Full Width [alt+shift+f] Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
14
The easiest way to be a 10x engineer is to make 10 other engineers 2x more efficient. Someone can be a 10x engineer if they do nothing for 364 days then convinces the team to change programming language to a 2x more productive language.
over a year ago

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from Home on Erik Bernhardsson

It's hard to write code for computers, but it's even harder to write code for humans

Writing code for a computer is hard enough. You take something big and fuzzy, some large vague business outcome you want to achive. Then you break it down recursively and think about all the cases until you have clear logical statements a computer can follow.

8 months ago 20 votes
Predicting solar eclipses with Python

As I am en route to see my first total solar eclipse, I was curious how hard it would be to compute eclipses in Python. It turns out, ignoring some minor coordinate system head-banging, I was able to get something half-decent working in a couple of hours.

a year ago 22 votes
Simple sabotage for software

CIA produced a fantastic book during the peak of World War 2 called Simple Sabotage. It laid out various ways for infiltrators to ruin productivity of a company. Some of the advice is timeless, for instance the section about “General interference with Organizations and Production”:

a year ago 20 votes
What I have been working on: Modal

Long story short: I'm working on a super cool tool called Modal. Please check it out — it lets you run things in the cloud without having to think about infrastructure. Scaling out, scheduling, containerization, using GPUs, setting up webhooks, and all kinds of other stuff.

over a year ago 20 votes
We are still early with the cloud: why software development is overdue for a change

This is is in many respects a successor to a blog post I wrote last year about what I want from software infrastructure, but the ideas morphed in my head into something sort of wider.

over a year ago 21 votes

More in technology

Epyx Oil Barons

Oil Barons. If You're Smart, You'll get Filthy Rich.

9 hours ago 2 votes
Recreating a bizarre century-old electronic instrument

There are a handful of instruments that are staples of modern music, like guitars and pianos. And then there are hundreds of other instruments that were invented throughout history and then fell into obscurity without much notice. The Luminaphone, invented by Harry Grindell Matthews and unveiled in 1925, is a particularly bizarre example. Few people […] The post Recreating a bizarre century-old electronic instrument appeared first on Arduino Blog.

yesterday 2 votes
2025-05-27 the first smart homes

Sometimes I think I should pivot my career to home automation critic, because I have many opinions on the state of the home automation industry---and they're pretty much all critical. Virtually every time I bring up home automation, someone says something about the superiority of the light switch. Controlling lights is one of the most obvious applications of home automation, and there is a roughly century long history of developments in light control---yet, paradoxically, it is an area where consumer home automation continues to struggle. An analysis of how and why billion-dollar tech companies fail to master the simple toggling of lights in response to human input will have to wait for a future article, because I will have a hard time writing one without descending into incoherent sobbing about the principles of scene control and the interests of capital. Instead, I want to just dip a toe into the troubled waters of "smart lighting" by looking at one of its earliest precedents: low-voltage lighting control. A source I generally trust, the venerable "old internet" website Inspectapedia, says that low-voltage lighting control systems date back to about 1946. The earliest conclusive evidence I can find of these systems is a newspaper ad from 1948, but let's be honest, it's a holiday and I'm only making a half effort on the research. In any case, the post-war timing is not a coincidence. The late 1940s were a period of both rapid (sub)urban expansion and high copper prices, and the original impetus for relay systems seems to have been the confluence of these two. But let's step back and explain what a relay or low-voltage lighting control system is. First, I am not referring to "low voltage lighting" meaning lights that run on 12 or 24 volts DC or AC, as was common in landscape lighting and is increasingly common today for integrated LED lighting. Low-voltage lighting control systems are used for conventional 120VAC lights. In the most traditional construction, e.g. in the 1940s, lights would be served by a "hot" wire that passed through a wall box containing a switch. In many cases the neutral (likely shared with other fixtures) went directly from the light back to the panel, bypassing the switch... running both the hot and neutral through the switch box did not become conventional until fairly recently, to the chagrin of anyone installing switches that require a neutral for their own power, like timers or "smart" switches. The problem with this is that it lengthens the wiring runs. If you have a ceiling fixture with two different switches in a three-way arrangement, say in a hallway in a larger house, you could be adding nearly 100' in additional wire to get the hot to the switches and the runner between them. The cost of that wiring, in the mid-century, was quite substantial. Considering how difficult it is to find an employee to unlock the Romex cage at Lowes these days, I'm not sure that's changed that much. There are different ways of dealing with this. In the UK, the "ring main" served in part to reduce the gauge (and thus cost) of outlet wiring, but we never picked up that particular eccentricity in the US (for good reason). In commercial buildings, it's not unusual for lighting to run on 240v for similar reasons, but 240v is discouraged in US residential wiring. Besides, the mid-century was an age of optimism and ambition in electrical technology, the days of Total Electric Living. Perhaps the technology of the relay, refined by so many innovations of WWII, could offer a solution. Switch wiring also had to run through wall cavities, an irritating requirement in single-floor houses where much of the lighting wiring could be contained to the attic. The wiring of four-way and other multi-switch arrangements could become complex and require a lot more wall runs, discouraging builders providing switches in the most convenient places. What if relays also made multiple switches significantly easier to install and relocate? You probably get the idea. In a typical low-voltage lighting control system, a transformer provides a low voltage like 24VAC, much the same as used by doorbells. The light switches simply toggle the 24VAC control power to the coils of relays. Some (generally older) systems powered the relay continuously, but most used latching relays. In this case, all light switches are momentary, with an "on" side and an "off" side. This could be a paddle that you push up or down (much like a conventional light switch), a bar that you push the left or right sides of, or a pair of two push buttons. In most installations, all of the relays were installed together in a single enclosure, usually in the attic where the high-voltage wiring to the actual lights would be fairly short. The 24VAC cabling to the switches was much smaller gauge, and depending on the jurisdiction might not require any sort of license to install. Many systems had enclosures with separate high voltage and low voltage components, or mounted the relays on the outside of an enclosure such that the high voltage wiring was inside and low voltage outside. Both arrangements helped to meet code requirements for isolating high and low voltage systems and provided a margin of safety in the low voltage wiring. That provided additional cost savings as well; low voltage wiring was usually installed without any kind of conduit or sheathed cable. By 1950, relay lighting controls were making common appearances in real estate listings. A feature piece on the "Melody House," a builder's model home, in the Tacoma News Tribune reads thus: Newest features in the house are the low voltage touch plate and relay system lighting controls, with wide plates instead of snap buttons---operated like the stops of a pipe organ, with the merest flick of a finger. The comparison to a pipe organ is interesting, first in its assumption that many readers were familiar with typical organ stops. Pipe organs were, increasingly, one of the technological marvels of the era: while the concept of the pipe organ is very old, this same era saw electrical control systems (replete with relays!) significantly reduce the cost and complexity of organ consoles. What's more, the tonewheel electric organ had become well-developed and started to find its way into homes. The comparison is also interesting because of its deficiencies. The Touch-Plate system described used wide bars, which you pressed the left or right side of---you could call them momentary SPDT rocker switches if you wanted. There were organs with similar rocker stops but I do not think they were common in 1950. My experience is that such rocker switch stops usually indicate a fully digital control system, where they make momentary action unobtrusive and avoid state synchronization problems. I am far from an expert on organs, though, which is why I haven't yet written about them. If you have a guess at which type of pipe organ console our journalist was familiar with, do let me know. Touch-Plate seems to have been one of the first manufacturers of these systems, although I can't say for sure that they invented them. Interestingly, Touch-Plate is still around today, but their badly broken WordPress site ("Welcome to the new touch-plate.com" despite it actually being touchplate.com) suggests they may not do much business. After a few pageloads their WordPress plugin WAF blocked me for "exceed[ing] the maximum number of page not found errors per minute for humans." This might be related to my frustration that none of the product images load. It seems that the Touch-Plate company has mostly pivoted to reselling imported LED lighting (touchplateled.com), so I suppose the controls business is withering on the vine. The 1950s saw a proliferation of relay lighting control brands, with GE introducing a particularly popular system with several generations of fixtures. Kyle Switch Plates, who sell replacement switch plates (what else?), list options for Remcon, Sierra, Bryant, Pyramid, Douglas, and Enercon systems in addition to the two brands we have met so far. As someone who pays a little too much attention to light switches, I have personally seen four of these brands, three of them still in use and one apparently abandoned in place. Now, you might be thinking that simply economizing wiring by relocating the switches does not constitute "home automation," but there are other features to consider. For one, low-voltage light control systems made it feasible to install a lot more switches. Houses originally built with them often go a little wild with the n-way switching, every room providing lightswitches at every door. But there is also the possibility of relay logic. From the same article: The necessary switches are found in every room, but in the master bedroom there is a master control panel above the bed, from where the house and yard may be flooded with instant light in case of night emergency. Such "master control panels" were a big attraction for relay lighting, and the finest homes of the 1950s and 1960s often displayed either a grid of buttons near the head of the master bed, or even better, a GE "Master Selector" with a curious system of rotary switches. On later systems, timers often served as auxiliary switches, so you could schedule exterior lights. With a creative installer, "scenes" were even possible by wiring switches to arbitrary sets of relays (this required DC or half-wave rectified control power and diodes to isolate the switches from each other). Many of these relay control systems are still in use today. While they are quite outdated in a certain sense, the design is robust and the simple components mean that it's usually not difficult to find replacement parts when something does fail. The most popular system is the one offered by GE, using their RR series relays (RR3, RR4, etc., to the modern RR9). That said, GE suggests a modernization path to their LightSweep system, which is really a 0-10v analog dimming controller that has the add-on ability to operate relays. The failure modes are mostly what you would expect: low voltage wiring can chafe and short, or the switches can become stuck. This tends to cause the lights to stick on or off, and the continuous current through the relay coil often burns it out. The fix requires finding the stuck switch or short and correcting it, and then replacing the relay. One upside of these systems that persists today is density: the low voltage switches are small, so with most systems you can fit 3 per gang. Another is that they still make N-way switching easier. There is arguably a safety benefit, considering the reduction in mains-voltage wire runs. Yet we rarely see such a thing installed in homes newer than around the '80s. I don't know that I can give a definitive explanation of the decline of relay lighting control, but reduced prices for copper wiring were probably a main factor. The relays added a failure point, which might lead to a perception of unreliability, and the declining familiarity of electricians means that installing a relay system could be expensive and frustrating today. What really interests me about relay systems is that they weren't really replaced... the idea just went away. It's not like modern homes are providing a master control panel in the bedroom using some alternative technology. I mean, some do, those with prices in the eight digits, but you'll hardly ever see it. That gets us to the tension between residential lighting and architectural lighting control systems. In higher-end commercial buildings, and in environments like conference rooms and lecture halls, there's a well established industry building digital lighting control systems. Today, DALI is a common standard for the actual lighting control, but if you look at a range of existing buildings you will find everything from completely proprietary digital distributed dimming to 0-10v analog dimming to central dimmer racks (similar to traditional theatrical lighting). Relay lighting systems were, in a way, a nascent version of residential architectural lighting control. And the architectural lighting control industry continues to evolve. If there is a modern equivalent to relay lighting, it's something like Lutron QSX. That's a proprietary digital lighting (and shade) control system, marketed for both residential and commercial use. QSX offers a wide range of attractive wall controls, tight integration to Lutron's HomeSense home automation platform, and a price tag that'll make your eyes water. Lutron has produced many generations of these systems, and you could make an argument that they trace their heritage back to the relay systems of the 1940s. But they're just priced way beyond the middle-class home. And, well, I suppose that requires an argument based on economics. Prices have gone up. Despite tract construction being a much older idea than people often realize, it seems clear that today's new construction homes have been "value engineered" to significantly lower feature and quality levels than those of the mid-century---but they're a lot bigger. There is a sort of maxim that today's home buyers don't care about anything but square footage, and if you've seen what Pulte or D. R. Horton are putting up... well, I never knew that 3,000 sq ft could come so cheap, and look it too. Modern new-construction homes just don't come with the gizmos that older ones did, especially in the '60s and '70s. Looking at the sales brochure for a new development in my own Albuquerque ("Estates at La Cuentista"), besides 21st century suburbanization (Gated Community! "East Access to Paseo del Norte" as if that's a good thing!) most of the advertised features are "big." I'm serious! If you look at the "More Innovation Built In" section, the "innovations" are a home office (more square footage), storage (more square footage), indoor and outdoor gathering spaces (to be fair, only the indoor ones are square footage), "dedicated learning areas" for kids (more square footage), and a "basement or bigger garage" for a home gym (more square footage). The only thing in the entire innovation section that I would call a "technical" feature is water filtration. You can scroll down for more details, and you get to things like "space for a movie room" and a finished basement described eight different ways. Things were different during the peak of relay lighting in the '60s. A house might only be 1,600 sq ft, but the builder would deck it out with an intercom (including multi-room audio of a primitive sort), burglar alarm, and yes, relay lighting. All of these technologies were a lot newer and people were more excited about them; I bring up Total Electric Living a lot because of an aesthetic obsession but it was a large-scale advertising and partnership campaign by the electrical industry (particularly Westinghouse) that gave builders additional cross-promotion if they included all of these bells and whistles. Remember, that was when people were watching those old videos about the "kitchen of the future." What would a 2025 "Kitchen of the Future" promotional film emphasize? An island bigger than my living room and a nook for every meal, I assume. Features like intercoms and even burglar alarms have become far less common in new construction, and even if they were present I don't think most buyers would use them. But that might seem a little odd, right, given the push towards home automation? Well, built-in home automation options have existed for longer than any of today's consumer solutions, but "built in" is a liability for a technology product. There are practical reasons, in that built-in equipment is harder to replace, but there's also a lamer commercial reason. Consumer technology companies want to sell their products like consumer technology, so they've recontextualized lighting control as "IoT" and "smart" and "AI" rather than something an electrician would hook up. While I was looking into relay lighting control systems, I ran into an interesting example. The Lutron Lu Master Lumi 5. What a name! Lutron loves naming things like this. The Lumi 5 is a 1980s era product with essentially the same features as a relay system, but architected in a much stranger way. It is, essentially, five three way switches in a box with remote controls. That means that each of the actual light switches in the house (which could also be dimmers) need mains-voltage wiring, including runner, back to the Lumi 5 "interface." Pressing a button on one of the Lutron wall panels toggles the state of the relay in the "interface" cabinet, toggling the light. But, since it's all wired as a three-way switch, toggling the physical switch at the light does the same thing. As is typical when combining n-way switches and dimming, the Lumi 5 has no control over dimmers. You can only dim a light up or down at the actual local control, the Lumi 5 can just toggle the dimmer on and off using the 3-way runner. The architecture also means that you have two fundamentally different types of wall panels in your house: local switches or dimmers wired to each light, and the Lu Master panels with their five buttons for the five circuits, along with "all on" and "all off." The Lumi 5 "interface" uses simple relay logic to implement a few more features. Five mains-voltage-level inputs can be wired to time clocks, so that you can schedule any combination(s) of the circuits to turn on and off. The manual recommends models including one with an astronomical clock for sunrise/sunset. An additional input causes all five circuits to turn on; it's suggested for connection to an auxiliary relay on a burglar alarm to turn all of the lights on should the alarm be triggered. The whole thing is strange and fascinating. It is basically a relay lighting control system, like so many before it, but using a distinctly different wiring convention. I think the main reason for the odd wiring was to accommodate dimmers, an increasingly popular option in the 1980s that relay systems could never really contend with. It doesn't have the cost advantages of relay systems at all, it will definitely be more expensive! But it adds some features over the fancy Lutron switches and dimmers you were going to install anyway. The Lu Master is the transitional stage between relay lighting systems and later architectural lighting controls, and it straddled too the end of relay light control in homes. It gives an idea of where relay light control in homes would have evolved, had the whole technology not been doomed to the niche zone of conference centers and universities. If you think about it, the Lu Master fills the most fundamental roles of home automation in lighting: control over multiple lights in a convenient place, scheduling and triggers, and an emergency function. It only lacks scenes, which I think we can excuse considering that the simple technology it uses does not allow it to adjust dimmers. And all of that with no Node-RED in sight! Maybe that conveys what most frustrates me about the "home automation" industry: it is constantly reinventing the wheel, an oligopoly of tech companies trying to drag people's homes into their "ecosystem." They do so by leveraging the buzzword of the moment, IoT to voice assistants to, I guess now AI?, to solve a basic set of problems that were pretty well solved at least as early as 1948. That's not to deny that modern home automation platforms have features that old ones don't. They are capable of incredibly sophisticated things! But realistically, most of their users want only very basic functionality: control in convenient places, basic automation, scenes. It wouldn't sting so much if all these whiz-bang general purpose computers were good at those tasks, but they aren't. For the very most basic tasks, things like turning on and off a group of lights, major tech ecosystems like HomeKit provide a user experience that is significantly worse than the model home of 1950. You could install a Lutron system, and it would solve those fundamental tasks much better... for a much higher price. But it's not like Lutron uses all that money to be an absolute technical powerhouse, a center of innovation at the cutting edge. No, even the latest Lutron products are really very simple, technically. The technical leaders here, Google, Apple, are the companies that can't figure out how to make a damn light switch. The problem with modern home automation platforms is that they are too ambitious. They are trying to apply enormously complex systems to very simple tasks, and thus contaminating the simplest of electrical systems with all the convenience and ease of a Smart TV. Sometimes that's what it feels like this whole industry is doing: adding complexity while the core decays. From automatic programming to AI coding agents, video terminals to Electron, the scope of the possible expands while the fundamentals become more and more irritating. But back to the real point, I hope you learned about some cool light switches. Check out the Kyle Switch Plates reference and you'll start seeing these buildings and homes, at least if you live in an area that built up during the era that they were common (1950s to the 1970s).

yesterday 2 votes
YouTuber builds robot to make boyfriend take out the trash

Is there anything more irritating than living with a partner who procrastinates on their share of the chores? Even if it isn’t malicious, it sure is annoying. Taking out the trash is YouTuber CircuitCindy’s boyfriend’s responsibility, but he often fails to do the task in a timely manner. That forced Cindy to implement a sinister […] The post YouTuber builds robot to make boyfriend take out the trash appeared first on Arduino Blog.

2 days ago 3 votes
Datamost Nightraiders

Day Must Turn to Night Before Mankind Dares to Fight

3 days ago 8 votes