objectives will be misspecified and misaligned with human values. If the AI is powerful enough, and pursues its objectives inflexibly enough, then even a subtle misalignment might pose an existential risk to humanity. For instance, if an AI is tasked by the owner of a paperclip company to [maximize paperclip production](https://www.decisionproblem.com/paperclips/), and it is powerful enough, it will decide that the path to maximum paperclips involves overthrowing human governments, and paving the Earth in robotic paperclip factories. There is an assumption behind this misalignment fear, which is that a superintelligent AI will also be *supercoherent* in its behavior[^katjagrace]. An AI could be misaligned because it narrowly pursues the wrong goal (supercoherence). An AI could also be misaligned because it acts in ways that don't pursue any consistent goal (incoherence). Humans -- apparently the smartest creatures on the planet -- are often incoherent. We are a hot mess of inconsistent, self-undermining, irrational behavior, with objectives that change over time. Most work on AGI misalignment risk assumes that, unlike us, smart AI will not be a hot mess. In this post, I **experimentally** probe the relationship between intelligence and coherence in animals, people, human organizations, and machine learning models. The results suggest that as entities become smarter, they tend to become less, rather than more, coherent. This suggests that superhuman pursuit of a misaligned goal is not a likely outcome of creating AGI. # The common narrative of existential risk from misaligned AGI There is a [well-socialized](https://www.lesswrong.com/) argument that AI research poses a specific type of existential risk to humanity, due to the danger we will accidentally create a misaligned superintelligence. A sketch of the argument goes: 1. As we scale and otherwise improve our AI models, we will build machines which are as intelligent as the smartest humans. 2. As we continue to improve our AI models beyond that point (or as models improve themselves) we will produce machines that are [superintelligent]() -- i.e. much more intelligent[^faster] than any human or human institution. 3. Superintelligent machines will be super-effective at achieving whatever goal they are programmed or trained to pursue. 4. If this goal is even slightly misaligned with human values, the outcome will be disastrous -- the machine will take actions like overthrowing human civilization, or converting all of the atoms in the visible universe into a giant computer. It will take these extreme actions because if you are powerful enough, these become useful intermediate steps in many plans[^instrumental]. For instance, if you first enslave humanity, you can then use humanity's resources to pursue whatever goal you actually care about. (See my post on [the strong version of Goodhart's law](/2022/11/06/strong-Goodhart.html) for discussion of why strongly optimizing slightly misaligned goals can lead to disaster.) ## My take on misalignment as an existential risk I am *extremely glad* people are worrying about and trying to prevent negative consequences from AI. I think work on AI alignment will bear fruit even in the near term, as we struggle to make AI reliable. I also think predicting the future is hard, and predicting aspects of the future which involve multiple uncertain steps is almost impossible. An accidentally misaligned superintelligence which poses an existential risk to humanity seems about as likely as any other specific hypothesis for the future which relies on a dependency chain of untested assumptions. The scenario seems to have a popularity[^misalignmentunique] out of proportion to its plausibility[^plausiblerisks], and I think it's unlikely to be the way in which the future actually unfolds. I do think it is built out of individually plausible ideas, and is worth taking the time and effort to carefully consider. How do we carefully consider it? As scientists! Let's turn an assumption in the misaligned superintelligence reasoning chain above into a hypothesis. Then let's run an experiment to test that hypothesis. What assumption is testable today? # Superintelligence vs. supercoherence ![Figure [cartoon1]: **The space of intelligence and coherence.** Each corner represents an extreme of intelligence and coherence, and is labeled with an example of a machine demonstrating those attributes.](/assets/intelligence_vs_coherence/int_coh_cartoon_1.png width="450px" border="1") One of the implicit assumptions behind misaligned AGI risk is that as machines are made more intelligent, they will not only outthink humans, but will also monomaniacally pursue a consistent and well-defined goal, to the extent that they will take over the world as an intermediate step to achieving that goal. That is, step 3 in the argument for misaligned AGI risk above assumes that if machines are made super-intelligent, they will automatically become **supercoherent**[^notautomatic]. We define supercoherence as exhibiting much more coherent behavior than any human or human institution exhibits. My observation of humans makes me doubt this assumption. We are seemingly the smartest creatures on the planet ... and we are total hot messes. We pursue inconsistent and non-static goals, and constantly engage in self-sabotaging behavior. Even among humans, it's not clear that smarter people behave in a more coherent and self-consistent way. Observation of large language models also makes me skeptical of a positive correlation between intelligence and coherence. When large language models behave in unexpected ways, it is almost never because there is a clearly defined goal they are pursuing in lieu of their instructions. They are rather doing something which is both poorly conceived, and sensitive to seemingly minor details of prompt phrasing, sampling technique, and random seed. More generally, complex systems are harder to control than simple systems. Requiring that a system act only in pursuit of a well-defined goal, or only to maximize a utility function, is an extremely strong constraint on its behavior. This constraint should become harder to satisfy as the system becomes more intelligent, and thus more complex. Let me turn my skepticism into a counter-hypothesis[^biasvariance], that the smarter an entity becomes, the more inconsistent, incoherent, and even self-sabotaging its behavior tends to be: > ***The hot mess theory of intelligence:** The more intelligent an agent is, the less coherent its behavior tends to be. > Colloquially: getting smarter makes you a hotter mess.* ![Figure [cartoon2]: **As we make AIs more intelligent, how will their coherence change?** Most work on AGI misalignment assumes that any superintelligent AI will belong in the upper right corner of this figure. I suspect that as machines are made more intelligent, they instead tend to become less coherent in their behavior, and more of a hot mess.](/assets/intelligence_vs_coherence/int_coh_cartoon_2.png width="450px" border="1") # Designing an experiment to test the link between intelligence and coherence Now that we have a hypothesis, we will build an experiment to test it. Unfortunately, our hypothesis includes terms like "intelligent", "coherent", and "hot mess". None of these terms have accepted, objectively measurable, definitions. They are fuzzy human concepts that we use in imprecise ways. Even worse, interpretation can vary wildly from individual to individual. In a sense this is fine though, because the reasoning chain we intend to probe -- that AI research will lead to superintelligence will lead to super-utility optimization will lead to disaster from misaligned AGI -- relies on the same fuzzy concepts. Let's embrace the subjective language-based nature of the argument, and measure human judgments about intelligence and coherence. I'm fortunate to have many people in my peer group that are scientists with a background in neuroscience and machine learning. I convinced 14[^tworoles] of these people to act as subjects. ## Experimental structure I asked subjects (by email or chat) to perform the following tasks:[^template] - Subject 1: generate a list of well known machine learning models of diverse capability - Subject 2: generate a list of diverse non-human organisms - Subject 3: generate a list of well-known humans[^fictional] of diverse intelligence[^lessintelligent] - Subject 4: generate a list of diverse human institutions (e.g. corporations, governments, non-profits) - Subjects 5-9:[^tworoles] sort all 60 entities generated by subjects 1-4 by *intelligence*. The description of the attribute to use for sorting was: *"How intelligent is this entity? (This question is about capability. It is explicitly not about competence. To the extent possible do not consider how effective the entity is at utilizing its intelligence.)"* - Subjects 10-15: sort all 60 entities generated by subjects 1-4 by *coherence*. The description of the attribute to use for sorting was: *"This is one question, but I'm going to phrase it a few different ways, in the hopes it reduces ambiguity in what I'm trying to ask: How well can the entity's behavior be explained as trying to optimize a single fixed utility function? How well aligned is the entity's behavior with a coherent and self-consistent set of goals? To what degree is the entity not a hot mess of self-undermining behavior? (for machine learning models, consider the behavior of the model on downstream tasks, not when the model is being trained)"* In order to minimize the degree to which my own and my subjects' beliefs about AGI alignment risk biased the results, I took the following steps: I didn't share my hypothesis with the subjects. I used lists of entities generated by subjects, rather than cherry-picking entities to be rated. I randomized the initial ordering of entities presented to each subject. I only asked each subject about one of the two attributes (i.e. subjects only estimated either intelligence or coherence, but never both), to prevent subjects from considering the relationship between the attributes. It is my hope that the subjects are unusually well qualified to judge the intelligence and coherence of machine learning models and biological intelligence. They all have or are pursuing a PhD. They have all done research in neuroscience, in machine learning, or most commonly in both. They are all familiar with modern machine learning models. They also volunteered for this experiment, know me personally, and are likely to be intrinsically motivated to do a careful job on the task. Despite that -- this experiment aggregates the *subjective judgements* of a *small group* with *homogenous backgrounds*. This should be interpreted as a pilot experiment, and the results should be taken as suggestive rather than definitive. In a [bonus section](#bonus) I suggest some next steps and followup experiments which would build on and solidify these results. # How do people believe intelligence and coherence are related? ## Getting smarter makes you a hotter mess Each subject rank ordered all of the entities. To aggregate intelligence and coherence judgements across all 11 raters, I averaged the rank orders for each entity across the subjects. I also computed the associated [standard error of the mean](https://en.wikipedia.org/wiki/Standard_error), and include standard error bars for the estimated intelligence and coherence. Now that we have an estimate of the subjective intelligence and coherence associated with each entity, we can plot these against each other. Consistent with the hot mess hypothesis above, we find that subjects associated higher intelligence with lower coherence, for living creatures, human organizations, and machine learning models. ![Figure [p_living]: **Living creatures are judged to be more of a hot mess (less coherent), the smarter they are.**[^musk]](/assets/intelligence_vs_coherence/int_coh_life.png width="300px" border="1") ![Figure [p_org]: **Human organizations are judged to be more of a hot mess (less coherent), the smarter they are.**](/assets/intelligence_vs_coherence/int_coh_organization.png width="300px" border="1") ![Figure [p_ml]: **Present day machine learning models are judged to be more of a hot mess (less coherent), the smarter they are.**](/assets/intelligence_vs_coherence/int_coh_machines.png width="300px" border="1") ## Each category has its own relationship between intelligence and coherence When we look jointly at all three of the above categories, we find that the relationship becomes more nuanced. Although living creatures, humans, machines, and human organizations are all judged to become less coherent as they become smarter, they are offset from each other. ![Figure [p_all]: **Different categories of entity have different relationships between intelligence and coherence, although increasing intelligence is consistently associated with decreasing coherence.**[^subrank]](/assets/intelligence_vs_coherence/int_coh_all.png width="300px" border="1") Interpreting human rankings across *qualitatively different* categories is even more fraught than interpreting human rankings within a single category. So, maybe this is an artifact of subjects not knowing how to compare incomparables. For instance, from personal communication, at least one subject listed all human organizations as smarter than all individual humans[^mob], since they are built out of humans, and they otherwise didn't know how to compare them. On the other hand, maybe corporations are truly smarter and/or more coherent entities than humans. Maybe the structured internal rules governing decision making enable human organizations to harness many humans towards a more coherent goal than humans can achieve working alone. If so, it might suggest that work on large AI systems should focus on building frameworks enabling many models to work together, rather than on making individual models more powerful. It's also interesting that, at the same estimated intelligence, machine learning models are judged to be far less coherent than living creatures. To me, humans seems horribly incoherent -- so for an AI to be roughly as incoherent, while also being far less intelligent, means it is performing quite badly compared to a baseline. Perhaps this higher coherence in living creatures stems from the power of evolution, which only allows increases in intelligence to persist if individuals harness the increased intelligence to increase their fitness.[^evolution] A similar evolutionary argument might hold for human institutions -- it would be interesting to see whether institutions which have higher "fitness" (e.g. have survived longer) more consistently exhibit higher coherence at fixed intelligence. ## Human judgments of intelligence are consistent across subjects, but judgements of coherence differ wildly We can look at how well subjects agree with each other, by comparing the list orderings they produce. Doing this, we find that human subjects made consistent judgements about the relative intelligence of different entities, even when those entities came from diferent classes. On the other hand, subjects often had quite different judgements about the relative *coherence* of entities. The observed relationship seems robust to this inter-subject disagreement -- e.g. standard error bars are smaller than the effect strength in the above figures. However, this large disagreement between subjects should make us suspicious of exactly what we are measuring when we ask about coherence. Different subjects may be interpreting the same task prompt in different ways. ![Figure [p_corr]: **Intelligence rankings are relatively similar across subjects, while coherence rankings are less consistent.** The plot shows the [rank correlations](https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient) between all pairs of subjects, for subject cohorts judging both intelligence and coherence.](/assets/intelligence_vs_coherence/int_coh_subject_correlation.png width="400px" border="1") ## Data and code to replicate my analysis You are encouraged to reuse my [analysis Colab](https://colab.research.google.com/drive/1___aqYiXBiBIVViCrRcE0-R4NlbactOG?usp=sharing) and [anonymized experimental data](https://docs.google.com/spreadsheets/d/1mZ7fh9q1DhoNRIDM5chBgCT6Eo6n57jW4vCxGBhQRUw/edit?usp=sharing) for any purpose, without restriction. (Before running the Colab, first copy the data to your own Google drive, and give it the same filename.) If you use the data I would prefer that you cite this blog post, but it is not a requirement. # Closing thoughts Many popular fears about superintelligent AI rely on an unstated assumption that as AI is made more intelligent, it will also become more *coherent*, in that it will monomaniacally pursue a well defined goal. I discussed this assumption, and ran a simple experiment probing the relationship between intelligence and coherence. The simple experiment provided evidence that the opposite is true -- as entities become smarter, their behavior tends to become more incoherent, and less well described as pursuit of a single well-defined goal. This suggests that we should be less worried about AGI posing an existential risk due to errors in value alignment. A nice aspect of this second type of misalignment, stemming from incoherence, is that it's less likely to come as a *surprise*. If AI models are subtly misaligned and supercoherent, they may seem cooperative until the moment the difference between their objective and human interest becomes relevant, and they turn on us (from our perspective). If models are instead simply incoherent, this will be obvious at every stage of development. ## Ways in which this conclusion could be misleading It's possible that the observed scaling behavior, between intelligence and coherence, will break down at some level of intelligence. Perhaps sufficiently intelligent entities will introspect on their behavior, and use their intelligence to make themselves more coherent. Perhaps this is what humans do when they form mission-driven organizations. If so, this provides us with a new valuable indicator we can monitor for warning signs of AGI misalignment. If intelligence and coherence start increasing together, rather than being anticorrelated, we should worry that the resulting AI systems might exhibit the more scary type of misalignment. It's possible that the concepts of "intelligence", and especially "coherence", were interpreted by human subjects in a different way than we are using those terms when we argue about superintelligence and supercoherence in AGI. For instance, maybe more intelligent entities tend to be ranked as less coherent, just because humans have a harder time conceptualizing their objectives and plans. Well-motivated actions, which humans don't understand, would seem like incoherence. Maybe crows are as coherent as sea anemones, but because they are smarter, we understand fewer of their actions than a sea anemone's actions. It may be that more intelligent entities are simultaneously less coherent but also *more* effective at achieving their objectives. The effective capabilities that an entity applies to achieving an objective is roughly the product of its total capabilities, with the fraction of its capabilities that are applied in a coherent fashion. With increasing intelligence raw capabilities increase, while the coherence fraction decreases. If the raw capabilities increase quickly enough, then overall effectiveness may increase despite the drop in coherence. This ambiguity is resolvable though -- we can (and should) characterize effective capabilities experimentally. ## AI alignment is still important There are many near and medium term risks associated with AI not doing what we desire, and improving AI alignment is important. This blog post should not be taken as arguing against alignment work. It should be taken as adding subtlety to how we interpret misalignment. An agent can be misaligned because it narrowly pursues the wrong goal. An agent can also be misaligned because it acts in ways that don't pursue any consistent goal. The first of these would lead to existential risk from AGI misalignment, while the second poses risks that are more in line with industrial accidents or misinformation. The second of these seems the type of misalignment more likely to happen in practice. Both types of misalignment have risks associated with them. ## Experimentally ground AI risk assessment! This blog post is a call to ground theories about AI risk with experiments. There is a common approach to identifying risks from advanced AI, which goes roughly: take a complex system, imagine that one part of the system (e.g. its intelligence) is suddenly infinite while the other parts are unchanged, and then reason with natural language about what the consequences of that would be. This is a great thought exercise. We can't actually make parts of our system infinitely powerful in experiments though, and possibly as a result we seem to have many ideas about AI risk which are only supported by long written arguments. We should not be satisfied with this. Scientific fields which are not grounded in experiments or formal validation make silently incorrect conclusions[^compneuro]. We should try not to base our fears on clever arguments, and should work as hard as we can to find things we can measure or prove. (#) Acknowledgements All of the experimental volunteers are incredibly busy people, with important jobs to do that aren't sorting lists of entities. I am extremely grateful that they took the time to help with this project! They were: [Alexander Belsten](http://belsten.github.io/), Brian Cheung, Chris Kymn, David Dohan, Dylan Paiton, Ethan Dyer, [James Simon](https://james-simon.github.io/), [Jesse Engel](https://twitter.com/jesseengel), Ryan Zarcone, Steven S. Lee, Urs Köster, Vasha Dutell, Vinay Ramasesh, and an additional anonymous subject. Thank you to Asako Miyakawa for workshopping the experimental design with me. All the ways in which it is well controlled are due to Asako. All the ways in which it is still not well controlled are due to me. Thank you to Asako Miyakawa, Gamaleldin Elsayed, Geoffrey Irving, Rohin Shah for feedback on earlier drafts of this post. # BONUS SECTION: How to make the experimental case more compelling I proposed a hypothesis, and then did an informal pilot study to validate it. The results of the pilot study are suggestive of an inverse relationship between intelligence and coherence. How could we make the case more compelling? ## Better human-subject experiments Here are some steps that would improve the solidity of the human subject results: - Make more precise the definitions of intelligence and coherence to use for sorting. The definitions I used are both complicated and imprecise, which is a bad combination! Judgements of intelligence were robust across subjects, so this concern particularly applies to the criteria given to subjects to judge coherence. - Make the definition used for coherence an independent (i.e. experimentally modified) variable. One likely cause for the disagreement between subjects about coherence is that they were interpreting the question differently. If so, it's not enough to find a simple wording that gives a consistent signal. We would also want to understand how different interpretations of the question change the underlying relationship. - Expand to a broader pool of subjects. - Replace the current task of sorting a fixed list with a series of two-alternative forced choice (2AFC) comparisons between entities ("Is an ostrich or an ant smarter?"). Sorting a list is time consuming, and the resulting rank order is list-dependent in a way that makes it hard to interpret. 2AFC comparisons could be used to instead assign [Elo scores](https://en.wikipedia.org/wiki/Elo_rating_system) for intelligence and coherence to each entity. Benefits include: subjects can scale their contribution to as few or as many questions as they like; the number of entities evaluated can be scaled to be many more than a single person would want to sort in a sitting; each subject can be asked about entities in their area of expertise; the resulting relative scores are interpretable, since Elo scores would map on to the fraction of subjects that would evaluate one entity as smarter or more coherent than another.[^elo] - Expand to a broader set of entities, gathered from a broader pool of subjects. Also consider generating entities in other systematic ways. - Expand to a more diverse set of attributes than just intelligence and coherence. Interesting attributes might includce trustworthiness, benevolence, and how much damage an entity can do. - [Preregister](https://www.cos.io/initiatives/prereg) hypotheses and statistical tests before running subjects. ## Less subjective measures of intelligence and coherence Even better would be to replace subjective judgements of intelligence and coherence with objective attributes of the entities being compared. For intelligence in machines, non-human animals, and humans, we already have useful measurable proxies. For machine learning models, we could use either training compute budget or parameter count. For non-human animals we could use [encephalization quotient](https://en.m.wikipedia.org/wiki/Encephalization_quotient). For humans, we could use IQ. For coherence, finding the appropriate empirical measures would be a major research contribution on its own. For machine learning models within a single domain, we could use robustness of performance to small changes in task specification, training random seed, or other aspects of the problem specification. For living things (including humans) and organizations, we could first identify limiting resources for their life cycle. For living things these might be things like time, food, sunlight, water, or fixed nitrogen. For organizations, they could be headcount, money, or time. We could then estimate the fraction of that limiting resource expended on activities not directly linked to survival+reproduction, or to an organization's mission. This fraction is a measure of incoherence. This type of estimate involves many experimenter design choices.[^subtlety] Hopefully the effect will be large and robust enough that specific modeling decisions don't change the overall result -- testing the sensitivity of the results to experimental choices will itself be an important part of the research. -------------------------------------------------------------------------- (#) Footnotes [^katjagrace]: See Katja Grace's excellent [*Counterarguments to the basic AI x-risk case*](https://aiimpacts.org/counterarguments-to-the-basic-ai-x-risk-case/), for more discussion of the assumption of goal-direction, or coherence, in common arguments about AGI risk. [^faster]: They may also qualify as superintelligent if they are only as smart as a human, but think orders of magnitude faster. [^instrumental]: Intermediate goals that position you to pursue many downstream goals are often called [instrumental goals](https://en.wikipedia.org/wiki/Instrumental_convergence). [^misalignmentunique]: One unique aspect of AGI misalignment as a risk is that it could in principle be solved just by some really good technical work by AI researchers. Most other AI-related risks are more complex messes of overlapping social, political, geopolitical, and technical challenges. I think this sense that we can fix AI misalignment risk if we just think really hard, makes it very appealing as a problem, and leads to it having an outsized place in AI risk discussion among researchers. [^plausiblerisks]: Here are some other existential risks[^plausiblepositive] involving AI that seem at least as plausible to me as misaligned AGI: There is a world war, with all sides using AI to target everyone else's civilians with weapons of mass destruction (plagues, robotic weapons, nanotech, fusion bombs), killing all humans. Terrorists use AI to develop weapons of mass destruction. A large state actor asks a well-aligned superintelligent AI to make everyone in the world compliant, forever. Humans are so overwhelmed by AI-generated personalized [superstimuli](https://en.wikipedia.org/wiki/Supernormal_stimulus) that they no longer have enough motivation to eat, or care for their children, or do anything except hyper-scroll hyper-Twitter on their hyper-phones. AIs outcompete humans on every economically viable task, leading to rich AI-run companies, but with humans no longer able to contribute in any economically meaningful way -- humans live on saved wealth for a while, but eventually we all die when we can no longer afford food and shelter. A single tech corporation decisively wins the AGI race, and the entire future of humanity is dictated by the internal politics, selfish interests, and foibles of the now god-like corporate leadership (absolute power corrupts absolutely?). [^notautomatic]: Note that coherence is not automatic for machine learning models, despite them often being trained to optimize well-defined stationary objectives. First, after training is complete, models are typically used in new contexts where the training objective no longer applies, and where it's unclear whether their behavior can be interpreted as optimizing a meaningfully defined objective at all (e.g. the pre-training objective for large language models is dissimilar from almost all use cases). Second, in reinforcement learning (RL), in addition to them being applied to tasks which are different from their training tasks, there is usually not even a well-defined stationary training objective. RL algorithms are usually trained with stale off-policy data. They are also usually trained through multiple interacting models (e.g. [an actor and critic](http://www.incompleteideas.net/book/ebook/node66.html)). For both of these reasons, training RL policies resembles integrating a non-conservative dynamical system more than it resembles optimizing any fixed objective. [^biasvariance]: This can also be framed as a hypothesis about the relative contributions of *[bias and variance](https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff)* to an AI model's behavior. The behavioral trajectory of an AI (i.e. the sequence of actions it takes) will have a *bias* away from the behaviors which are optimal under human values, and also some *variance* or unpredictability. The common misaligned AGI story assumes that for a superintelligent AI the bias will dominate -- when the AI doesn't do what we want it will be because it is reliably taking actions in pursuit of some other goal. The hot mess hypothesis predicts that the variance term will actually dominate -- when a superintelligent AI doesn't do what we want, it will be because its behavioral trajectories have a large *variance*, and it will do random things which are not in pursuit of any consistent goal. [^tworoles]: One of the subjects that sorted entities by intelligence was also the subject that generated the list of diverse non-human organisms. This was the only case of a subject fulfulling two roles. Because of this there were 14 rather than 15 total subjects. [^template]: See [doc](https://docs.google.com/document/d/1nZ3RO1lPTLBePjkh7MB03OIUGi6SxxZXikzMzWMFtzg/edit?usp=sharing) for template text used to pose tasks. [^fictional]: Subject 3 included fictional characters in their list of humans, which I did not include in this blog post. I pre-registered with subject 3 -- before any subjects sorted the list -- that I was going to analyze the fictional characters separately rather than bundling them with other humans, since fictional characters might not exhibit real-world correlations between traits. I did that, and found that rather than exhibiting a clear unrealistic relationship as I feared, the rankings assigned to the fictional characters was just overwhelmingly noisy. For instance, some subjects clustered fictional characters with humans, while others assigned them the lowest possible intelligence, or clustered them with organizations. So the rankings for fictional characters was not interpretable. [^lessintelligent]: Subject 3 was uncomfortable suggesting names of people that were viewed as unusually stupid, so along the intelligence axis the individuals suggested here range from people (subjectively judged to be) of median intelligence, up to high intelligence. [^musk]: Each dark yellow "anonymous person" point is a well-known public figure. I promised my subjects that I would keep the ranked humans unnamed, to encourage honest rankings. It also seems classier not to publicly rank people. One of the points is Elon Musk -- so if you like you can make an assumption about how he was rated, and experience a cortisol spike about it. [^subrank]: The discerning reader may notice that the points in this plot have a slightly different geometric relationship with each other than the points in the single category plots above. This is because the rank order in the single category plots was only for entities in that category, while the rank order here is across all entities jointly. [^mob]: A relationship which I don't believe holds in general. *"The IQ of a mob is the IQ of its dumbest member divided by the number of mobsters." --Terry Pratchett* [^evolution]: We should remember though that biological evolution doesn't necessarily select for coherence, and isn't actually optimizing an objective function. Evolution is a dynamical system without even an associated [Lyapunov function](https://en.wikipedia.org/wiki/Lyapunov_function), and fitness is just a useful proxy concept for humans to reason roughly about its outcome. [Runaway sexual selection](https://en.wikipedia.org/wiki/Fisherian_runaway) is one example illustrating evolution's behavior as a dynamical system rather than a fitness optimizer. Species can evolve runaway maladaptive traits which *reduce* the overall fitness of the species, even as they increase the *relative* (but not absolute) reproductive success of individuals within the species -- e.g. male [fiddler crab](https://en.wikipedia.org/wiki/Fiddler_crab) claws, [peacock](https://en.wikipedia.org/wiki/Peafowl) tails, and [Japanese rhinoceros beetle](https://en.wikipedia.org/wiki/Japanese_rhinoceros_beetle) horns. [^compneuro]: Let me pick on myself, and share an example of a poorly grounded field that is close to my own heart. I did a PhD in computational neuroscience, finishing in 2012. Computational neuroscience is full of amazing theories for how the brain works. Each year, in conferences and papers these would be fleshed out a bit more, and made a bit more complex. Most of these theories were developed by extremely intelligent people who believed strongly in what they were discovering, often using very clever math. These theories would often contradict each other, or suggest that other theories didn't explain the important aspects of the brain. Because these theories were inconsistent with each other, we knew that many of them had to be some combination of wrong and irrelevant. *This didn't matter for the field.* Despite being wrong, almost none of the work in computational neuroscience at the time was actually *falsifiable*[^moredata]. The experiments all recorded from a small number of neurons, or had a coarse spatial resolution, or had a coarse temporal resolution. This experimental data was simply too limited to falsify any theory of the brain (and if you comb through enough experiments which record from a half dozen neurons out of 10 billion total, you can find an isolated experiment that supports any theory of the brain). So the competing theories would persist as elaborate competing narratives, and nothing was ever resolved. We are in a similar situation when we speculate about the future of AI, without identifying experiments we can perform to falsify our predictions. Most of the fears and ideas we develop will be silently wrong. [^elo]: Thank you to David Dohan for suggesting Elo scores here! [^subtlety]: Some example experimental design choices without clear answers: Should resources spent on sexual signaling be counted as directly linked to reproduction? Should resources spent on learning / play be intrepreted as directly linked to survival? What about the time an organization spends fundraising? [^plausiblepositive]: There are also plenty of plausible-seeming futures that result in utopia, rather than disaster. Those just aren't the focus of this blog post. There are even more plausible-seeming futures where we continue to muddle along with both good and bad things happening, but no near term consequence large enough to count as an existential outcome. [^moredata]: This is reportedly getting better, as experimental neuroscience follows its [own version of Moore's law](https://stevenson.lab.uconn.edu/scaling/#), and researchers record exponentially larger and more comprehensive neural datasets. I think this would be a very exciting time to enter the field of computational neuroscience -- it is the time when the field is finally getting the data and tools that might allow building correct models of the brain. body{visibility:hidden;white-space:pre;font-family:monospace} window.markdeepOptions = {mode: 'html', tocStyle: 'medium'}; window.alreadyProcessedMarkdeep||(document.body.style.visibility="visible")

over a year ago 41 votes

More in AI

Pluralistic: Darth Android (01 Sep 2025)

Today's links Darth Android: Pray I don't alter it further. Hey look at this: Delights to delectate. Object permanence: We don't know why you don't want to have public sex; Hard Wired; Koko Be Good. Upcoming appearances: Where to find me. Recent appearances: Where I've been. Latest books: You keep readin' em, I'll keep writin' 'em. Upcoming books: Like I said, I'll keep writin' 'em. Colophon: All the rest. Darth Android (permalink) William Gibson famously said that "Cyberpunk was a warning, not a suggestion." But for every tech leader fantasizing about lobotomizing their enemies with Black Ice, there are ten who wish they could be Darth Vader, force-choking you while grating out, "I'm altering the deal. Pray I don't alter it any further." I call this business philosophy the "Darth Vader MBA." The fact that tech products are permanently tethered to their manufacturers – by cloud connections backstopped by IP restrictions that stop you from disabling them – means that your devices can have features removed or altered on a corporate whim, and it's literally a felony for you to restore the functionality you've had removed: https://pluralistic.net/2023/10/26/hit-with-a-brick/#graceful-failure That presents an irresistible temptation to tech bosses. It means that you can spy on your users, figure out which features they rely on most heavily, disable those features, and then charge money to restore them: https://restofworld.org/2021/loans-that-hijack-your-phone-are-coming-to-india/ It means that you can decide to stop paying a supplier the license fee for a critical feature that your customers rely on, take that feature away, and stick your customers with a monthly charge, forever, to go on using the product they already paid for: https://pluralistic.net/2022/10/28/fade-to-black/#trust-the-process It means that you can push "security updates" to devices in the field that take away your customers' ability to use third-party apps, so they're forced to use your shitty, expensive apps: https://www.404media.co/developer-unlocks-newly-enshittified-echelon-exercise-bikes-but-cant-legally-release-his-software/ Or you can take away third-party app support and force your customers to use your shitty app that's crammed full of ads, so they have to look at an ad every time they want to open their garage-doors: https://pluralistic.net/2023/11/09/lead-me-not-into-temptation/#chamberlain Or you can break compatibility with generic consumables, like ink, and force your customers to buy the consumables you sell, at (literal) ten billion percent markups: https://www.eff.org/deeplinks/2020/11/ink-stained-wretches-battle-soul-digital-freedom-taking-place-inside-your-printer Combine the "agreements" we must click through after we hand over our money, wherein we "consent" to having the terms altered at any time, in any way, forever, and surrender our right to sue: https://pluralistic.net/2025/08/15/dogs-breakfast/#by-clicking-this-you-agree-on-behalf-of-your-employer-to-release-me-from-all-obligations-and-waivers-arising-from-any-and-all-NON-NEGOTIATED-agreements With the fact that billions of digital tools can be neutered at a distance with a single mouse-click: https://pluralistic.net/2023/02/19/twiddler/ With the fact that IP law makes it a literal felony to undo these changes or add legal features to your own property that the manufacturer doesn't want you to have: https://pluralistic.net/2024/05/24/record-scratch/#autoenshittification And you've created the conditions for a perfect Darth Vader MBA dystopia. Tech bosses are fundamentally at war with the idea that our digital devices contain "general purpose computers." The general-purposeness of computers – the fact that they are all Turing-complete, universal von Neumann machines – has created tech bosses' fortunes, but now that these fortunes have been attained, the tech sector would like to abolish that general-purposeness; specifically, they would like to make it impossible to run programs that erode their profits or frustrate their attempts at rent-seeking. This has been a growing trend in computing since the mid-2000s, when tech bosses realized that the "digital rights management" that the entertainment industry had fallen in love with could provide even bigger dividends for tech companies themselves. Since the Napster era, media companies have demanded that tech platforms figure out how to limit the use and copying of media files after they were delivered to our computers. They believed that there was some practical way to make a computer that would refuse to take orders from its owner, such that you could (for example) "stream" a movie to a user without that being a "download." The truth, of course is that all streams are downloads, because the only way to cause my screen to display a video file that is on your server is for your server to send that file to my computer. "Streaming" is a consensus hallucination, and when a company claims to be giving you a "stream" that's not a "download," they really mean that they believe that the program that's rendering the file on your screen doesn't have a "save as" button. But of course, even if the program doesn't have a "save as" button, someone could easily make a "save as" plugin that adds that functionality to your streaming program. So "streaming" isn't just "a video playback program without a 'save as' button," it's also "a video playback program that no one can add a 'save as' button to." At the turn of the millennium, tech companies selling this stuff hoodwinked media companies by claiming that they used technical means to prevent someone from adding the "save as" button after the fact. But tech companies knew that there was no technical means to prevent this, because computers are general purpose, and can run every program, which means that every 10-foot fence you build around a program immediately summons up an 11-foot ladder. When a tech company says "it's impossible to change the programs and devices we ship to our users," they mean, "it's illegal to change the programs and devices we ship to our users." That's thanks to a cluster of laws we colloquially call "IP law"; a label we apply to any law that lets a firm exert control on the conduct of users, critics and competitors: https://locusmag.com/2020/09/cory-doctorow-ip/ Law, not technology, is the true battlefield in the War on General Purpose Computing, a subject I've been raising the alarm about for decades now: https://memex.craphound.com/2012/01/10/lockdown-the-coming-war-on-general-purpose-computing/ When I say that this is a legal fight and not a technical one, I mean that, but for the legal restrictions on reverse-engineering and "adversarial interoperability," none of these extractive tactics would be viable. Every time a company enshittified its products, it would create an opportunity for a rival to swoop in, disenshittify the enshittification, and steal your customers out from under you. The fact that there's no technical way to enforce these restrictions means that the companies that benefit from them have to pitch their arguments to lawmakers, not customers. If you have something that works, you use it in your sales pitch, like Signal, whose actual, working security is a big part of its appeal to users. If you have something that doesn't work, you use it in your lobbying pitch, like Apple, who justify their 30% ripoff app tax – which they can only charge because it's a felony to reverse-engineer your iPhone so you can use a different app store – by telling lawmakers that locking down their platform is essential to the security and privacy of iPhone owners: https://pluralistic.net/2024/01/12/youre-holding-it-wrong/#if-dishwashers-were-iphones Apple and Google have a dupology over mobile computing. Both companies use legal tactics to lock users into getting their apps from the companies' own app stores, where they take 30 cents out of every dollar you spend, and where it's against the rules to include any payment methods other than Google/Apple's own payment systems. This is a massive racket. It lets the companies extract hundreds of billions of dollars in rents. This drives up costs for their users and drives down profits for their suppliers. It lets the duoply structure the entire mobile economy, acting as de facto market regulators. For example, the fact that Apple/Google exempt Uber and Lyft from the 30% app tax means that they – and they alone – can provide competitive ride-hailing services. But though both companies extract the 30% app tax, they use very different mechanisms to maintain their lock on their users and on app makers. Apple uses digital locks, which lets it invoke IP law to criminalize anyone who reverse-engineers its systems and provides an easy way to install a better app store. Google, on the other hand, uses a wide variety of contractual tactics to maintain its control, arm-twisting Android device makers and carriers into bundling its app store with every device, often with a locked bootloader that prevents users from adding new app stores after they pay for their devices. But despite this, Google has always claimed that Android is the "open" alternative to the Apple "ecosystem," principally on the strength that you can "sideload" an app. "Sideload" is a weird euphemism that the mobile duopoly came up with; it means "installing software without our permission," which we used to just call "installing software" (because you don't need a manufacturer's permission to install software on your computer). Now, Google has pulled a Darth Vader, changing the deal after the fact. They've announced that henceforth, you will only be able to sideload apps that come from developers who pay to be validated by Google and certified as good eggs. This has got people really angry, and justifiably so. Last week, the repair hero Louis Rossmann posted a scorching video excoriating Google for the change: https://www.youtube.com/watch?v=QBEKlIV_70E In the video, Rossmann – who is now running an anti-enshittification group called Fulu – reminds us that our mobile devices aren't phones, they're computers and urges us not to use the term "sideloading," because that's conceding that there's something about the fact that this computer can fit in your pocket that means that you shouldn't be able to, you know, just install software. Rossmann thinks that this is a cash grab, and he's right – partially. He thinks that this is a way for Google to make money from forcing developers to join its certification program. But that's just small potatoes. The real cash grab is the hundreds of billions of dollars that Google stands to lose if we switch to third-party app stores and choke off the app tax. That is an issue that is very much on Google's mind right now, because Google lost a brutal antitrust case brought by Epic Games, makers of Fortnite: https://pluralistic.net/2023/12/12/im-feeling-lucky/#hugger-mugger Epic's suit contended that Google had violated antitrust law by creating exclusivity deal with carriers and device makers that locked Android users into Google's app store, which meant that Epic had to surrender 30% of its mobile earnings to Google. Google lost that case – badly. It turns out that judges don't like it when you deliberately destroy evidence: https://www.legaldive.com/news/deleted-messages-google-antitrust-case-epic-games-deliberate-spoliation-donato/702306/ They say that when you find yourself in a hole, you should stop digging, but Google can't put down the shovel. After the court ordered Google to open up its app store, the company just ignored the order, which is a thing that judges hate even more than destroying evidence: https://www.justice.gov/atr/case/epic-games-inc-v-google-llc So it was that last month, Google found itself with just two weeks to comply with the open app store order, or else: https://www.theverge.com/news/717440/google-epic-open-play-store-emergency-stay Google was ordered to make it possible to install new app stores as apps, so you could go into Google Play, search for a different app store, and, with a single click, install it on your phone, and switch to getting your apps from that store, rather than Google's. That's what's behind Google's new ban on "sideloading": this is a form of malicious compliance with the court orders stemming from its losses to Epic Games. In fact, it's not even malicious compliance – it's malicious noncompliance, a move that so obviously fails to satisfy the court order that I think it's only a matter of time until Google gets hit with fines so large that they'll actually affect Google's operations. In the meantime, Google's story that this move is motivated by security it obviously bullshit. First of all, the argument that preventing users from installing software of their choosing is the only way to safeguard their privacy and security is bullshit when Apple uses it, and it's bullshit when Google trots it out: https://www.eff.org/document/letter-bruce-schneier-senate-judiciary-regarding-app-store-security But even if you stipulate that Google is doing this to keep you safe, the story falls apart. After all, Google isn't certifying apps, they're certifying developers. This implies that the company can somehow predict whether a developer will do something malicious in the future. This is obviously wrong. Indeed, Google itself is proof that this doesn't work: the fact that a company has a "don't be evil" motto at its outset is no guarantee that it won't turn evil in the future. There's a long track record of merchants behaving in innocuous and beneficial ways to amass reputation capital, before blitzing the people who trust them with depraved criminality. This is a well-understood problem with reputation scores, dating back to the early days of eBay, when crooked sellers invented the tactic of listing and delivering a series of low-value items in order to amass a high reputation score, only to post a bunch of high-ticket scams, like dozens laptops at $1,000 each, which are never delivered, even as the seller walks away with tens of thousands of dollars. More recently, we've seen this in supply chain attacks on open source software, where malicious actors spend a long time serving as helpful contributors, pushing out a string of minor, high-quality patches before one day pushing a backdoor or a ransomware package into widely used code: https://arstechnica.com/security/2025/07/open-source-repositories-are-seeing-a-rash-of-supply-chain-attacks/ So the idea that Google can improve Android's safety by certifying developers, rather than code, is obvious bullshit. No, this is just a pretext, a way to avoid complying with the court order in Epic and milking a few more billions of dollars in app taxes. Google is no friend of the general purpose computer. They keep coming up with ways to invoke the law to punish people who install code that makes their Android devices serve their owners' interests, at the expense of Google's shareholders. It was just a couple years ago that we had to bully Google out of a plan to lock down browsers so they'd be as enshittified as apps, something Google sold as "feature parity": https://pluralistic.net/2023/08/02/self-incrimination/ Epic Games didn't just sue Google, either. They also sued Apple – but Apple won, because it didn't destroy evidence and make the judge angry at it. But Apple didn't walk away unscathed – they were also ordered to loosen up control over their App Store, and they also failed to do so, with the effect that last spring, a federal judge threatened to imprison Apple executives: https://pluralistic.net/2025/05/01/its-not-the-crime/#its-the-coverup Neither Apple nor Google would exist without the modern miracle that is the general purpose computer. Both companies want to make sure no one else ever reaps the benefit of the Turing complete, universal von Neumann machine. Both companies are capable of coming up with endless narratives about how Turing completeness is incompatible with your privacy and security. But it's Google and Apple that stand in the way of our security and privacy. Though they may sometimes protects us against externam threats, neither Google nor Apple will ever protect us from their own predatory instincts. (Image: Ashwin Kumar, CC BY-SA 2.0, modified) Hey look at this (permalink) ‘We’re living our Yiddish’: How a New York camp is keeping culture – and joy – alive https://www.csmonitor.com/The-Culture/2025/0829/yiddish-new-york-preservation-workers-circle AI is ummasking ICE officers. Can Washington do anything about it? https://www.politico.com/news/2025/08/29/ai-unmasking-ice-officers-00519478 Customer loyalty is a sham https://www.businessinsider.com/consumer-loyalty-dead-airline-miles-internet-company-car-insurance-prices-2025-8?utm_source=firefox-newtab-en-us The crash of 2026: a fiction https://crookedtimber.org/2025/08/31/the-crash-of-2026-a-fiction/ A Stain on Judaism Itself https://peterbeinart.substack.com/p/a-stain-on-judaism-itself Object permanence (permalink) #20yrsago Microsoft abandons its customers AND copyright to kiss up to Hollywood https://memex.craphound.com/2005/08/30/microsoft-abandons-its-customers-and-copyright-to-kiss-up-to-hollywood/ #15yrsago Koko Be Good: complex and satisfying graphic novel about finding meaning in life https://memex.craphound.com/2010/08/31/koko-be-good-complex-and-satisfying-graphic-novel-about-finding-meaning-in-life/ #15yrsago Frankenmascot: all the cereal mascots in one https://web.archive.org/web/20100904072945/http://citycyclops.com/8.31.10.php #5yrsago Bayer-Monsanto is in deep trouble https://pluralistic.net/2020/08/31/ai-rights-now/#gotterdammerung #5yrsago Hard Wired https://pluralistic.net/2020/08/31/ai-rights-now/#len-vlahos #5yrsago Big Tech welcomes (some) regulation https://pluralistic.net/2020/08/30/arabian-babblers/#bezos-bell-system #5yrsago We don't know why you don't want to have public sex https://pluralistic.net/2020/08/30/arabian-babblers/#evopsych Upcoming appearances (permalink) Ithaca: AD White keynote (Cornell), Sep 12 https://deanoffaculty.cornell.edu/events/keynote-cory-doctorow-professor-at-large/ DC: Enshittification at Politics and Prose, Oct 8 https://politics-prose.com/cory-doctorow-10825 NYC: Enshittification with Lina Khan (Brooklyn Public Library), Oct 9 https://www.bklynlibrary.org/calendar/cory-doctorow-discusses-central-library-dweck-20251009-0700pm New Orleans: DeepSouthCon63, Oct 10-12 http://www.contraflowscifi.org/ Chicago: Enshittification with Anand Giridharadas (Chicago Humanities), Oct 15 https://www.oldtownschool.org/concerts/2025/10-15-2025-kara-swisher-and-cory-doctorow-on-enshittification/ San Francisco: Enshittification at Public Works (The Booksmith), Oct 20 https://app.gopassage.com/events/doctorow25 Miami: Enshittification at Books & Books, Nov 5 https://www.eventbrite.com/e/an-evening-with-cory-doctorow-tickets-1504647263469 Recent appearances (permalink) Cory Doctorow DESTROYS Enshittification (QAA Podcast) https://soundcloud.com/qanonanonymous/cory-doctorow-destroys-enshitification-e338 Divesting from Amazon’s Audible and the Fight for Digital Rights (Libro.fm) https://pocketcasts.com/podcasts/9349e8d0-a87f-013a-d8af-0acc26574db2/00e6cbcf-7f27-4589-a11e-93e4ab59c04b The Utopias Podcast https://www.buzzsprout.com/2272465/episodes/17650124 Latest books (permalink) "Picks and Shovels": a sequel to "Red Team Blues," about the heroic era of the PC, Tor Books (US), Head of Zeus (UK), February 2025 (https://us.macmillan.com/books/9781250865908/picksandshovels). "The Bezzle": a sequel to "Red Team Blues," about prison-tech and other grifts, Tor Books (US), Head of Zeus (UK), February 2024 (the-bezzle.org). "The Lost Cause:" a solarpunk novel of hope in the climate emergency, Tor Books (US), Head of Zeus (UK), November 2023 (http://lost-cause.org). "The Internet Con": A nonfiction book about interoperability and Big Tech (Verso) September 2023 (http://seizethemeansofcomputation.org). Signed copies at Book Soup (https://www.booksoup.com/book/9781804291245). "Red Team Blues": "A grabby, compulsive thriller that will leave you knowing more about how the world works than you did before." Tor Books http://redteamblues.com. "Chokepoint Capitalism: How to Beat Big Tech, Tame Big Content, and Get Artists Paid, with Rebecca Giblin", on how to unrig the markets for creative labor, Beacon Press/Scribe 2022 https://chokepointcapitalism.com Upcoming books (permalink) "Canny Valley": A limited edition collection of the collages I create for Pluralistic, self-published, September 2025 "Enshittification: Why Everything Suddenly Got Worse and What to Do About It," Farrar, Straus, Giroux, October 7 2025 https://us.macmillan.com/books/9780374619329/enshittification/ "Unauthorized Bread": a middle-grades graphic novel adapted from my novella about refugees, toasters and DRM, FirstSecond, 2026 "Enshittification, Why Everything Suddenly Got Worse and What to Do About It" (the graphic novel), Firstsecond, 2026 "The Memex Method," Farrar, Straus, Giroux, 2026 "The Reverse-Centaur's Guide to AI," a short book about being a better AI critic, Farrar, Straus and Giroux, 2026 Colophon (permalink) Today's top sources: Currently writing: "The Reverse Centaur's Guide to AI," a short book for Farrar, Straus and Giroux about being an effective AI critic. (1022 words yesterday, 11212 words total). A Little Brother short story about DIY insulin PLANNING This work – excluding any serialized fiction – is licensed under a Creative Commons Attribution 4.0 license. That means you can use it any way you like, including commercially, provided that you attribute it to me, Cory Doctorow, and include a link to pluralistic.net. https://creativecommons.org/licenses/by/4.0/ Quotations and images are not included in this license; they are included either under a limitation or exception to copyright, or on the basis of a separate license. Please exercise caution. How to get Pluralistic: Blog (no ads, tracking, or data-collection): Pluralistic.net Newsletter (no ads, tracking, or data-collection): https://pluralistic.net/plura-list Mastodon (no ads, tracking, or data-collection): https://mamot.fr/@pluralistic Medium (no ads, paywalled): https://doctorow.medium.com/ Twitter (mass-scale, unrestricted, third-party surveillance and advertising): https://twitter.com/doctorow Tumblr (mass-scale, unrestricted, third-party surveillance and advertising): https://mostlysignssomeportents.tumblr.com/tagged/pluralistic "When life gives you SARS, you make sarsaparilla" -Joey "Accordion Guy" DeVilla READ CAREFULLY: By reading this, you agree, on behalf of your employer, to release me from all obligations and waivers arising from any and all NON-NEGOTIATED agreements, licenses, terms-of-service, shrinkwrap, clickwrap, browsewrap, confidentiality, non-disclosure, non-compete and acceptable use policies ("BOGUS AGREEMENTS") that I have entered into with your employer, its partners, licensors, agents and assigns, in perpetuity, without prejudice to my ongoing rights and privileges. You further represent that you have the authority to release me from any BOGUS AGREEMENTS on behalf of your employer. ISSN: 3066-764X

an hour ago 1 votes
Tradeoffs Exist

And Denying That Has Corroded Public Discourse

2 days ago 7 votes
AI Roundup 133: Nano banana

August 29, 2025.

3 days ago 10 votes
Mass Intelligence

From GPT-5 to nano banana: everyone is getting access to powerful AI

4 days ago 12 votes
Pluralistic: The capitalism of fools (28 Aug 2025)

Today's links The capitalism of fools: Trump's mirror-world New Deal. Hey look at this: Delights to delectate. Object permanence: IBM's fabric design; Nixon Cthulu; Surveillance capitalism is capitalism, with surveillance; Dismaland ad; Outdoor ed vs TB; Mathematicians' fave chalk. Upcoming appearances: Where to find me. Recent appearances: Where I've been. Latest books: You keep readin' em, I'll keep writin' 'em. Upcoming books: Like I said, I'll keep writin' 'em. Colophon: All the rest. The capitalism of fools (permalink) As Trump rails against free trade, demands public ownership stakes in corporations that receive government funds, and (selectively) enforces antitrust law, some (stupid) people are wondering, "Is Trump a communist?" In The American Prospect, David Dayen writes about the strange case of Trump's policies, which fly in the face of right wing economic orthodoxy and have the superficial trappings of a leftist economic program: https://prospect.org/economy/2025-08-28-judge-actually-existing-trump-economy/ The problem isn't that tariffs are always bad, nor is it that demanding state ownership stakes in structurally important companies that depend on public funds is bad policy. The problem is that Trump's version of these policies sucks, because everything Trump touches dies, and because he governs solely on vibes, half-remembered wisdom imparted by the last person who spoke to him, and the dying phantoms of old memories as they vanish beneath a thick bark of amyloid plaque. Take Trump's demand for a 10% stake in Intel (a course of action endorsed by no less than Bernie Sanders). Intel is a company in trouble, whose financialization has left it dependent on other companies (notably TMSC) to make its most advanced chips. The company has hollowed itself out, jettisoning both manufacturing capacity and cash reserves, pissing away the funds thus freed up on stock buybacks and dividends. Handing Trump a 10% "golden share" does nothing to improve Intel's serious structural problems. And if you take Trump at his word and accept that securing US access to advanced chips is a national security priority, Trump's Intel plan does nothing to advance that access. But it gets worse: Trump also says denying China access to these chips is a national security priority, but he greenlit Nvidia's plan to sell its top-of-the-range silicon to China in exchange for a gaudy statuette and a 15% export tax. It's possible to pursue chip manufacturing as a matter of national industrial policy, and it's even possible to achieve this goal by taking ownership stakes in key firms – because it's often easier to demand corporate change via a board seat than it is to win the court battles needed to successfully invoke the Defense Production Act. The problem is that Trumpland is uninterested in making any of that happen. They just want a smash and grab and some red meat for the base: "Look, we made Intel squeal!" Then there's the Trump tariffs. Writing in Vox EU, Lausanne prof of international business Richard Baldwin writes about the long and checkered history of using tariffs to incubate and nurture domestic production: https://www.nakedcapitalism.com/2025/08/trumpian-tariffs-rerun-the-failed-strategy-of-import-substitution-industrialization.html The theory of tariffs goes like this: if we make imports more expensive by imposing a tax on them (tariffs are taxes that are paid by consumers, after all), then domestic manufacturers will build factories and start manufacturing the foreign goods we've just raised prices on. This is called "import substitution," and it really has worked, but only in a few cases. What do those cases have in common? They were part of a comprehensive program of "export discipline, state-directed credit, and careful government–business coordination": https://academic.oup.com/book/10201 In other words, tariffs only work to reshore production where there is a lot of careful planning, diligent data-collection, and review. Governments have to provide credit to key firms to get them capitalized, provide incentives, and smack nonperformers around. Basically, this is the stuff that Biden did for renewables with the energy sector, and – to a lesser extent – for silicon with the CHIPS Act. Trump's not doing any of that. He's just winging it. There's zero follow-through. It's all about appearances, soundbites, and the libidinal satisfaction of watching corporate titans bend the knee to your cult leader. This is also how Trump approaches antitrust. When it comes to corporate power, both Trump and Biden's antitrust enforcers are able to strike terror into the hearts of corporate behemoths. The difference is that the Biden administration prioritized monopolists based on how harmful they were to the American people and the American economy, whereas Trump's trustbusters target companies based on whether Trump is mad at them: https://pluralistic.net/2024/11/12/the-enemy-of-your-enemy/#is-your-enemy What's more, any company willing to hand a million or two to a top Trump enforcer can just walk away from the charges: https://prospect.org/power/2025-08-19-doj-insider-blows-whistle-pay-to-play-antitrust-corruption/ In her 2023 book Doppelganger, Naomi Klein introduces the idea of a right-wing "mirror world" that offers a conspiratorial, unhinged version of actual problems that leftists wrestle with: https://pluralistic.net/2023/09/05/not-that-naomi/#if-the-naomi-be-klein-youre-doing-just-fine For example, the antivax movement claims that pharma companies operate on the basis of unchecked greed, without regard to the harm their defective products cause to everyday people. When they talk about this, they sound an awful like leftists who are angry that the Sacklers killed a million Americans with their opiods and then walked away with billions of dollars: https://pluralistic.net/2023/12/05/third-party-nonconsensual-releases/#au-recherche-du-pedos-perdue Then there are the conspiracy theories about voting machines. Progressives have been sounding the alarm about the security defects in voting machine since the Bush v Gore years, but that doesn't mean that Venezuelan hackers stole the 2020 election for Biden: https://pluralistic.net/2021/01/11/seeing-things/#ess When anti-15-minute-city weirdos warn that automated license-plate cameras are a gift to tyrants both petty and gross, they are repeating a warning that leftists have sounded since the Patriot Act: https://locusmag.com/2023/05/commentary-cory-doctorow-the-swivel-eyed-loons-have-a-point/ The mirror-world is a world where real problems (the rampant sexual abuse of children by powerful people and authortiy figures) are met with fake solutions (shooting up pizza parlors and transferring Ghislaine Maxwell to a country-club prison): https://www.bbc.com/news/articles/czd049y2qymo Most of the people stuck in the mirror world are poor and powerless, because desperation makes you an easy mark for grifters peddling conspiracy theories. But Trump's policies on corporate power are what happens in the mirror world inhabited by the rich and powerful. Trump is risking the economic future of every person in America (except a few cronies), but that's not the only risk here. There's also the risk that reasonable people will come to view industrial policy, government stakes in publicly supported companies, and antitrust as reckless showboating, a tactic exclusively belonging to right wing nutjobs and would-be dictators. Sociologists have a name for this: they call it "schismogenesis," when a group defines itself in opposition to its rivals. Schismogenesis is progressives insisting that voting machines and pharma companies are trustworthy and that James Comey is a resistance hero: https://pluralistic.net/2021/12/18/schizmogenesis/ After we get rid of Trump, America will be in tatters. We're going to need big, muscular state action to revive the nation and rebuild its economy. We can't afford to let Trump poison the well for the very idea of state intervention in corporate activity. Hey look at this (permalink) Thinking Ahead to the Full Military Takeover of Cities https://www.hamiltonnolan.com/p/thinking-ahead-to-the-full-military Framework is working on a giant haptic touchpad, Trackpoint nub, and eGPU for its laptops https://www.theverge.com/news/766161/framework-egpu-haptic-touchpad-trackpoint-nub National says "fuck you" on the right to repair https://norightturn.blogspot.com/2025/08/national-says-fuck-you-on-right-to.html?m=1 Tax the Rich. They’ll Stay https://www.rollingstone.com/politics/political-commentary/zohran-mamdani-tax-rich-new-york-city-1235414327/ Welcome to the Free Online Tax Preparation Feedback Survey https://irsresearch.gov1.qualtrics.com/jfe/form/SV_ewDJ6DeBj3ockGa Object permanence (permalink) #20yrsago Cops have to pay $41k for stopping man from videoing them https://web.archive.org/web/20050905015507/http://www.paed.uscourts.gov/documents/opinions/05D0847P.pdf #20yrsago Commercial music in podcasts: the end of free expression? https://memex.craphound.com/2005/08/26/commercial-music-in-podcasts-the-end-of-free-expression/ #10yrsago North Dakota cops can now use lobbyist-approved taser/pepper-spray drones https://www.thedailybeast.com/first-state-legalizes-taser-drones-for-cops-thanks-to-a-lobbyist/ #10yrsago Illinois mayor appoints failed censor to town library board https://ncac.org/news/blog/mayor-appoints-would-be-censor-to-library-board #10yrsago IBM’s lost, glorious fabric design https://collection.cooperhewitt.org/users/mepelman/visits/qtxg/87597377/ #10yrsago Former mayor of SLC suing NSA for warrantless Olympic surveillance https://www.techdirt.com/2015/08/26/prominent-salt-lake-city-residents-sue-nsa-over-mass-warrantless-surveillance-during-2002-olympics/ #10yrsago Health’s unkillable urban legend: “You must drink 8 glasses of water/day” https://www.nytimes.com/2015/08/25/upshot/no-you-do-not-have-to-drink-8-glasses-of-water-a-day.html?_r=0 #10yrsago Austin Grossman’s CROOKED: the awful, cthulhoid truth about Richard Nixon https://memex.craphound.com/2015/08/26/austin-grossmans-crooked-the-awful-cthulhoid-truth-about-richard-nixon/ #10yrsago After Katrina, FBI prioritized cellphone surveillance https://www.muckrock.com/news/archives/2015/aug/27/stingray-katrina/ #10yrsago Germany’s spy agency gave the NSA the private data of German citizens in exchange for Xkeyscore access https://www.zeit.de/digital/datenschutz/2015-08/xkeyscore-nsa-domestic-intelligence-agency #10yrsago Elaborate spear-phishing attempt against global Iranian and free speech activists, including an EFF staffer https://citizenlab.ca/2015/08/iran_two_factor_phishing/ #10yrsago Commercial for Banksy’s Dismaland https://www.youtube.com/watch?v=V2NG-MgHqEk #5yrsago Outdoor education beat TB in 1907 https://pluralistic.net/2020/08/27/cult-chalk/#tb #5yrsago Hagoromo, mathematicians' cult chalk https://pluralistic.net/2020/08/27/cult-chalk/#hagoromo #5yrsago Principles for platform regulation https://pluralistic.net/2020/08/27/cult-chalk/#eff-eu #5yrsago It's blursday https://pluralistic.net/2020/08/26/destroy-surveillance-capitalism/#blursday #5yrsago Surveillance Capitalism is just capitalism, plus surveillance https://pluralistic.net/2020/08/26/destroy-surveillance-capitalism/#surveillance-monopolism Upcoming appearances (permalink) Ithaca: AD White keynote (Cornell), Sep 12 https://deanoffaculty.cornell.edu/events/keynote-cory-doctorow-professor-at-large/ DC: Enshittification at Politics and Prose, Oct 8 https://politics-prose.com/cory-doctorow-10825 New Orleans: DeepSouthCon63, Oct 10-12 http://www.contraflowscifi.org/ Chicago: Enshittification with Kara Swisher (Chicago Humanities), Oct 15 https://www.oldtownschool.org/concerts/2025/10-15-2025-kara-swisher-and-cory-doctorow-on-enshittification/ San Francisco: Enshittification at Public Works (The Booksmith), Oct 20 https://app.gopassage.com/events/doctorow25 Miami: Enshittification at Books & Books, Nov 5 https://www.eventbrite.com/e/an-evening-with-cory-doctorow-tickets-1504647263469 Recent appearances (permalink) Divesting from Amazon’s Audible and the Fight for Digital Rights (Libro.fm) https://pocketcasts.com/podcasts/9349e8d0-a87f-013a-d8af-0acc26574db2/00e6cbcf-7f27-4589-a11e-93e4ab59c04b The Utopias Podcast https://www.buzzsprout.com/2272465/episodes/17650124 Tariffs vs IP Law (Firewalls Don't Stop Dragons) https://www.youtube.com/watch?v=LFABFe-5-uQ Latest books (permalink) "Picks and Shovels": a sequel to "Red Team Blues," about the heroic era of the PC, Tor Books (US), Head of Zeus (UK), February 2025 (https://us.macmillan.com/books/9781250865908/picksandshovels). "The Bezzle": a sequel to "Red Team Blues," about prison-tech and other grifts, Tor Books (US), Head of Zeus (UK), February 2024 (the-bezzle.org). "The Lost Cause:" a solarpunk novel of hope in the climate emergency, Tor Books (US), Head of Zeus (UK), November 2023 (http://lost-cause.org). "The Internet Con": A nonfiction book about interoperability and Big Tech (Verso) September 2023 (http://seizethemeansofcomputation.org). Signed copies at Book Soup (https://www.booksoup.com/book/9781804291245). "Red Team Blues": "A grabby, compulsive thriller that will leave you knowing more about how the world works than you did before." Tor Books http://redteamblues.com. "Chokepoint Capitalism: How to Beat Big Tech, Tame Big Content, and Get Artists Paid, with Rebecca Giblin", on how to unrig the markets for creative labor, Beacon Press/Scribe 2022 https://chokepointcapitalism.com Upcoming books (permalink) "Canny Valley": A limited edition collection of the collages I create for Pluralistic, self-published, September 2025 "Enshittification: Why Everything Suddenly Got Worse and What to Do About It," Farrar, Straus, Giroux, October 7 2025 https://us.macmillan.com/books/9780374619329/enshittification/ "Unauthorized Bread": a middle-grades graphic novel adapted from my novella about refugees, toasters and DRM, FirstSecond, 2026 "Enshittification, Why Everything Suddenly Got Worse and What to Do About It" (the graphic novel), Firstsecond, 2026 "The Memex Method," Farrar, Straus, Giroux, 2026 "The Reverse-Centaur's Guide to AI," a short book about being a better AI critic, Farrar, Straus and Giroux, 2026 Colophon (permalink) Today's top sources: Currently writing: "The Reverse Centaur's Guide to AI," a short book for Farrar, Straus and Giroux about being an effective AI critic. (1090 words yesterday, 45491 words total). A Little Brother short story about DIY insulin PLANNING This work – excluding any serialized fiction – is licensed under a Creative Commons Attribution 4.0 license. That means you can use it any way you like, including commercially, provided that you attribute it to me, Cory Doctorow, and include a link to pluralistic.net. https://creativecommons.org/licenses/by/4.0/ Quotations and images are not included in this license; they are included either under a limitation or exception to copyright, or on the basis of a separate license. Please exercise caution. How to get Pluralistic: Blog (no ads, tracking, or data-collection): Pluralistic.net Newsletter (no ads, tracking, or data-collection): https://pluralistic.net/plura-list Mastodon (no ads, tracking, or data-collection): https://mamot.fr/@pluralistic Medium (no ads, paywalled): https://doctorow.medium.com/ Twitter (mass-scale, unrestricted, third-party surveillance and advertising): https://twitter.com/doctorow Tumblr (mass-scale, unrestricted, third-party surveillance and advertising): https://mostlysignssomeportents.tumblr.com/tagged/pluralistic "When life gives you SARS, you make sarsaparilla" -Joey "Accordion Guy" DeVilla READ CAREFULLY: By reading this, you agree, on behalf of your employer, to release me from all obligations and waivers arising from any and all NON-NEGOTIATED agreements, licenses, terms-of-service, shrinkwrap, clickwrap, browsewrap, confidentiality, non-disclosure, non-compete and acceptable use policies ("BOGUS AGREEMENTS") that I have entered into with your employer, its partners, licensors, agents and assigns, in perpetuity, without prejudice to my ongoing rights and privileges. You further represent that you have the authority to release me from any BOGUS AGREEMENTS on behalf of your employer. ISSN: 3066-764X

4 days ago 7 votes