Full Width [alt+shift+f] Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
144
I’ve been interested in functional reactive programming (FRP) for about a decade now. I even wrote a couple of blog posts back in 2014 describing my experiments. My initial source of inspiration was Elm, the Haskell-like language for the web that once had FRP as a core part of the language. Evan Czaplicki’s Strange Loop 2013 talk really impressed me, especially that Mario demo. From there, I explored the academic literature on the subject. Ultimately, I created and then abandoned a library that focused on FRP for games. It was a neat idea, but the performance was terrible. The overhead of my kinda-sorta FRP system was part of the problem, but mostly it was my own inexperience. I didn’t know how to optimize effectively and my implementation language, Guile, did not have as many optimization passes as it does now. Also, realtime simulations like games require much more careful use of heap allocation. I found that, overhead aside, FRP is a bad fit for things like scripting...
10 months ago

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from dthompson

Guile-websocket 0.2.0 released

I'm happy to announce that guile-websocket 0.2.0 has been released! Guile-websocket is an implementation of the WebSocket protocol, both the client and server sides, for Guile Scheme. This release introduces breaking changes that overhaul the client and server implementations in order to support non-blocking I/O and TLS encrypted connections. source tarball: https://files.dthompson.us/guile-websocket/guile-websocket-0.2.0.tar.gz signature: https://files.dthompson.us/guile-websocket/guile-websocket-0.2.0.tar.gz.asc See the guile-websocket project page for more information. Bug reports, bug fixes, feature requests, and patches are welcomed.

3 months ago 66 votes
Wasm GC isn’t ready for realtime graphics

Wasm GC is a wonderful thing that is now available in all major web browsers since slowpoke Safari/WebKit finally shipped it in December. It provides a hierarchy of heap allocated reference types and a set of instructions to operate on them. Wasm GC enables managed memory languages to take advantage of the advanced garbage collectors inside web browser engines. It’s now possible to implement a managed memory language without having to ship a GC inside the binary. The result is smaller binaries, better performance, and better integration with the host runtime. However, Wasm GC has some serious drawbacks when compared to linear memory. I enjoy playing around with realtime graphics programming in my free time, but I was disappointed to discover that Wasm GC just isn’t a good fit for that right now. I decided to write this post because I’d like to see Wasm GC on more or less equal footing with linear memory when it comes to binary data manipulation. Hello triangle For starters, let's take a look at what a “hello triangle” WebGL demo looks like with Wasm GC. I’ll use Hoot, the Scheme to Wasm compiler that I work on, to build it. Below is a Scheme program that declares imports for the subset of the WebGL, HTML5 Canvas, etc. APIs that are necessary and then renders a single triangle: (use-modules (hoot ffi)) ;; Document (define-foreign get-element-by-id "document" "getElementById" (ref string) -> (ref null extern)) ;; Element (define-foreign element-width "element" "width" (ref extern) -> i32) (define-foreign element-height "element" "height" (ref extern) -> i32) ;; Canvas (define-foreign get-canvas-context "canvas" "getContext" (ref extern) (ref string) -> (ref null extern)) ;; WebGL (define GL_VERTEX_SHADER 35633) (define GL_FRAGMENT_SHADER 35632) (define GL_COMPILE_STATUS 35713) (define GL_LINK_STATUS 35714) (define GL_ARRAY_BUFFER 34962) (define GL_STATIC_DRAW 35044) (define GL_COLOR_BUFFER_BIT 16384) (define GL_TRIANGLES 4) (define GL_FLOAT 5126) (define-foreign gl-create-shader "gl" "createShader" (ref extern) i32 -> (ref extern)) (define-foreign gl-delete-shader "gl" "deleteShader" (ref extern) (ref extern) -> none) (define-foreign gl-shader-source "gl" "shaderSource" (ref extern) (ref extern) (ref string) -> none) (define-foreign gl-compile-shader "gl" "compileShader" (ref extern) (ref extern) -> none) (define-foreign gl-get-shader-parameter "gl" "getShaderParameter" (ref extern) (ref extern) i32 -> i32) (define-foreign gl-get-shader-info-log "gl" "getShaderInfoLog" (ref extern) (ref extern) -> (ref string)) (define-foreign gl-create-program "gl" "createProgram" (ref extern) -> (ref extern)) (define-foreign gl-delete-program "gl" "deleteProgram" (ref extern) (ref extern) -> none) (define-foreign gl-attach-shader "gl" "attachShader" (ref extern) (ref extern) (ref extern) -> none) (define-foreign gl-link-program "gl" "linkProgram" (ref extern) (ref extern) -> none) (define-foreign gl-use-program "gl" "useProgram" (ref extern) (ref extern) -> none) (define-foreign gl-get-program-parameter "gl" "getProgramParameter" (ref extern) (ref extern) i32 -> i32) (define-foreign gl-get-program-info-log "gl" "getProgramInfoLog" (ref extern) (ref extern) -> (ref string)) (define-foreign gl-create-buffer "gl" "createBuffer" (ref extern) -> (ref extern)) (define-foreign gl-delete-buffer "gl" "deleteBuffer" (ref extern) (ref extern) -> (ref extern)) (define-foreign gl-bind-buffer "gl" "bindBuffer" (ref extern) i32 (ref extern) -> none) (define-foreign gl-buffer-data "gl" "bufferData" (ref extern) i32 (ref eq) i32 -> none) (define-foreign gl-enable-vertex-attrib-array "gl" "enableVertexAttribArray" (ref extern) i32 -> none) (define-foreign gl-vertex-attrib-pointer "gl" "vertexAttribPointer" (ref extern) i32 i32 i32 i32 i32 i32 -> none) (define-foreign gl-draw-arrays "gl" "drawArrays" (ref extern) i32 i32 i32 -> none) (define-foreign gl-viewport "gl" "viewport" (ref extern) i32 i32 i32 i32 -> none) (define-foreign gl-clear-color "gl" "clearColor" (ref extern) f64 f64 f64 f64 -> none) (define-foreign gl-clear "gl" "clear" (ref extern) i32 -> none) (define (compile-shader gl type source) (let ((shader (gl-create-shader gl type))) (gl-shader-source gl shader source) (gl-compile-shader gl shader) (unless (= (gl-get-shader-parameter gl shader GL_COMPILE_STATUS) 1) (let ((info (gl-get-shader-info-log gl shader))) (gl-delete-shader gl shader) (error "shader compilation failed" info))) shader)) (define (link-shader gl vertex-shader fragment-shader) (let ((program (gl-create-program gl))) (gl-attach-shader gl program vertex-shader) (gl-attach-shader gl program fragment-shader) (gl-link-program gl program) (unless (= (gl-get-program-parameter gl program GL_LINK_STATUS) 1) (let ((info (gl-get-program-info-log gl program))) (gl-delete-program gl program) (error "program linking failed" info))) program)) ;; Setup GL context (define canvas (get-element-by-id "canvas")) (define gl (get-canvas-context canvas "webgl")) (when (external-null? gl) (error "unable to create WebGL context")) ;; Compile shader (define vertex-shader-source "attribute vec2 position; attribute vec3 color; varying vec3 fragColor; void main() { gl_Position = vec4(position, 0.0, 1.0); fragColor = color; }") (define fragment-shader-source "precision mediump float; varying vec3 fragColor; void main() { gl_FragColor = vec4(fragColor, 1); }") (define vertex-shader (compile-shader gl GL_VERTEX_SHADER vertex-shader-source)) (define fragment-shader (compile-shader gl GL_FRAGMENT_SHADER fragment-shader-source)) (define shader (link-shader gl vertex-shader fragment-shader)) ;; Create vertex buffer (define stride (* 4 5)) (define buffer (gl-create-buffer gl)) (gl-bind-buffer gl GL_ARRAY_BUFFER buffer) (gl-buffer-data gl GL_ARRAY_BUFFER #f32(-1.0 -1.0 1.0 0.0 0.0 1.0 -1.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0) GL_STATIC_DRAW) ;; Draw (gl-viewport gl 0 0 (element-width canvas) (element-height canvas)) (gl-clear gl GL_COLOR_BUFFER_BIT) (gl-use-program gl shader) (gl-enable-vertex-attrib-array gl 0) (gl-vertex-attrib-pointer gl 0 2 GL_FLOAT 0 stride 0) (gl-enable-vertex-attrib-array gl 1) (gl-vertex-attrib-pointer gl 1 3 GL_FLOAT 0 stride 8) (gl-draw-arrays gl GL_TRIANGLES 0 3) Note that in Scheme, the equivalent of a Uint8Array is a bytevector. Hoot uses a packed array, an (array i8) specifically, for the contents of a bytevector. And here is the JavaScript code necessary to boot the resulting Wasm binary: window.addEventListener("load", async () => { function bytevectorToUint8Array(bv) { let len = reflect.bytevector_length(bv); let array = new Uint8Array(len); for (let i = 0; i < len; i++) { array[i] = reflect.bytevector_ref(bv, i); } return array; } let mod = await SchemeModule.fetch_and_instantiate("triangle.wasm", { reflect_wasm_dir: 'reflect-wasm', user_imports: { document: { getElementById: (id) => document.getElementById(id) }, element: { width: (elem) => elem.width, height: (elem) => elem.height }, canvas: { getContext: (elem, type) => elem.getContext(type) }, gl: { createShader: (gl, type) => gl.createShader(type), deleteShader: (gl, shader) => gl.deleteShader(shader), shaderSource: (gl, shader, source) => gl.shaderSource(shader, source), compileShader: (gl, shader) => gl.compileShader(shader), getShaderParameter: (gl, shader, param) => gl.getShaderParameter(shader, param), getShaderInfoLog: (gl, shader) => gl.getShaderInfoLog(shader), createProgram: (gl, type) => gl.createProgram(type), deleteProgram: (gl, program) => gl.deleteProgram(program), attachShader: (gl, program, shader) => gl.attachShader(program, shader), linkProgram: (gl, program) => gl.linkProgram(program), useProgram: (gl, program) => gl.useProgram(program), getProgramParameter: (gl, program, param) => gl.getProgramParameter(program, param), getProgramInfoLog: (gl, program) => gl.getProgramInfoLog(program), createBuffer: (gl) => gl.createBuffer(), deleteBuffer: (gl, buffer) => gl.deleteBuffer(buffer), bindBuffer: (gl, target, buffer) => gl.bindBuffer(target, buffer), bufferData: (gl, buffer, data, usage) => { let bv = new Bytevector(reflect, data); gl.bufferData(buffer, bytevectorToUint8Array(bv), usage); }, enableVertexAttribArray: (gl, index) => gl.enableVertexAttribArray(index), vertexAttribPointer: (gl, index, size, type, normalized, stride, offset) => { gl.vertexAttribPointer(index, size, type, normalized, stride, offset); }, drawArrays: (gl, mode, first, count) => gl.drawArrays(mode, first, count), viewport: (gl, x, y, w, h) => gl.viewport(x, y, w, h), clearColor: (gl, r, g, b, a) => gl.clearColor(r, g, b, a), clear: (gl, mask) => gl.clear(mask) } } }); let reflect = await mod.reflect({ reflect_wasm_dir: 'reflect-wasm' }); let proc = new Procedure(reflect, mod.get_export("$load").value); proc.call(); }); Hello problems There are two major performance issues with this program. One is visible in the source above, the other is hidden in the language implementation. Heap objects are opaque on the other side Wasm GC heap objects are opaque to the host. Likewise, heap objects from the host are opaque to the Wasm guest. Thus the contents of an (array i8) object are not visible from JavaScript and the contents of a Uint8Array are not visible from Wasm. This is a good security property in the general case, but it’s a hinderance in this specific case. Let’s say we have an (array i8) full of vertex data we want to put into a WebGL buffer. To do this, we must make one JS->Wasm call for each byte in the array and store it into a Uint8Array. This is what the bytevectorToUint8Array function above is doing. Copying any significant amount of data per frame is going to tank performance. Hope you aren’t trying to stream vertex data! Contrast the previous paragraph with Wasm linear memory. A WebAssembly.Memory object can be easily accessed from JavaScript as an ArrayBuffer. To get a blob of vertex data out of a memory object, you just need to know the byte offset and length and you’re good to go. There are many Wasm linear memory applications using WebGL successfully. Manipulating multi-byte binary data is inefficient To read a multi-byte number such as an unsigned 32-bit integer from an (array i8), you have to fetch each individual byte and combine them together. Here’s a self-contained example that uses Guile-flavored WAT format: (module (type $bytevector (array i8)) (data $init #u32(123456789)) (func (export "main") (result i32) (local $a (ref $bytevector)) (local.set $a (array.new_data $bytevector $init (i32.const 0) (i32.const 4))) (array.get_u $bytevector (local.get $a) (i32.const 0)) (i32.shl (array.get_u $bytevector (local.get $a) (i32.const 1)) (i32.const 8)) (i32.or) (i32.shl (array.get_u $bytevector (local.get $a) (i32.const 2)) (i32.const 16)) (i32.or) (i32.shl (array.get_u $bytevector (local.get $a) (i32.const 3)) (i32.const 24)) (i32.or))) By contrast, Wasm linear memory needs but a single i32.load instruction: (module (memory 1) (func (export "main") (result i32) (i32.store (i32.const 0) (i32.const 123456789)) (i32.load (i32.const 0)))) Easy peasy. Not only is it less code, it's a lot more efficient. Unsatisfying workarounds There’s no way around the multi-byte problem at the moment, but for byte access from JavaScript there are some things we could try to work with what we have been given. Spoiler alert: None of them are pleasant. Use Uint8Array from the host This approach makes all binary operations from within the Wasm binary slow since we’d have to cross the Wasm->JS bridge for each read/write. Since most of the binary data manipulation is happening in the Wasm module, this approach will just make things slower overall. Use linear memory for bytevectors This would require a little malloc/free implementation and a way to reclaim memory for GC'd bytevectors. You could register every bytevector in a FinalizationRegistry in order to be notified upon GC and free the memory. Now you have to deal with memory fragmentation. This is Wasm GC, we shouldn’t have to do any of this! Use linear memory as a scratch space This avoids crossing the Wasm/JS boundary for each byte, but still involves a byte-by-byte copy from (array i8) to linear memory within the Wasm module. So far this feels like the least worst option, but the extra copy is still going to greatly reduce throughput. Wasm GC needs some fixin' I’ve used realtime graphics as an example because it’s a use case that is very sensitive to performance issues, but this unfortunate need to copy binary data byte-by-byte is also the reason why strings are trash on Wasm GC right now. Stringref is a good proposal and the Wasm community group made a mistake by rejecting it. Anyway, there has been some discussion about both multi-byte and ArrayBuffer access on GitHub, but as far as I can tell neither issue is anywhere close to a resolution. Can these things be implemented efficiently? How can the need for direct access to packed arrays from JS be reconciled with Wasm heap object opaqueness? I hope the Wasm community group can arrive at solutions sooner than later because it will take a long time to get the proposal(s) to phase 4 and shipped in all browsers, perhaps years. It would be a shame to be effectively shut out from using WebGPU when it finally reaches stable browser releases.

3 months ago 60 votes
Guile-Bstructs 0.1.0 released

I'm pleased to announce that the very first release of guile-bstructs, version 0.1.0, has been released! This is a library I've been working on for quite some time and after more than one rewrite and many smaller refactors I think it's finally ready to release publicly. Let's hope I'm not wrong about that! About guile-bstructs Guile-bstructs is a library that provides structured read/write access to binary data for Guile. A bstruct (short for “binary structure”) is a data type that encapsulates a bytevector and a byte offset which interprets that bytevector based on a specified layout. Some use cases for bstructs are: manipulating C structs when using the foreign function interface packing GPU vertex buffers when using graphics APIs such as OpenGL implementing data types that benefit from Guile's unboxed math optimizations such as vectors and matrices This library was initially inspired by guile-opengl's define-packed-struct syntax but is heavily based on "Ftypes: Structured foreign types" by Andy Keep and R. Kent Dybvig. The resulting interface is quite similar but the implementation is completely original. This library provides a syntax-heavy interface; nearly all of the public API is syntax. This is done to ensure that bstruct types are static and well-known at compile time resulting in efficient bytecode and minimal runtime overhead. A subset of the interface deals in raw bytevector access for accessing structured data in bytevectors directly without going through an intermediary bstruct wrapper. This low-level interface is useful for certain batch processing situations where the overhead of creating wrapper bstructs would hinder throughput. Example Here are some example type definitions to give you an idea of what it’s like to use guile-bstructs: ;; Struct (define-bstruct <vec2> (padded (struct (x float) (y float)))) ;; Type group with a union (define-bstruct (<mouse-move-event> (struct (type uint8) (x int32) (y int32))) (<mouse-button-event> (struct (type uint8) (button uint8) (state uint8) (x int32) (y int32))) (<event> (union (type uint8) (mouse-move <mouse-move-event>) (mouse-button <mouse-button-event>)))) ;; Array (define-bstruct <matrix4> (array 16 float)) ;; Bit fields (define-bstruct <date> (bits (year 32 s) (month 4 u) (day 5 u))) ;; Pointer (define-bstruct (<item> (struct (type int))) (<chest> (struct (opened? uint8) (item (* <item>))))) ;; Packed struct modifier (define-bstruct <enemy> (packed (struct (type uint8) (health uint32)))) ;; Endianness modifier (define-bstruct <big-float> (endian big float)) ;; Recursive type (define-bstruct <node> (struct (item int) (next (* <node>)))) ;; Mutually recursive type group (define-bstruct (<forest> (struct (children (* <tree>)))) (<tree> (struct (value int) (forest (* <forest>)) (next (* <tree>))))) ;; Opaque type (define-bstruct SDL_GPUTexture) Download Source tarball: guile-bstructs-0.1.0.tar.gz GPG signature: guile-bstructs-0.1.0.tar.gz.asc This release was signed with this GPG key. See the guile-bstructs project page for more information.

4 months ago 70 votes
Lisp: Icing or Cake?

The Spring Lisp Game Jam 2024 ended one week ago. 48 games were submitted, a new record for the jam! This past week has been a time for participants to play and rate each other’s games. As I explored the entries, I noticed two distinct meta-patterns in how people approached building games with Lisp. I think these patterns apply more broadly to all applications of Lisp. Let’s talk about these patterns in some detail, with examples. But first! Here’s the breakdown of the jam submissions by language: lang entries % (rounded) ---- ------- ----------- guile 15 31 fennel 10 21 clojure 5 10 cl 5 10 racket 4 8 elisp 4 8 s7 3 6 kawa 1 2 owl 1 2 I haven’t rolled up the various Schemes (Guile, Racket, S7, Kawa) into a general scheme category because Scheme is so minimally specified and they are all very distinct implementations for different purposes, not to mention that Racket has a lot more going on than just Scheme. For the first time ever, Guile came out on top with the most submissions! There’s a very specific reason for this outcome. 11 out of the 15 Guile games were built for the web with Hoot, a Scheme-to-WebAssembly compiler that I work on at the Spritely Institute. 2 of those 11 were official Spritely projects. We put out a call for people to try making games with Hoot before the jam started, and a lot of people took us up on it! Very cool! The next most popular language, which is typically the most popular language in these jams, is Fennel. Fennel is a Lisp that compiles to Lua. It’s very cool, too! Also of note, at least to me as a Schemer, is that three games used S7. Hmm, there might be something relevant to this post going on there. The patterns I’m about to talk about could sort of be framed as “The Guile Way vs. The Fennel Way”, but I don’t want to do that. It's not an “us vs. them” thing. It’s wonderful that there are so many flavors of Lisp these days that anyone can find a great implementation that suits their preferences. Not only that, but many of these implementations can be used to make games that anyone can easily play in their web browser! That was not the case several years ago. Incredible! I want to preface the rest of this post by saying that both patterns are valid, and while I prefer one over the other, that is not to say that the other is inferior. I'll also show how these patterns can be thought of as two ends of a spectrum and how, in the end, compromises must be made. Okay, let’s get into it! Lisp as icing The icing pattern is using Lisp as a “scripting” language on top of a cake that is made from C, Rust, and other static languages. The typical way to do this is by embedding a Lisp interpreter into the larger program. If you’re most interested in writing the high-level parts of an application in Lisp then this pattern is the fastest way to get there. All you need is a suitable interpreter/compiler and a way to add the necessary hooks into your application. Since the program is mainly C/Rust/whatever, you can then use emscripten to compile it to WebAssembly and deploy to the web. Instant gratification, but strongly tied to static languages and their toolchains. S7 is an example of an embeddable Scheme. Guile is also used for extending C programs, though typically that involves dynamically linking to libguile rather than embedding the interpreter into the program’s executable. Fennel takes a different approach, recognizing that there are many existing applications that are already extensible through Lua, and provides a lispy language that compiles to Lua. Lisp as cake The cake pattern is using Lisp to implement as much of the software stack as possible. It’s Lisp all the way down... sorta. Rather than embedding Lisp into a non-Lisp program, the cake pattern does the inverse: the majority of the program is written in Lisp. When necessary, shared libraries can be called via a foreign function interface, but this should be kept to a minimum. This approach takes longer to yield results. Time is spent implementing missing libraries for your Lisp of choice and writing wrappers around the C shared libraries you can’t avoid using. Web deployment gets trickier, too, since the project is not so easily emscriptenable. (You may recognize this as the classic embed vs. extend debate. You’re correct! I'm just adding my own thoughts and applying it specifically to some real-world Lisp projects.) I mentioned Guile as an option for icing, but Guile really shines best as cake. The initial vision for Guile was to Emacsify other programs by adding a Scheme interpreter to them. These days, the best practice is to write your program in Scheme to begin with. Common Lisp is probably the best example, though. Implementations like SBCL have good C FFIs and can compile efficient native executables, minimizing the desire to use some C for performance reasons. Case studies Let’s take a look at some of the languages and libraries used for the Lisp Game Jam and evaluate their icing/cake-ness. Fennel + love2d love2d has been a popular choice for solo or small team game development for many years. It is a C++ program that embeds a Lua interpreter, which means it’s a perfect target for Fennel. Most Linux distributions package love2d, so it’s easy to run .love files natively. Additionally, thanks to emscripten, love2d games can be deployed to the web. Thus most Fennel games use love2d. ./soko.bin and Gnomic Vengeance are two games that use this stack. Fennel + love2d is a perfect example of Lisp as icing. Fennel sits at the very top of the stack, but there’s not really a path to spread Lisp into the layers below. It is also the most successful Lisp game development stack to date. S7 + raylib This stack is new to me, but two games used it this time around: GhostHop and Life Predictor. (You really gotta play GhostHop, btw. It’s a great little puzzle game and it is playable on mobile devices.) Raylib is a C library with bindings for many higher-level languages that has become quite popular in recent years. S7 is also implemented in C and is easily embeddable. This makes the combination easy to deploy on the web with emscripten. S7 + raylib is another example of Lisp as icing. I’m curious to see if this stack becomes more popular in future jams. Guile + Chickadee This is the stack that I helped build. Chickadee is a game library for Guile that implements almost all of the interesting parts in Scheme, including rendering. Two games were built with Chickadee in the most recent jam: Turbo Racer 3000 and Bloatrunner. Guile + Chickadee is an example of Lisp as cake. Chickadee wraps some C libraries for low-level tasks such as loading images, audio, and fonts, but it is written in pure Scheme. All the matrix and vector math is in Scheme. Chickadee comes with a set of rendering primitives comparable to love2d and raylib but they’re all implemented in Scheme. I’ve even made progress on rendering vector graphics with Scheme, whereas most other Lisp game libraries use a C library such as nanosvg. Chickadee has pushed the limits of Guile’s compiler and virtual machine, and Guile has been improved as a result. But it’s the long road. Chickadee is mostly developed by me, alone, in my very limited spare time. It is taking a long time to reach feature parity with more popular game development libraries, but it works quite well for what it is. Hoot + HTML5 canvas I also helped build this one. Hoot is a Scheme-to-WebAssembly compiler. Rather than compile the Guile VM (written in C) to Wasm using emscripten, Hoot implements a complete Wasm toolchain and a new backend for Guile’s compiler that emits Wasm directly. Hoot is written entirely in Scheme. Unlike C programs compiled with emscripten that target Wasm 1.0 with linear memory, Hoot targets Wasm 2.0 with GC managed heap types. This gives Hoot a significant advantage: Hoot binaries do not ship a garbage collector and thus are much smaller than Lisp runtimes compiled via emscripten. The Wasm binary for my game weighs in at < 2MiB whereas the love2d game I checked had a nearly 6MiB love.wasm. Hoot programs can also easily interoperate with JavaScript. Scheme objects can easily be passed to JavaScript, and vice versa, as they are managed in the same heap. With all of the browser APIs just a Wasm import away, an obvious choice for games was the built-in HTML5 canvas API for easy 2D rendering. 11 games used Hoot in the jam, including (shameless plug) Cirkoban and Lambda Dungeon. Hoot + HTML5 canvas is mostly dense cake with a bit of icing. On one hand, it took a year and significant funding to boot Hoot. We said “no” to emscripten, built our own toolchain, and extended Guile’s compiler. It's Lisp all the way until you hit the browser runtime! We even have a Wasm interpreter that runs on the Guile VM! Hoot rules! It was a risk but it paid off. On the other hand, the canvas API is very high-level. The more cake thing to do would be to use Hoot’s JS FFI to call WebGL and/or WebGPU. Indeed, this is the plan for the future! Wasm GC needs some improvements to make this feasible, but my personal goal is to get Chickadee ported to Hoot. I want Chickadee games to be easy to play natively and in browsers, just like love2d games. The cake/icing spectrum I must acknowledge the limitations of the cake approach. We’re not living in a world of Lisp machines, but a world of glorified PDP-11s. Even the tallest of Lisp cakes sits atop an even larger cake made mostly of C. All modern Lisp systems bottom out at some point. Emacs rests on a C core. Guile’s VM is written in C. Hoot runs on mammoth JavaScript engines written in C++ like V8. Games on Hoot currently render with HTML5 canvas rather than WebGL/WebGPU. Good luck using OpenGL without libGL; Chickadee uses guile-opengl which uses the C FFI to call into libGL. Then there’s libpng, FreeType, and more. Who the heck wants to rewrite all this in Lisp? Who even has the resources? Does spending all this time taking the scenic route matter at all, or are we just deluding ourselves because we have fun writing Lisp code? I think it does matter. Every piece of the stack that can be reclaimed from the likes of C is a small victory. The parts written in Lisp are much easier to hack on, and some of those things become live hackable while our programs are running. They are also memory safe, typically, thanks to GC managed runtimes. Less FFI calls means less overhead from traversing the Lisp/C boundary and more safety. As more of the stack becomes Lisp, it starts looking less like icing and more like cake. Moving beyond games, we can look to the Guix project as a great example of just how tasty the cake can get. Guix took the functional packaging model from the Nix project and made a fresh implementation, replacing the Nix language with Guile. Why? For code staging, code sharing, and improved hackability. Guix also uses an init system written in Guile rather than systemd. Why? For code staging, code sharing, and improved hackability. These are real advantages that make the trade-off of not using the industry-standard thing worth it. I’ve been using Guix since the early days, and back then it was easy to make the argument that Guix was just reinventing wheels for no reason. But now, over 10 years later, the insistence on maximizing the usage of Lisp has been key to the success of the project. As a user, once you learn the Guix idioms and a bit of Guile, you unlock extraordinary power to craft your OS to your liking. It’s the closest thing you can get to a Lisp machine on modern hardware. The cake approach paid off for Guix, and it could pay off for other projects, too. If Common Lisp is more your thing, and even if it isn’t, you’ll be amazed by the Trial game engine and how much of it is implemented in Common Lisp rather than wrapping C libraries. There’s also projects like Pre-Scheme that give me hope that one day the layers below the managed GC runtime can be implemented in Lisp. Pre-Scheme was developed and successfully used for Scheme 48 and I am looking forward to a modern revival of it thanks to an NLnet grant. I'm a cake boy That’s right, I said it: I’m a cake boy. I want to see projects continue to push the boundaries of what Lisp can do. When it comes to the Lisp Game Jam, what excites me most are not the games themselves, but the small advances made to reclaim another little slice of the cake from stale, dry C. I intend to keep pushing the limits for Guile game development with my Chickadee project. It’s not a piece of cake to bake a lispy cake, and the way is often hazy, but I know we can’t be lazy and just do the cooking by the book. Rewrite it in Rust? No way! Rewrite it in Lisp!

11 months ago 139 votes

More in programming

Coding should be a vibe!

The appeal of "vibe coding" — where programmers lean back and prompt their way through an entire project with AI — appears partly to be based on the fact that so many development environments are deeply unpleasant to work with. So it's no wonder that all these programmers stuck working with cumbersome languages and frameworks can't wait to give up on the coding part of software development. If I found writing code a chore, I'd be looking for retirement too. But I don't. I mean, I used to! When I started programming, it was purely because I wanted programs. Learning to code was a necessary but inconvenient step toward bringing systems to life. That all changed when I learned Ruby and built Rails. Ruby's entire premise is "programmer happiness": that writing code should be a joy. And historically, the language was willing to trade run-time performance, memory usage, and other machine sympathies against the pursuit of said programmer happiness. These days, it seems like you can eat your cake and have it too, though. Ruby, after thirty years of constant improvement, is now incredibly fast and efficient, yet remains a delight to work with. That ethos couldn't shine brighter now. Disgruntled programmers have finally realized that an escape from nasty syntax, boilerplate galore, and ecosystem hyper-churn is possible. That's the appeal of AI: having it hide away all that unpleasantness. Only it's like cleaning your room by stuffing the mess under the bed — it doesn't make it go away! But the instinct is correct: Programming should be a vibe! It should be fun! It should resemble English closely enough that line noise doesn't obscure the underlying ideas and decisions. It should allow a richness of expression that serves the human reader instead of favoring the strictness preferred by the computer. Ruby does. And given that, I have no interest in giving up writing code. That's not the unpleasant part that I want AI to take off my hands. Just so I can — what? — become a project manager for a murder of AI crows? I've had the option to retreat up the manager ladder for most of my career, but I've steadily refused, because I really like writing Ruby! It's the most enjoyable part of the job! That doesn't mean AI doesn't have a role to play when writing Ruby. I'm conversing and collaborating with LLMs all day long — looking up APIs, clarifying concepts, and asking stupid questions. AI is a superb pair programmer, but I'd retire before permanently handing it the keyboard to drive the code. Maybe one day, wanting to write code will be a quaint concept. Like tending to horses for transportation in the modern world — done as a hobby but devoid of any economic value. I don't think anyone knows just how far we can push the intelligence and creativity of these insatiable token munchers. And I wouldn't bet against their advance, but it's clear to me that a big part of their appeal to programmers is the wisdom that Ruby was founded on: Programming should favor and flatter the human.

12 hours ago 2 votes
Tempest Rising is a great game

I really like RTS games. I pretty much grew up on them, starting with Command&Conquer 3: Kane’s Wrath, moving on to StarCraft 2 trilogy and witnessing the downfall of Command&Conquer 4. I never had the disks for any other RTS games during my teenage years. Yes, the disks, the ones you go to the store to buy! I didn’t know Steam existed back then, so this was my only source of games. There is something magical in owning a physical copy of the game. I always liked the art on the front (a mandatory huge face for all RTS!), game description and screenshots on the back, even the smell of the plastic disk case.

19 hours ago 2 votes
Notes from the Chrome Team’s “Blink principles of web compatibility”

Following up on a previous article I wrote about backwards compatibility, I came across this document from Rick Byers of the Chrome team titled “Blink principles of web compatibility” which outlines how they navigate introducing breaking changes. “Hold up,” you might say. “Breaking changes? But there’s no breaking changes on the web!?” Well, as outlined in their Google Doc, “don’t break anyone ever” is a bit unrealistic. Here’s their rationale: The Chromium project aims to reduce the pain of breaking changes on web developers. But Chromium’s mission is to advance the web, and in some cases it’s realistically unavoidable to make a breaking change in order to do that. Since the web is expected to continue to evolve incrementally indefinitely, it’s essential to its survival that we have some mechanism for shedding some of the mistakes of the past. Fair enough. We all need ways of shedding mistakes from the past. But let’s not get too personal. That’s a different post. So when it comes to the web, how do you know when to break something and when to not? The Chrome team looks at the data collected via Chrome's anonymous usage statistics (you can take a peak at that data yourself) to understand how often “mistake” APIs are still being used. This helps them categorize breaking changes as low-risk or high-risk. What’s wild is that, given Chrome’s ubiquity as a browser, a number like 0.1% is classified as “high-risk”! As a general rule of thumb, 0.1% of PageVisits (1 in 1000) is large, while 0.001% is considered small but non-trivial. Anything below about 0.00001% (1 in 10 million) is generally considered trivial. There are around 771 billion web pages viewed in Chrome every month (not counting other Chromium-based browsers). So seriously breaking even 0.0001% still results in someone being frustrated every 3 seconds, and so not to be taken lightly! But the usage stats are merely a guide — a partially blind one at that. The Chrome team openly acknowledges their dataset doesn’t tell the whole story (e.g. Enterprise clients have metrics recording is disabled, China has Google’s metric servers are disabled, and Chromium derivatives don’t record metrics at all). And Chrome itself is only part of the story. They acknowledge that a change that would break Chrome but align it with other browsers is a good thing because it’s advancing the whole web while perhaps costing Chrome specifically in the short term — community > corporation?? Breaking changes which align Chromium’s behavior with other engines are much less risky than those which cause it to deviate…In general if a change will break only sites coding specifically for Chromium (eg. via UA sniffing), then it’s likely to be net-positive towards Chromium’s mission of advancing the whole web. Yay for advancing the web! And the web is open, which is why they also state they’ll opt for open formats where possible over closed, proprietary, “patent-encumbered” ones. The chromium project is committed to a free and open web, enabling innovation and competition by anyone in any size organization or of any financial means or legal risk tolerance. In general the chromium project will accept an increased level of compatibility risk in order to reduce dependence in the web ecosystem on technologies which cannot be implemented on a royalty-free basis. One example we saw of breaking change that excluded proprietary in favor of open was Flash. One way of dealing with a breaking change like that is to provide opt-out. In the case of Flash, users were given the ability to “opt-out” of Flash being deprecated via site settings (in other words, opt-in to using flash on a page-by-page basis). That was an important step in phasing out that behavior completely over time. But not all changes get that kind of heads-up. there is a substantial portion of the web which is unmaintained and will effectively never be updated…It may be useful to look at how long chromium has had the behavior in question to get some idea of the risk that a lot of unmaintained code will depend on it…In general we believe in the principle that the vast majority of websites should continue to function forever. There’s a lot going on with Chrome right now, but you gotta love seeing the people who work on it making public statements like that — “we believe…that the vast majority of websites should continue to function forever.” There’s some good stuff in this document that gives you hope that people really do care and work incredibly hard to not break the web! (It’s an ecosystem after all.) It’s important for [us] browser engineers to resist the temptation to treat breaking changes in a paternalistic fashion. It’s common to think we know better than web developers, only to find out that we were wrong and didn’t know as much about the real world as we thought we did. Providing at least a temporary developer opt-out is an act of humility and respect for developers which acknowledges that we’ll only succeed in really improving the web for users long-term via healthy collaborations between browser engineers and web developers. More 👏 acts 👏 of 👏 humility 👏 in tech 👏 please! Email · Mastodon · Bluesky

yesterday 2 votes
Debug React Router Applications with Custom Logs using react-router-devtools (tip)

react-router-devtools enhances debugging by adding automatic logging for loaders & actions, plus direct links to code origins in console logs.

yesterday 3 votes
Changing text style for DandeGUI window output

<![CDATA[Printing rich text to windows is one of the planned features of DandeGUI, the GUI library for Medley Interlisp I'm developing in Common Lisp. I finally got around to this and implemented the GUI:WITH-TEXT-STYLE macro which controls the attributes of text printed to a window, such as the font family and face. GUI:WITH-TEXT-STYLE establishes a context in which text printed to the stream associated with a TEdit window is rendered in the style specified by the arguments. The call to GUI:WITH-TEXT-STYLE here extends the square root table example by printing the heading in a 12-point bold sans serif font: (gui:with-output-to-window (stream :title "Table of square roots") (gui:with-text-style (stream :family :sans :size 12 :face :bold) (format stream "~&Number~40TSquare Root~2%")) (loop for n from 1 to 30 do (format stream "~&~4D~40T~8,4F~%" n (sqrt n)))) The code produces this window in which the styled column headings stand out: Medley Interlisp window of a square root table generated by the DandeGUI GUI library. The :FAMILY, :SIZE, and :FACE arguments determine the corresponding text attributes. :FAMILY may be a generic family such as :SERIF for an unspecified serif font; :SANS for a sans serif font; :FIX for a fixed width font; or a keyword denoting a specific family like :TIMESROMAN. At the heart of GUI:WITH-TEXT-STYLE is a pair of calls to the Interlisp function PRINTOUT that wrap the macro body, the first for setting the font of the stream to the specified style and the other for restoring the default: (DEFMACRO WITH-TEXT-STYLE ((STREAM &KEY FAMILY SIZE FACE) &BODY BODY) (ONCE-ONLY (STREAM) `(UNWIND-PROTECT (PROGN (IL:PRINTOUT ,STREAM IL:.FONT (TEXT-STYLE-TO-FD ,FAMILY ,SIZE ,FACE)) ,@BODY) (IL:PRINTOUT ,STREAM IL:.FONT DEFAULT-FONT)))) PRINTOUT is an Interlisp function for formatted output similar to Common Lisp's FORMAT but with additional font control via the .FONT directive. The symbols of PRINTOUT, i.e. its directives and arguments, are in the Interlisp package. In turn GUI:WITH-TEXT-STYLE calls GUI::TEXT-STYLE-TO-FD, an internal DandeGUI function which passes to .FONT a font descriptor matching the required text attributes. GUI::TEXT-STYLE-TO-FD calls IL:FONTCOPY to build a descriptor that merges the specified attributes with any unspecified ones copied from the default font. The font descriptor is an Interlisp data structure that represents a font on the Medley environment. #DandeGUI #CommonLisp #Interlisp #Lisp a href="https://remark.as/p/journal.paoloamoroso.com/changing-text-style-for-dandegui-window-output"Discuss.../a Email | Reply @amoroso@oldbytes.space !--emailsub--]]>

yesterday 4 votes