Full Width [alt+shift+f] FOCUS MODE Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
27
It's no secret that react's useCallback is just sugar on top of useMemo that saves the children from having to see an arrow chain. As the docs go: useCallback((e) => onChange(id, e.target.value), [onChange, id]); // is equivalent to useMemo(() => (e) => onChange(id, e.target.value), [onChange, id]); A less known, probably useless, but very fun, fact: you can actually pass something other than a function to useCallback and have it memoized. const stableValue = useCallback({ please: 'dont do this' }, []); // yes-yes, stableValue is that object, as of react@17.0.2 As I got more into hooks, I've been surprised to realize how similar `useMemo` itself is to `useRef`. Think about it that way: `useRef` does a very simple thing — persists a value between render function calls and lets you update it as you wish. `useMemo` just provides some automation on top for updating this value when needed. Recreating `useMemo` is fairly straightforward: ```jsx const memoRef = useRef(); const lastDeps =...
over a year ago

Comments

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from Vladimir Klepov as a Coder

Growing my team 4x has been a pain. Can we do better?

My name is Vladimir, and I'm an engineering manager of a team building a banking app. Following the success of our core banking product, we've decided to expand to other financial services. In the last four months my team has grown 4x, going from a 4-person team to 4 teams totalling 15 people. It was, frankly, a shitshow, and now I see many things we could have done better. At first sight, increasing your team is a perfect way to speed up your product development. In practice, scaling is very challenging. Today, I'll share the pains of growth we've ran into: Disbalanced growth across functions. Teams becoming too large to manage. Processes breaking down. Mass onboarding challenges. Seniority skew. Now that it's all done, I can't say these problems were unexpected, or that our solutions have been incredibly inventive, but a first-hand account is worth writing down. Whether you're a leader expecting your team to scale, or just curious about the daily challenges of an engineering manager, hope you'll find something for yourself. Let's go! Scale evenly across functions You lead a 5-man engineering team. You'd like to build 2x the stuff you're building. The obvious solution is to hire 5 more engineers. Problem solved? Not so fast. Anything you build flows across several stages, each handled by a certain role, for example: product manager -> design -> engineering -> QA -> product analytics -> (back to) product manager. If you have a balanced flow with your current team, enlarging just the engineering will not make you more productive: Downstream functions (QA / analytics) can't keep up with the increased production — they must either put in overtime or downgrade quality standards. Upstream functions (product / design) can't fill the backlog fast enough, and the eng team has nothing to focus on, either slacking or refactoring the refactorings. With rapid growth, some temporary disbalances are unavoidable. It's fine to spend a few weeks or months in a disproportionate state, but overall aim for balanced scaling. Here are some tips to smooth the transition and even use the disbalance to your advantage: If you have any control over it, give product & design a hiring head-start. You can get their artifacts ready for development with a limited series of grooming meetings, and once the new engineers are on board, you'll have some great useful tasks to feed them. Catch up on your tech debt. Have too many engineers and not enough product tasks? Don't despair: use the time to clean up some old bugs, do the overdue refactorings, and prepare the codebase for the speed-up. Expand the area of responsibility. If you lack QA specialists, it might be time for the engineers to practice their testing skills. Oversized non-technical component (product / design) is more problematic, but you can give them some no-code tools to replace the eng team in some scenarios — e.g. build an admin UI where PM can edit the texts, create new banners, and so on, without involving your team. Update team structure Say you have a normal-sized team (4–7 engineers) with your average meeting structure (whole-team planning, grooming, and retro + weekly 1x1 with every team member). Making it a 15-person team won't work at all. An hour-long 4-person retro has 10 minutes of speaking time per member — enough to make a point. In a 15-person retro, it's 3 minutes — not practical. You either exclude some people, or extend the meetings — both poor options. It's harder to agree on any decision, because you now have 3x the possible objections. The 1x1s alone eat up 7 hours (almost a full day!) of your time a week. Managing communication of 15 people plus all the external stakeholders is time-consuming. The team must be split. What does it mean to be a separate team, anyways? Ever heard of "high cohesion and low coupling" principle in software architecture? I think this also applies to teams: Shared information space. Team members know what you're working on, where you're going, who your peers are, the system structure and so on. Own a well-defined part of the product and the codebase. A look at a random feature is enough to guess the responsible team. Control your processes — meeting structure, releases, etc. You can't be responsible for what you can't control. Have all the capabilities needed for your day-to-day work. Begging someone each time you need to deploy, change the API or add a banner is not very effective. It's best to split by product domain: customer acquisition team owns the landing page and signup, daily banking team owns the main app, and so on. You could split by layer (product + infra) or by function (backend + frontend + mobile) — I feel these compromise points 2 and 4, but let's not die on this hill today. At any rate, a team over 8–10 people must be split into sane-sized chunks to keep going. A note on grouping You can split a team by (A) building the new team out of newbies or (B) mixing newbies and oldies in each new part. Prefer mixing: it distributes the knowledge across the organization, and the social connections from the original team prevent siloing. You could argue that (A) keeps the original high-performing team intact, but it does so by slowing down the new team and undermining your long-term flexibility. Where to get new leaders? Splitting a team into 3 parts creates 2–4 leadership positions, depending on your place in the new structure. Ideally, you have senior members of the original team to lead the new teams, because it's a rare opportunity for career growth on a management track, and they can easily hire and onboard new members of their teams. If you don't have a suitable candidate (everyone is either very junior, or hates management), it's fine to hire externally — following a few hiccups, I recommend hiring people with prior leadership experience, because adjusting to a new product and a new role at once can be too much. Split iteratively You don't have to produce a fully separate team right away. As usual, move step by step — you get faster results, and can adapt to the issues that arise. Here's one possible sequence: Assemble a domain team, appoint one as the lead (you can call it trial-lead, to give them a chance to cop out). See how they like their new roles, and if the headcount needs tweaking. Run a retro for the new team to catch communication issues or cross-team dependencies early. Separate the domain backlog and kanban boards (or wherever you track the tasks). You'll need it for further process splitting, and to assess the team's load and velocity. Split planning and daily meetings, so that the teams don't waste each other's time on discussing irrelevant tasks. Gradually transfer the remaining processes (1x1s, onboarding, postmortems) to the new lead. Split the codebase, so that the new team can fully own its service. Update your processes Just like your single-team structure, the processes you have will likely fail for a larger team, especially if you have many newbies. Example: we had a liberal release process — if you want some feature in production, you deploy it. As the team grew, the release frequency dropped — the newbies were afraid to touch prod, the oldies were hoping one of the other 14 people would do it. Before I give you my solution to this puzzle, let's look at the general advice for process scaling. Localize processes to the new teams. Owning processes makes a team more effective. Retros, plannings, kickoffs, demos, daily stand-ups, releases, documenting, on-call duty, whatever you can split, do split. Yes, your overall team loses sight of the stuff going on across the system, causing duplication and poor decisions, but in return we can focus on a specific business area, and maximize productive time instead of drowning in discussions. If you need to offset the downsides, introduce a cross-team sync here and there (still working on this one). Let the new teams experiment with processes. What worked for your original team doesn't matter, that team is dead and gone. What works for one of your teams won't necessarily work for the other, because they work in different conditions. For example, our CA team has many time-bound tasks from marketing. The core banking team focuses on building quality software, and fixing the bugs as they arise. Very different teams. Start with a copy of your current processes (just to start somewhere!), and introduce team retros as early as possible to tweak the process as needed. Stricten the centralized processes. Back to our problem with deployment — we couldn't isolate the release process to sub-teams, because splitting a monolithic front-end into independently deployable parts is technically challenging. We introduced a more structured release process: The releases are automatically built and ready to deploy every morning. No more decisions to make. Daily rotation of release managers responsible for getting the release to production. With regular training, you get better at releasing. The release process is clearly documented. The newbies have a clear path to follow, making it less stressful. This works for other centralized processes — writing documentation, debugging with customer support, maintaining shared libs. Overall: hand over as much process as you can to the sub-teams, and introduce clear rules for the remaining centralized processes. The onboarding valley Surprisingly, fast hiring can reduce your team's productivity in the short term. The newbies are not yet up to speed, and the oldies now spend time explaining your codebase and reviewing code. This will fix itself over time, but here are a few strategies to get past the bump faster. Prefer slower growth. Adding one person every few weeks is much better than adding 6 people simultaneously, because: The "onboarding load" stretched over time occupies a smaller share of your team's resource. A few weeks in, new hires can already help onboard someone else. In some cases, they'll do a better job than any oldie, because their memories of one-off tasks like setting up the dev environment are fresh. Every onboarding exposes new roadblocks in your process, helping you smooth the next ones. On paper, batch onboarding might seem like a time-saver, as you can make a lecture explaining the basics to many people at once. In practice, unless your product is very small, or the tasks are very repetitive, every newbie faces very different challenges, drowning you with a wave of questions. Encourage peer-to-peer onboarding. As a leader, you might think onboarding is your personal responsibility. I call BS — peer-to-peer onboarding is clearly better: More "onboarding resource" leads to faster, better onboarding. The load on you, personally, decreases, freeing time to do other impactful things and, you know, live. Team members get a safe environment to practice their mentorship skills. People get to know each other, instead of only talking to you. ICs with recent hands-on experience do a better job at explaining the specifics than you. You can pair a formal "mentor" to every newbie, or direct questions to a team group chat. If you want to control the overall onboarding, at least route specific questions to team members experienced in that area instead of trying to come up with all the answers yourself. Write the docs. The best way to make onboardings cheaper is writing stuff down instead of explaining it over and over again, with your mouth. Some particular things to focus on: Onboarding checklist — the things every new team member must do: get a VPN certificate from the security dude, join this and that chat, clone a repo here and there, boom you're done. Only include essential steps — adding somewhat useful stuff obscures the actually important things. Document your existing business processes, system architecture, technical conventions, team and communication structure. It's better than explaining in real-time, because you get higher-quality charts, relevant links, and you can collaborate to put the knowledge of multiple team members in one place. Tooling and automation. The more automated a process or convention is, the less onboarding you need. Example: if you build your releases locally and upload somewhere via FTP using the keys you get from Piotr the devops, it's time to set up decent CD instead of documenting the current state of affairs. Pro tip: encourage newbies to improve and update the docs as they follow along — it's a great first contribution to your team! Senior vs junior hires It seems sensible to focus exclusively on senior hires. Experienced engineers get up to speed quicker, because they're already familiar with the basics, have a lower risk of making catastrophically poor decisions, and can bring good practices and ideas from across the industry to your team. Not so fast — here are some reasons to hire junior developers. With little exposure to the industry, they can easily adapt to whatever culture and processes you have. Anyone on your team can mentor a junior hire, while getting e.g. a junior engineer with decent knowledge of the product to mentor a newly hired senior engineer might be awkward, not very productive, or even taken as an insult. And of course, you can hire more junior engineers on the same budget. Overall, aim for a balanced team composition in the mid-term. You don't want your team to be a kindergarten, but a nursing home is no good either. Remember that people tend to gain experience, so the junior engineers you hire will become middle in no time. Today, we've discussed the challenges of rapid team growth — and ways to address them: Hiring more engineers won't speed you up unless product, design and QA grow to match. Start by growing product & design. If product lags behind, use the spare time to clean up the tech debt. Expand the area of responsibility of the oversized roles. Teams over 8–10 people are hard to manage. Split into chunks of 3–7 people, preferably by business domain. Mix old and new members in each team. Split step-by-step instead of going all in. The processes of your original team won't accommodate a larger team. Localize the processes to the sub-teams as much as possible. Let the teams tweak their processes to suit their needs. Stricten the remaining centralized processes. Onboarding is time-consuming, and can slow you down. Go slow: onboarding a person every week is easier than 6 people at once. Write the docs instead of explaining stuff over and over. Peer-to-peer knowledge transfer is better than onboarding everyone personally. Hiring only senior engineers is not a silver bullet. Aim for a healthy experience distribution in the mid-term. Hope these tips help you get past the scaling issues and up to speed in no time.

a year ago 51 votes
From engineer to manager: what I love, what I hate

It's been almost 2 years since I moved to a team lead role, then to a full-time engineering management position after the expansion of our team. I've been a front-end developer for 7 years before that, and initially I took the "advanced individual contributor" career track before doing the management turnaround. How's it been? Bumpy, but fun. In this article, I'll share the things I love and hate about my current job. Love Let's start with the positive side of management positions. There's plenty to love, honestly. Impact First things first, I adore the power to improve the product we're building, and the overall team well-being that comes with a management position. As an engineer, you'll sometimes find yourself in a tough spot with little to no power to change things. Early morning standups are a chore? Code quality sucks? The new feature makes no sense? As a manager, the power to change is yours: you get both the formal and informal authority to change things for the better, and to make yourself and your team happier. Your words have weight. If you, an IC, say "guys, we really should write tests", everybody goes "oh, crazy old Vladimir, all grumpy again, haha, where do you see tests fit here?". If you, an EM, casually say "guys, we really should write tests", you might be surprised to find the tests unexpectedly growing in different places. Pleasant. Career opportunities Being an engineering manager is a more promising career opportunity than an engineering track. This might be controversial, but hear me out: The EM is normally higher-paid than the basic team-level engineering grades (junior / middle / senior). There are higher IC grades (staff, principal, president of code, whatever) in the EM+ salary bands. These staff+ IC jobs are concentrated in larger tech companies, because those have tougher technical challenges. Almost every software team in every company has a leadership position. The management career ladder is "taller" than that of ICs. Yes, the chances of becoming a CTO are slim, but it's an opportunity that's just not there for a pure IC with no management experience. All in all, I believe the demand for EMs to be steadier than for staff+ engineers, and this path gives you more opportunities at the later stages of your career. On a related note... Transferable skills Management skills are more widely useful than an IC engineering role. A decent front-end engineer with React experience won't have trouble moving to another front-end framework, and can probably transition to a back-end / mobile engineering role with -1 grade (a year handicap or so). That's not bad. What roles are available to someone with engineering management experience? First, you can easily take on a team with a wildly different focus — mobile developers, infrastructure, ML engineers. You'd need some time to get up to speed on the big-picture technical struggles of your new team, but most companies would take this shot. If you don't want to be an EM any more, you're well-positioned to move to a project or product management role. If the entire tech market falls into decline, many management skills would still work for other industries. While I don't see a big flow of tech managers moving into construction business (tech does pay well), there's one alternate path to consider — entrepreneurship. Involvement with people and business decisions makes for great training before starting your own business. So, being a manager gives you quite a bit of career flexibility, and makes you less vulnerable to future technological shifts. Less knowledge rot Suffering from front-end fatigue? Can't keep up with the newest shiniest frameworks and tools? Management's got you covered! The "hot new" agile / kanban / scrum methodologies are 20–30 years old. The basic meeting types (demos, dailies, 1-on-1s) have been developing for centuries. At the core, you have teamwork and human interactions, which haven't changed that much since the beginning of humanity. My grandfather was a big railroad boss in the 70s, and we can sensibly discuss some of my work challenges. "Oh, you have this talented slacker? Give him some big important task, let's see what he's worth." When it comes to computers, he's more like "I'd like a shovel big enough to throw all your silly gadgets into stratosphere." So, if you're tired of keeping up with the latest hot thing in tech, a management role can provide a well-deserved relief. Do keep an eye on what's happening on the tech side of things, but there's no urgency, and no need to get real deep. New challenges Frankly, after 4–5 years of working in a particular tech area, you can solve the vast majority of practical problems well enough. If you want some work challenge, you can: Slightly alter your stack — say, a new FE framework. But it's unlikely to keep you engaged very long. Make a broader career shift — e.g. frontend to backend. This would probably give you another couple years of fun, but such transitions are, in my experience, either random (e.g. your BE dev quits and someone has to fill the role), or hit your salary. Invent problems out of thin air — rewrite everything using a new library, or handle 9000 RPS "for the future". Fun, but most of the time it's more harm than good for your team and business. Of all the possible career moves a seasoned engineer can make, switching to management gives you the most new challenges (years worth of new stuff to learn) without hitting your salary. Hate As much as I like the challenges and impact of my new role, and the practical career benefits, I'll be the first one to admit it has downsides as well. Corporate BS As an engineer, I hated bloody corporate BS: individual performance reviews, useless deadlines, company-enforced restrictions on processes and tech stack. Well, congratulations, as a manager you are the sheriff of these practices, whether you believe in them or not. As a leader of a team in an org with performance calibrations, I must nominate 1 person who hasn't been working hard enough every 6 months. This human chess is soul-sucking, but I can't make it go away — if I don't offer a sacrificial teammate, someone will be picked randomly further down the process. Crazy shit. Sometimes you can negotiate a bit, or hack the process, e.g. assign "below-expected performance" on a round-robin basis, but to your team you'll sometimes be the corporate monster. Sigh. And I haven't even been through the real tough stuff like layoffs, closures and reorganizations. Awkward social situations I've made it to an engineering management position by being good at building stuff. I've been prepared to help with technical decisions, give career guidance, tune processes and set up automation as needed. In fact, a large portion of my job is debugging social tensions and psychological insecurities of people. Your junior engineer comments out a few tests to deploy a feature preview. The QA person sees this, and is very pissed because your whole team apparently does not respect the QA role and the value they provide. Restore trust. A project manager makes an unsuccessful joke that hurts your designer, who's now crying. Make the PM apologize. Am I a kindergarten teacher or something? Boy, I'm no psychologist, and I can't say I'm exceptionally good with people. This part of my job is quite hard, trying to fake it til I make it here. Office hours Life of an engineer is relatively relaxed. If you don't have anything urgent, you can go lay on the grass for half a day, thinking about the future of your project or something. You can miss a few meetings on short notice, no questions asked. Now, you're an EM. Try going and lying on the grass for a few hours. You come back to a messenger full of problems: your intern can't work because she forgot how to npm install; a senior manager wants to discuss some potential feature; release has derailed. Also, you can't really skip a meeting you're supposed to facilitate / organize without some up-front preparation. This might improve as your team matures and builds better processes, but in general you feel office hours much more as a manager, and your work-life balance directly depends on how good you are at your job. Long feedback loop The final thing I hate about management is the long feedback loop of your actions. Most engineering tasks show the result quite fast: new features take weeks to months, and if that's too long for you — fix a bug and see happy users the next day, or refactor some code and watch complexity decrease in a few hours. Amazing! You're a manager? Well, very few of your actions produce a visible result in under a month. Suppose your team has grown too large, and you want to split it up. You must pick a well-rounded set of engineers for the new team, talk to everybody involved to see how they feel about such a change, arrange new regular meetings, set up processes and communications, do some jira magic, maybe isolate the codebases of sub-products. If you think it can be done in a week, well, you're wrong. Then, even the right changes can make things get worse before they get better. Say you're understaffed, and you decide to hire. In the short term, you spend hours and hours interviewing, and a new team member won't get up to speed right away, sucking out precious time for onboarding. It's sometimes hard to see the long-term goal behind the short-term inconvenience. So, while engineering problem-solving is often fairly straightforward, management changes are more similar to large-scale refactorings. You won't see any quick improvements, which can be frustrating. To sum up, moving from an IC engineering role to a management position has been a rollercoaster ride for me, with both bright and bleak spots. Here's what I love: The wider impact on the product and team. Management is a great long-term career track: it gives you more job opportunities than a staff+ IC, the flexibility to move between different technical areas and roles, and skills that will be relevant across various industries for years to come. If you're bored with your field of tech expertise, moving to a management role is a great way to bring the challenge back into your job. And here's what I hate: Enforcing corporate decisions and policies can be soul-sucking. Dealing with social tensions and psychological insecurities of people isn't something I was ready for. It's hard to go offline even for a few hours without preparing in advance. Your actions have long and non-linear feedback loops with very delayed gratification. Now, is this career move the right one for you? If you enjoy challenge and responsibility, and you get an opportunity — I'd say go for it! Yes, management is not a fit for everybody (I'm not even sure it fits me TBH), but it's a great experience that would surely expand your skill set and make you see engineering work from a new angle. If you totally hate it, you have plenty of time to go back into coding =)

a year ago 49 votes
The most useful programming language

Aspiring developers often ask me what's the best programming language to learn. Personally, I mostly work with JS — solid choice, but everyone and their dog learns JS these days, so it might be time to add some diversity. I'm curious — which single programming language covers the most bases for you, and gives you most career opportunities for years to come? That's the question we'll try to answer today. Here's the plan. I made a list of 8 tech specializations: 2 web development areas: back- and front-end. Both pretty big areas, and ones I have most experience with. Mobile and desktop native app development. Native app development (especially desktop apps) seems to have fallen out of favor, but there's still enough work in these areas. Quality assurance automation. QA grows along with engineering, and increasingly relies on automated tests. Embedded systems. We'll focus on microcontroller programming, not fat boxes with a full windows / linux OS. Quite a promising area with the growth of IoT. Game development. Granted, I don't know much about this area, but I'll do my best to cover it as well, as many developers dream of building a fun game someday. Data analysis and Machine Learning. One of the most hyped areas of the last decade. The contenders are the usual suspects from TIOBE top 20: python, C, C++, Java (grouped with Kotlin and other JVM languages), C# (again, throw in VB and other .NET languages), JavaScript (and TypeScript), PHP, Go, Swift, Ruby, Rust. I left out SQL and Scratch, because they're not general-purpose languages, and Fortan with Matlab, because they aren't really used outside of scientific / engineering computing. A language scores 1 point by being the industry standard in the area — vast community and ecosystem, abundant jobs. Being useful for certain tasks in the area gets you 0.5 points. So, let's see what languages will make you the most versatile engineer, shall we? Backend Let's start with the simple one — Java, C#, Python, PHP, Go and Ruby are all excellent back-end programming languages. Of these, I'd say PHP is slightly more useful as many low-code solutions rely on it, and Ruby is steadily declining. Still, all these languages have earned 1 point. Next, 0.5 points go to: C++, used in high-load and time-critical scenarios, JS — node.js is often used to support front-end, but there aren't that many strictly back-end jobs for JS developers. Rust — still not that widely used, but growing fast. The only languages to fail here are Swift (technically usable on server via e.g. vapor, but I couldn't find any jobs in this stack) and C. Frontend Obviously, JavaScript is the language for front-end developers, which runs natively in browsers. But, surprise, other languages still qualify! All solid back-end languages (Java, C#, Python, PHP, Go, Ruby) get 0.5 points, because you can solve many UI problems by rendering HTML server-side the old-school way. C# has a slight edge here, since blazor is quite smart and popular. C, C++, and Rust score 0.5 points because they can be compiled to WebAssembly and run in the browser — just look at figma. Rust also powers some cool JS tooling, like biome and swc The only language to fail here is, again, Swift. QA automation The topic of QA automation is really simple. Java and python get the cake — Allure, Selenium, JUnit, and pytest are the most sought-after automation tools on the market right now. JS gets 0.5 points for playwright and cypress — the preferred tools for testing complex web front-ends. A few automation tools support C# — worth 0.2 points. Mobile apps Another straightforward area. Android apps are written in JVM languages (Java / Kotlin), iOS is integrated with Swift (finally). JS scores 0.5 points, because you can effectively build apps with React Native, and you can get pretty far with PWA or a good old WebView. Another 0.5 point for C#, thanks to Xamarin and MAUI. Desktop apps (windows / linux / MacOS) The three kings here are C++, C#, and Java. JS gets 0.5 points, again, for electron — disgusting or not, it's widely used. Another 0.5 points for Swift, because that's what you build MacOS apps with, but MacOS computers are relatively niche. Rust has the highly-hyped Tauri project for building desktop apps, but it's not that widespread, and I'm not aware of any high-profile apps using it. Let's give each 0.2 points for the effort and check back later. Embedded systems Embedded systems are usually tight on resources, so compiled languages are the way to go here. Basically any embedded job requires C and C++. Rust is, as usual, very promising, but not that popular yet, so 0.5 points. Another half-point for Python — used for edge computer vision and prototyping, but struggling with high memory requirements. Game development The primary languages in big gamedev are C++ (used in Unreal Engine) and C# (for Unity). Since mobile games are a thing, Java and Swift get 0.5 points each, because that's what you'll likely use here. Another 0.5 points for JS (browser games). Rust should be quite a good fit for games, but (as expected by now) it's not quite there yet. Data Analysis & Machine Learning It's no secret that Python is the language of choice for anything data-related, and most of the cutting edge stuff happens, well deserved 1 point here. But do you know there's another top language to get your piece of Data & ML hype? Big companies have a lot of data, right? And big companies love Java. So, many big data tools (especially coming from Apache — Hadoop, Spark, Jena) work with Java, and most data jobs require experience with python or java, so another 1 point for java. On to more surprises. Large chunks of data-heavy python libraries are actually written in C / C++ — e.g. over a third of numpy, or most of LlamaCPP — which earns both half-a-point. As you'd expect, Rust is also gaining traction for this use case with stuff like pola.rs, so another 0.2 points! The final half-a-point goes to JS for powering much of the UI / visualization stuff (see e.g. bokeh). Before we reveal our final ranking, let's weigh the categories, because they're not the same size. I've used some back-of-the-napkin analysis of job postings and sizing of reddit / linkedin groups and my personal experience. With backend as our reference, I'd say frontend is roughly the same size. Mobile development is surprisingly sizable — let's give it a 0.6 weight. For QA, I'd say 0.2 makes sense, as 1 QA per 3–5 devs is a normal ratio, and manual QA is still a thing. Desktop is easily the smallest area, looks like a 0.1 to me. For gamedev, 0.5 is just my random guess. Finally, there are surprisingly many data people — with the good salaries, let's make it a 0.6. Putting it all together: Java takes the first spot by a good margin by topping 5 categories, and having some gamedev / frontend capabilities. Place other JVM languages (especially Kotlin) around here, but with a discount since they're not as widely used. The next three are really close, but JS gets slighly ahead by being average at everything except embedded, even though it's only the top choice for front-end development. Python and C# tie for the third place. Both are top-tier backend languages with other strong areas (QA / ML for python, desktop and gamedev for C#). C++ is not that far behind either, as it's still the top language when it comes to efficiency. It also steps into other languages' realms when they need some speedup (WebAssembly / ML). Next come "three backend friends" — Go, PHP, and Ruby. All top-notch languages for building web backends, but not much else beyond that. Of these, Ruby is on the decline, and PHP and Go both have their separate niches. Rust does not score that well, but still makes it into the top 10 — not bad for such a new language. It has great growth potential by eating at the traditional C++ areas, super excited to see where it gets in 3–5 years. We all love good old C, but C++ looks like a better fit for complex systems. Swift comes in last — fair enough for a language that's only useful for the products of one single company. Perhaps surprisingly, the single most useful language is Java. Python and JS, beginner favorites, come strong, with a very different focus. C# perhaps deserves a bit more attention. Overall, today we've learnt about many amazing technologies that allow languages to sneak into each other's territory. If you were to start anew, what language would you learn?

a year ago 51 votes
I conducted 60 interviews in 2 months — here's what I learned

It's hard to believe, but, starting mid-october 2023 I conducted 60 technical interviews and hired 10 people into our team. It's been extremely tiring: around 80 hours of active interviewing, plus writing interview reports, plus screening CVs and take-home assignments, plus onboarding new members — all while doing my normal work stuff. Still, I feel like I learnt a lot in the process — things that would help me as a candidate in the future, and might help you land your next job. Note that I'm a fairly relaxed interviewer, and, as an internal startup of a large tech company, we generally have a more humane hiring process, so your mileage may vary. Still, I've done my best to pick the tips that I feel are universally applicable. Here are nine insights I took out of this experience, in no particular order: Be generous with your "expected income". Say you're a solid higher-middle engineer, and you ask for a senior salary. My thought process: OK buddy, it's a bit more than reasonable now, but I won't have to fight for your promotion 8–12 months from now when you get there, and I don't have to spend another 12 hours of my own time (and leave my team understaffed for another few weeks) looking for a real hardcore senior, so I'll let you have it. Now suppose you ask for a junior salary. It's suspicious — why is your bar so low? Is there someting about your work performance you're not telling us? So, do your research on reasonable salaries for your level of experience, and aim slightly above that. Ask the right questions. I always leave time for the candidate to ask me questions — obviously, this lets the candidate probe what it's like to work at our team, but it's also the best opportunity for me to learn what really matters to the candidate. I've never been much of an asker myself, but now I see that "Thanks, I have no questions" does not look good — if anything, it paints you as someone who doesn't care. Here's a short list of good questions: What does the daily work in this role look like? Harmless. What features are you building next? Caring about the overall product, nice. Sometimes the answer is "I can't disclose this secret", but not that often. Anyting about processes or team structure: how many people are on the team? How often do you release? What regular meetings do you have? Interested in organization, might want to be a team lead someday, great. Anything tech-related: which framework do you use? Why did you pick framework X? How do you test your app? Especially suitable for junior- to middle developers who are most involved in hands-on work. What kind of tasks do you see me doing? Again, just a good neutral question, because responsibilities for any role differ wildly between companies. What growth / promotion opportunities does this position have? Cool trick, flipping the feared "where do you see yourself in 5 years" question against the hiring manager. Here are a few questions that are not very good: Do you use jira and github? It's a minor detail, won't you be able to work with youtrack and gitlab? Do you sometimes work late? Only if something breaks, but overall this question makes you seem a bit lazy. People on poor teams that routinely overtime aren't likely to answer this question honestly, at any rate. Social skills matter. I understand that not everybody is super outgoing, but if we already feel awkward 1 hour into our acquaintance, why work together — to feel awkward for months to come? Just a few tips anyone can follow: Be energetic. You're tired, I'm tired, we're all tired of endless interviews. Are you just tired today, or generally always too tired to get anything done? I know it's easier said than done, but try and show me all the energy you have left. Show respect. People enjoy being respected. Very easy one: you have a great product. Sounds like you have a great engineering culture. This is one of the most interesting interviews I've ever seen. Like, I know you don't necessarily mean that, but subconsciously I'm very pleased: "oh yes, I'm very proud of my interview process, thanks for noticing" On a related note... Provide conversation opportunities. Q: Do you use TDD? Bad answer: "no". Good answer: "no, but I've heard of it. Interesting approach. Does your team use TDD?" Now you get to spend 5 minutes talking on your terms instead of being bombarded with random questions, and you come off as someone curious about stuff. On another related note... It's easy to hurt people. People normally ask you about stuff because they care about it. So, again, the interviewer askning "do you use TDD?", presumably, likes TDD and uses it. So, the worst answer: "no, TDD sucks, it's pure waste of time for idiots." A rare interviewer might appreciate you having a strong opinion on a topic, but to most this just paints you as a jerk, kinda like "Here's a photo of my children — "I hate children, and yours are especialy horrible". Not smart. Smart talk is not your friend. Saying stuff like "our front-end guild evaluated several cutting-edge approaches to testing universal applications" only makes you seem smart if you can elaborate on that topic: what these approaches were, the pros and cons you found, what tradeoffs you made for your final decision. If you can't answer a follow-up question beside "we settled on jest, not sure why", it was better to stay away from that topic altogether. Related: "in code reviews, I always consider the optimality of the algorithm selected" (proceeds to estimate the time complexity of comparison-based sorting as O(1). I never ask this unless the candidate boasts about her algo skillz). Admit your mistakes. Don't know an answer? Your code has a bug? It's always better to admit it and then try to come up with something at the spot than trying to talk your way out of it. Event loop? Sure thing, I'm an expert on loops. It's the way events are looped. Uses logarithmic weighing. Again, this makes you look like a candidate with big mouth and small hands. I have seen a couple of people who could talk their way out of any situation, but I honestly think with such skills you'd do better in a different line of work, like international relations, or selling financial services. Note that you really should give it your best shot — giving up at the first sign of trouble is not a good impression. If you genuinely have no idea — see conversation opportunity: "Event delegation? Tough luck, never heard of it. Would you tell me about it so that I learn something new today?" Make yourself memorable. It's hard to keep detailed profiles of 10 candidates in mind — after a good interview streak all I remember is the general impression (great / OK / horrible) and a few truly notable things. This guy worked for some crypto scam that went bust, that girl had a cute dog that was trying to eat the camera. The worst you can do is be a totally neutral candidate — we've had an interview, but I can't remember any details. So try and sneak some anecdote, or wear a silly scarf — something to remember. This point is especially important for intern / junior positions — online JS bootcamps do a good job of covering the basics, and it's really hard to differentiate these candidates. The memorable thing doesn't have to be professional, or even positive (even though it sure won't hurt) — your best bet would be some original personal project. Ask for feedback on the spot. Asking how you did at the end of the interview doesn't hurt. Yes, some interviewers will be hesitant to answer — at large companies, the feedback is normally sent through the recruiter, and you're never sure if sidestepping this process would get you into trouble. Besides, if the feedback is not complimentary, you're essentially asking for conflict at the spot, and people normally avoid conflict when possible. Still, it's a chance to adjust your expectations (if the interviewer says, looking you in the eyes, that you've done great, it's a good sign), and you might get actually useful tips that would probably get lost passing through the written report, and then through the non-technical recruiter.

a year ago 41 votes
Svelte stores: the curious parts

We've already learnt a lot about svelte's reactivity system — the primary way to work with state in svelte components. But not all state belongs in components — sometimes we want app-global state (think state manager), sometimes we just want to reuse logic between components. React has hooks, Vue has composables. For svelte, the problem is even harder — reactive state only works inside component files, so the rest is handled by a completely separate mechanism — stores. The tutorial does a decent job of covering the common use cases, but I still had questions: What's the relationship between the stores? Are they built on some common base? Is it safe to use { set } = store as a free function? How does get(store) receive the current value if it's not exposed on the object? Does set() trigger subscribers when setting the current value? What's the order of subscriber calls if you set() inside a subscriber? Does derived listen to the base stores when it's not observed? Will changing two dervied dependencies trigger one or two derived computations? Why does subscribe() have a second argument? What is $store sytax compiled to? In this article, I explore all these questions (and find a few svelte bugs in the process). writable is the mother store Svelte has 3 built-in store types: writable, readable, and derived. However, they are neatly implemented in terms of one another, taking only 236 lines, over half of which is TS types and comments. The implementation of readable is remarkably simple — it creates a writable, and only returns its subscribe method. Let me show it in its entirety: const readable = (value, start) => ({ subscribe: writable(value, start).subscribe }); Moreover, derived is just a special way of constructing readable: export function derived(stores, fn, initial_value) { // ...some normalization return readable(initial_value, /* some complex code */); } While we're at it, note that update method of a writable store is a very thin wrapper over set: fn => set(fn(value)). All in all: writable is the OG store, readable just removes set & update methods from a writable, derived is just a predefined readable setup, update is just a wrapper over set. This greatly simplifies our analysis — we can just investigate writable arguments, subscribe, and set — and our findings also hold for other store types. Well done, svelte! Store methods don't rely on this Writable (and, by extension, readable and derived) is implemented with objects and closures, and does not rely on this, so you can safely pass free methods around without dancing with bind: const { subscribe, set } = writable(false); const toggle = { subscribe, activate: () => set(true) }; However, arbitrary custom stores are not guaranteed to have this trait, so it's best to stay safe working with an unknown store-shaped argument — like svelte itself does with readonly: function readonly(store) { return { subscribe: store.subscribe.bind(store), }; } Subscriber is invoked immediately As svelte stores implement observable value pattern, you'd expect them to have a way to access current value via store.get() or store.value — but it's not there! Instead, you use the special get() helper function: import { get } from 'svelte/store' const value = get(store); But, if the store does not expose a value, how can get(store) synchronously access it? Normally, the subscribers are only called on change, which can occur whenever. Well, svelte subscribe is not your average subscribe — calling subscribe(fn) not only starts listening to changes, but also synchronously calls fn with the current value. get subscribes to the store, extracts the value from this immediate invocation, and immediately unsubscribes — like this: let value; const unsub = store.subscribe(v => value = v); unsub(); The official svelte tutorial section on custom stores says: as long as an object correctly implements the subscribe method, it's a store. This might bait you into writing "custom stores" with subscribe method, not based off of writable. The trick word here is correctly implements — even based on the tricky subscribe self-invocation it's not an easy feat, so please stick to manipulations with readable / writable / derived. set() is pure for primitives writable stores are pure in the same sense as svelte state — notifications are skipped when state is primitive, and the next value is equal to the current one: const s = writable(9); // logs 9 because immediate self-invocation s.subscribe(console.log); // does not log s.set(9); Object state disables this optimization — you can pass a shallow equal object, or the same (by reference) object, the subscribers will be called in any case: const s = writable({ value: 9 }); s.subscribe(console.log); // each one logs s.update(s => s); s.set(get(s)); s.set({ value: 9 }); On the bright side, you can mutate the state in update, and it works: s.update(s => { s.value += 1; return s }); Subscriber consistency Normally, store.set(value) synchronously calls all subscribers with value. However, a naive implementation will shoot you in the foot when updating a store from within a subscriber (if you think it's a wild corner case — it's not, it's how derived stores work): let currentValue = null; const store = naiveWritable(1); store.subscribe(v => { // let's try to avoid 0 if (v === 0) store.set(1); }) store.subscribe(v => currentValue = v); If we now call set(0), we intuitively expect both the store's internal value and currentValue to be 1 after all callbacks settle. But in practice it can fail: Store value becomes 0; First subscriber sees 0, calls set(1), then: Store value becomes 1; set(1) synchronously invokes all subscribers with 1; First subscriber sees 1, does nothing; Second subscriber is called with 1, sets currentValue to 1; First subscriber run for 0 is completed, continuing with the initial updates triggered by set(0) Second subscriber is called with 0, setting currentValue to 0; Bang, inconsistent state! This is very dangerous territory — you're bound to either skip some values, get out-of-order updates, or have subscribers called with different values. Rich Harris has taken a lot of effort to provide the following guarantees, regardless of where you set the value: Every subscriber always runs for every set() call (corrected for primitive purity). Subscribers for one set() run, uninterrupted, after one another (in insertion order, but I wouldn't rely on this too much). Subscribers are invoked globally (across all svelte stores) in the same order as set calls, even when set calls are nested (called from within a subscriber). All subscribers are called synchronously within the outermost set call (the one outside any subscriber). So, in our example, the actual callback order is: subscriber 1 sees 0, calls set(1) subscribers calls with 1 are enqueued subscriber 2 sets currentValue = 0 subscriber 1 runs with 1, does nothing subscriber 2 sets currentValue = 1 Since the callback queue is global, this holds even when updating store B from a subscriber to store A. One more reason to stick with svelte built-in stores instead of rolling your own. Derived is lazy derived looks simple on the surface — I thought it just subscribes to all the stores passed, and keeps an up-to-date result of the mapper function. In reality, it's smarter than that — subscription and unsubscription happens in the start / stop handler, which yields some nice properties: Subscriptions to base stores are automatically removed once you stop listening to the derived store, no leaks. Derived value and subscriptions are reused no matter how many times you subscribe to a derived store. When nobody is actively listening to a derived store, the mapper does not run. The value is automatically updated when someone first subscribes to the derived store (again, courtesy of subscribe self-invocation). Very, very tastefully done. Derived is not transactional While lazy, derived is not transactional, and not batched — synchronously changing 2 dependencies will trigger 2 derivations, and 2 subscriber calls — one after the first update, and one after the second one. In this code sample, we'd expect left + right to always be 200 (we synchronously move 10 from left to right), there's a glimpse of 190 (remember, the subscribers are synchronously called during set): const left = writable(100); const right = writable(100); const total = derived([left, right], ([x, y]) => { console.log('derive', x, y); return x + y; }); total.subscribe(t => console.log('total', t)); const update = () => { // try to preserve total = 200 left.update(l => l - 10); // ^^ derives, and logs "total 190" right.update(r => r + 10); // ^^ derives, and logs "total 200" }; This isn't a deal breaker, svelte won't render the intermediate state, but it's something to keep in mind, or you get hurt: const obj = writable({ me: { total: 0 } }); const key = writable('me'); const value = derived([obj, key], ([obj, key]) => obj[key].total); // throws, because { me: ... } has no 'order' field key.set('order'); obj.set({ order: { total: 100 } }); The mysteryous subscriber-invalidator Looking at subscribe() types, you may've noticed the mysterious second argument — invalidate callback. Unlike the subscriber, it's not queued, and is always called synchronously during set(). The only place I've seen an invalidator used in svelte codebase is inside derived — and, TBH, I don't understand its purpose. I expected it to stabilize derived chains, but it's not working. Also, the TS types are wrong — the value is never passed to invalidator as an argument. Verdict: avoid. $-dereference internals As you probably know, svelte components have a special syntax sugar for accessing stores — just prefix the store name with a $, and you can read and even assign it like a regular reactive variable — very convenient: import { writable } from 'svelte/store'; const value = writable(0); const add = () => $value += 1; <button on:click={add}> {$value} </button> I always thought that $value is compiled to get, $value = v to value.set(v), and so on, with a subscriber triggering a re-render in some smart way, but it's not the case. Instead, $value becomes a regular svelte reactive variable, synchronized to the store, and the rest is handled by the standard svelte update mechanism. Here's the compilation result: // the materialized $-variable let $value; // the store const value = writable(0); // auto-subscription const unsub = value.subscribe(value, value => { $$invalidate(0, $value = value) }); onDestroy(unsub); const add = () => { // assign to variable $value += 1; // update store value.set($value); }; In plain English: $store is a real actual svelte reactive variable. store.subscribe updates the variable and triggers re-render. The unsubscriber is stored and called onDestroy. AFAIK, store.update is never used by svelte. Assignments to $store simultaneously mutate $store variable without invalidating and triggering re-render and call store.set, which in turn enqueues the update via $$invalidate The last point puts us in a double-source-of-truth situation: the current store value lives both in the $store reactive variable, and inside store itself. I expected this to cause some havok in an edge case, and so it does — if you patch store.set method to skip some updates, the $-variable updates before your custom set runs, and the two values go out of sync as of svelte@3.59.1: const value = { ...writable(0), // prevent updates set: () => {} }; const add = () => $value += 1; let rerender = {}; $: total = $value + (rerender ? 0 : 1); {total} <button on:click={add}>increment</button> <button on:click={() => rerender = {}}> rerender </button> To summarize: Both readable and derived are built on top of writable — readable only picks subscribe method, derived is a readable with a smart start / stop notifier. Built-in stores don't rely on this, so you can safely use their methods as free functions. Calling subscribe(fn) immediately invokes fn with the current value — used in get(store) to get the current value. Calling set() with the current value of the store will skip notifying subscribers if the value is primitive. set() on object state always notifies, even if the object is same, by reference, as the current state. The subscribers for a single set() run after one another. If a subscriber calls set, this update will be processed once the first set() is fully flushed. derived only subscribes to the base stores and maps the value when someone's actively listening to it. When synchronously changing two dependencies of derived, the mapper will be called after the first change. There's no way to batch these updates. subscribe() has a second argument — a callback that's called synchronously during set(). I can't imagine a use case for it. $store syntax generates a regular svelte reactive variable called $store, and synchronizes it with the store in a subscriber. If you learn one thing from this article — svelte stores are thoughtfully done and help you with quite a few corner-cases. Please avoid excessive trickery, and build on top of the svelte primitives. In the next part of my svelte series, I'll show you some neat tricks with stores — stay tuned on twitter!

over a year ago 38 votes

More in programming

strongly typed?

What does it mean when someone writes that a programming language is “strongly typed”? I’ve known for many years that “strongly typed” is a poorly-defined term. Recently I was prompted on Lobsters to explain why it’s hard to understand what someone means when they use the phrase. I came up with more than five meanings! how strong? The various meanings of “strongly typed” are not clearly yes-or-no. Some developers like to argue that these kinds of integrity checks must be completely perfect or else they are entirely worthless. Charitably (it took me a while to think of a polite way to phrase this), that betrays a lack of engineering maturity. Software engineers, like any engineers, have to create working systems from imperfect materials. To do so, we must understand what guarantees we can rely on, where our mistakes can be caught early, where we need to establish processes to catch mistakes, how we can control the consequences of our mistakes, and how to remediate when somethng breaks because of a mistake that wasn’t caught. strong how? So, what are the ways that a programming language can be strongly or weakly typed? In what ways are real programming languages “mid”? Statically typed as opposed to dynamically typed? Many languages have a mixture of the two, such as run time polymorphism in OO languages (e.g. Java), or gradual type systems for dynamic languages (e.g. TypeScript). Sound static type system? It’s common for static type systems to be deliberately unsound, such as covariant subtyping in arrays or functions (Java, again). Gradual type systems migh have gaping holes for usability reasons (TypeScript, again). And some type systems might be unsound due to bugs. (There are a few of these in Rust.) Unsoundness isn’t a disaster, if a programmer won’t cause it without being aware of the risk. For example: in Lean you can write “sorry” as a kind of “to do” annotation that deliberately breaks soundness; and Idris 2 has type-in-type so it accepts Girard’s paradox. Type safe at run time? Most languages have facilities for deliberately bypassing type safety, with an “unsafe” library module or “unsafe” language features, or things that are harder to spot. It can be more or less difficult to break type safety in ways that the programmer or language designer did not intend. JavaScript and Lua are very safe, treating type safety failures as security vulnerabilities. Java and Rust have controlled unsafety. In C everything is unsafe. Fewer weird implicit coercions? There isn’t a total order here: for instance, C has implicit bool/int coercions, Rust does not; Rust has implicit deref, C does not. There’s a huge range in how much coercions are a convenience or a source of bugs. For example, the PHP and JavaScript == operators are made entirely of WAT, but at least you can use === instead. How fancy is the type system? To what degree can you model properties of your program as types? Is it convenient to parse, not validate? Is the Curry-Howard correspondance something you can put into practice? Or is it only capable of describing the physical layout of data? There are probably other meanings, e.g. I have seen “strongly typed” used to mean that runtime representations are abstract (you can’t see the underlying bytes); or in the past it sometimes meant a language with a heavy type annotation burden (as a mischaracterization of static type checking). how to type So, when you write (with your keyboard) the phrase “strongly typed”, delete it, and come up with a more precise description of what you really mean. The desiderata above are partly overlapping, sometimes partly orthogonal. Some of them you might care about, some of them not. But please try to communicate where you draw the line and how fuzzy your line is.

yesterday 8 votes
Logical Duals in Software Engineering

(Last week's newsletter took too long and I'm way behind on Logic for Programmers revisions so short one this time.1) In classical logic, two operators F/G are duals if F(x) = !G(!x). Three examples: x || y is the same as !(!x && !y). <>P ("P is possibly true") is the same as ![]!P ("not P isn't definitely true"). some x in set: P(x) is the same as !(all x in set: !P(x)). (1) is just a version of De Morgan's Law, which we regularly use to simplify boolean expressions. (2) is important in modal logic but has niche applications in software engineering, mostly in how it powers various formal methods.2 The real interesting one is (3), the "quantifier duals". We use lots of software tools to either find a value satisfying P or check that all values satisfy P. And by duality, any tool that does one can do the other, by seeing if it fails to find/check !P. Some examples in the wild: Z3 is used to solve mathematical constraints, like "find x, where f(x) >= 0. If I want to prove a property like "f is always positive", I ask z3 to solve "find x, where !(f(x) >= 0), and see if that is unsatisfiable. This use case powers a LOT of theorem provers and formal verification tooling. Property testing checks that all inputs to a code block satisfy a property. I've used it to generate complex inputs with certain properties by checking that all inputs don't satisfy the property and reading out the test failure. Model checkers check that all behaviors of a specification satisfy a property, so we can find a behavior that reaches a goal state G by checking that all states are !G. Here's TLA+ solving a puzzle this way.3 Planners find behaviors that reach a goal state, so we can check if all behaviors satisfy a property P by asking it to reach goal state !P. The problem "find the shortest traveling salesman route" can be broken into some route: distance(route) = n and all route: !(distance(route) < n). Then a route finder can find the first, and then convert the second into a some and fail to find it, proving n is optimal. Even cooler to me is when a tool does both finding and checking, but gives them different "meanings". In SQL, some x: P(x) is true if we can query for P(x) and get a nonempty response, while all x: P(x) is true if all records satisfy the P(x) constraint. Most SQL databases allow for complex queries but not complex constraints! You got UNIQUE, NOT NULL, REFERENCES, which are fixed predicates, and CHECK, which is one-record only.4 Oh, and you got database triggers, which can run arbitrary queries and throw exceptions. So if you really need to enforce a complex constraint P(x, y, z), you put in a database trigger that queries some x, y, z: !P(x, y, z) and throws an exception if it finds any results. That all works because of quantifier duality! See here for an example of this in practice. Duals more broadly "Dual" doesn't have a strict meaning in math, it's more of a vibe thing where all of the "duals" are kinda similar in meaning but don't strictly follow all of the same rules. Usually things X and Y are duals if there is some transform F where X = F(Y) and Y = F(X), but not always. Maybe the category theorists have a formal definition that covers all of the different uses. Usually duals switch properties of things, too: an example showing some x: P(x) becomes a counterexample of all x: !P(x). Under this definition, I think the dual of a list l could be reverse(l). The first element of l becomes the last element of reverse(l), the last becomes the first, etc. A more interesting case is the dual of a K -> set(V) map is the V -> set(K) map. IE the dual of lived_in_city = {alice: {paris}, bob: {detroit}, charlie: {detroit, paris}} is city_lived_in_by = {paris: {alice, charlie}, detroit: {bob, charlie}}. This preserves the property that x in map[y] <=> y in dual[x]. And after writing this I just realized this is partial retread of a newsletter I wrote a couple months ago. But only a partial retread! ↩ Specifically "linear temporal logics" are modal logics, so "eventually P ("P is true in at least one state of each behavior") is the same as saying !always !P ("not P isn't true in all states of all behaviors"). This is the basis of liveness checking. ↩ I don't know for sure, but my best guess is that Antithesis does something similar when their fuzzer beats videogames. They're doing fuzzing, not model checking, but they have the same purpose check that complex state spaces don't have bugs. Making the bug "we can't reach the end screen" can make a fuzzer output a complete end-to-end run of the game. Obvs a lot more complicated than that but that's the general idea at least. ↩ For CHECK to constraint multiple records you would need to use a subquery. Core SQL does not support subqueries in check. It is an optional database "feature outside of core SQL" (F671), which Postgres does not support. ↩

2 days ago 8 votes
Omarchy 2.0

Omarchy 2.0 was released on Linux's 34th birthday as a gift to perhaps the greatest open-source project the world has ever known. Not only does Linux run 95% of all servers on the web, billions of devices as an embedded OS, but it also turns out to be an incredible desktop environment! It's crazy that it took me more than thirty years to realize this, but while I spent time in Apple's walled garden, the free software alternative simply grew better, stronger, and faster. The Linux of 2025 is not the Linux of the 90s or the 00s or even the 10s. It's shockingly more polished, capable, and beautiful. It's been an absolute honor to celebrate Linux with the making of Omarchy, the new Linux distribution that I've spent the last few months building on top of Arch and Hyprland. What began as a post-install script has turned into a full-blown ISO, dedicated package repository, and flourishing community of thousands of enthusiasts all collaborating on making it better. It's been improving rapidly with over twenty releases since the premiere in late June, but this Version 2.0 update is the biggest one yet. If you've been curious about giving Linux a try, you're not afraid of an operating system that asks you to level up and learn a little, and you want to see what a totally different computing experience can look and feel like, I invite you to give it a go. Here's a full tour of Omarchy 2.0.

3 days ago 8 votes
Dissecting the Apple M1 GPU, the end

In 2020, Apple released the M1 with a custom GPU. We got to work reverse-engineering the hardware and porting Linux. Today, you can run Linux on a range of M1 and M2 Macs, with almost all hardware working: wireless, audio, and full graphics acceleration. Our story begins in December 2020, when Hector Martin kicked off Asahi Linux. I was working for Collabora working on Panfrost, the open source Mesa3D driver for Arm Mali GPUs. Hector put out a public call for guidance from upstream open source maintainers, and I bit. I just intended to give some quick pointers. Instead, I bought myself a Christmas present and got to work. In between my university coursework and Collabora work, I poked at the shader instruction set. One thing led to another. Within a few weeks, I drew a triangle. In 3D graphics, once you can draw a triangle, you can do anything. Pretty soon, I started work on a shader compiler. After my final exams that semester, I took a few days off from Collabora to bring up an OpenGL driver capable of spinning gears with my new compiler. Over the next year, I kept reverse-engineering and improving the driver until it could run 3D games on macOS. Meanwhile, Asahi Lina wrote a kernel driver for the Apple GPU. My userspace OpenGL driver ran on macOS, leaving her kernel driver as the missing piece for an open source graphics stack. In December 2022, we shipped graphics acceleration in Asahi Linux. In January 2023, I started my final semester in my Computer Science program at the University of Toronto. For years I juggled my courses with my part-time job and my hobby driver. I faced the same question as my peers: what will I do after graduation? Maybe Panfrost? I started reverse-engineering of the Mali Midgard GPU back in 2017, when I was still in high school. That led to an internship at Collabora in 2019 once I graduated, turning into my job throughout four years of university. During that time, Panfrost grew from a kid’s pet project based on blackbox reverse-engineering, to a professional driver engineered by a team with Arm’s backing and hardware documentation. I did what I set out to do, and the project succeeded beyond my dreams. It was time to move on. What did I want to do next? Finish what I started with the M1. Ship a great driver. Bring full, conformant OpenGL drivers to the M1. Apple’s drivers are not conformant, but we should strive for the industry standard. Bring full, conformant Vulkan to Apple platforms, disproving the myth that Vulkan isn’t suitable for Apple hardware. Bring Proton gaming to Asahi Linux. Thanks to Valve’s work for the Steam Deck, Windows games can run better on Linux than even on Windows. Why not reap those benefits on the M1? Panfrost was my challenge until we “won”. My next challenge? Gaming on Linux on M1. Once I finished my coursework, I started full-time on gaming on Linux. Within a month, we shipped OpenGL 3.1 on Asahi Linux. A few weeks later, we passed official conformance for OpenGL ES 3.1. That put us at feature parity with Panfrost. I wanted to go further. OpenGL (ES) 3.2 requires geometry shaders, a legacy feature not supported by either Arm or Apple hardware. The proprietary OpenGL drivers emulate geometry shaders with compute, but there was no open source prior art to borrow. Even though multiple Mesa drivers need geometry/tessellation emulation, nobody did the work to get there. My early progress on OpenGL was fast thanks to the mature common code in Mesa. It was time to pay it forward. Over the rest of the year, I implemented geometry/tessellation shader emulation. And also the rest of the owl. In January 2024, I passed conformance for the full OpenGL 4.6 specification, finishing up OpenGL. Vulkan wasn’t too bad, either. I polished the OpenGL driver for a few months, but once I started typing a Vulkan driver, I passed 1.3 conformance in a few weeks. What remained was wiring up the geometry/tessellation emulation to my shiny new Vulkan driver, since those are required for Direct3D. Et voilà, Proton games. Along the way, Karol Herbst passed OpenCL 3.0 conformance on the M1, running my compiler atop his “rusticl” frontend. Meanwhile, when the Vulkan 1.4 specification was published, we were ready and shipped a conformant implementation on the same day. After that, I implemented sparse texture support, unlocking Direct3D 12 via Proton. …Now what? Ship a great driver? Check. Conformant OpenGL 4.6, OpenGL ES 3.2, and OpenCL 3.0? Check. Conformant Vulkan 1.4? Check. Proton gaming? Check. That’s a wrap. We’ve succeeded beyond my dreams. The challenges I chased, I have tackled. The drivers are fully upstream in Mesa. Performance isn’t too bad. With the Vulkan on Apple myth busted, conformant Vulkan is now coming to macOS via LunarG’s KosmicKrisp project building on my work. Satisfied, I am now stepping away from the Apple ecosystem. My friends in the Asahi Linux orbit will carry the torch from here. As for me? Onto the next challenge!

3 days ago 12 votes
Changing Careers to Software Development in Japan

TokyoDev has published a number of different guides on coming to Japan to work as a software developer. But what if you’re already employed in another industry in Japan, and are considering changing your career to software development? I interviewed four people who became developers after they moved to Japan, for their advice and personal experiences on: Why they chose development How they switched careers How they successfully found their first jobs What mistakes they made in the job hunt The most important advice they give to others Why switch to software development? A lifelong goal For Yuta Asakura, a career in software was the dream all along. “I’ve always wanted to work with computers,” he said, “but due to financial difficulties, I couldn’t pursue a degree in computer science. I had to start working early to support my single mother. As the eldest child, I focused on helping my younger brother complete his education.” To support his family, Asakura worked in construction for eight years, eventually becoming a foreman in Yokohama. Meanwhile, his brother graduated, and became a software engineer after joining the Le Wagon Tokyo bootcamp. About a year before his brother graduated, Asakura began to delve back into development. “I had already begun self-studying in my free time by taking online courses and building small projects,” he explained. “ I quickly became hooked by how fun and empowering it was to learn, apply, and build. It wasn’t always easy. There were moments I wanted to give up, but the more I learned, the more interesting things I could create. That feeling kept me going.” What truly inspired me was the idea of creating something from nothing. Coming from a construction background, I was used to building things physically. But I wanted to create things that were digital, scalable, borderless, and meaningful to others. An unexpected passion As Andrew Wilson put it, “Wee little Andrew had a very digital childhood,” full of games and computer time. Rather than pursuing tech, however, he majored in Japanese and moved to Japan in 2012, where he initially worked as a language teacher and recruiter before settling into sales. Wilson soon discovered that sales wasn’t really his strong suit. “At the time I was selling three different enterprise software solutions.” So I had to have a fairly deep understanding of that software from a user perspective, and in the course of learning about these products and giving technical demonstrations, I realized that I liked doing that bit of my job way more than I liked actually trying to sell these things. Around that time, he also realized he didn’t want to manually digitize the many business cards he always collected during sales meetings: “That’s boring, and I’m lazy.” So instead, he found a business card-scanning app, made a spreadsheet to contain the data, automated the whole process, and shared it internally within his company. His manager approached him soon afterwards, saying, “You built this? We were looking to hire someone to do this!” Encouraged, Wilson continued to develop it. “As soon as I was done with work,” he explained with a laugh, “I was like, ‘Oh boy, I can work on my spreadsheet!’” As a result, Wilson came to the conclusion that he really should switch careers and pursue his passion for programming. Similarly to Wilson, Malcolm Hendricks initially focused on Japanese. He came to Japan as an exchange student in 2002, and traveled to Japan several more times before finally relocating in 2011. Though his original role was as a language teacher, he soon found a job at a Japanese publishing company, where he worked as an editor and writer for seven years. However, he felt burned out on the work, and also that he was in danger of stagnating; since he isn’t Japanese, the road to promotion was a difficult one. He started following some YouTube tutorials on web development, and eventually began creating websites for his friends. Along the way, he fell in love with development, on both a practical and a philosophical level. “There’s another saying I’ve heard here and there—I don’t know exactly who to attribute it to—but the essence of it goes that ‘Computer science is just teaching rocks how to think,’” Hendricks said. “My mentor Bob has been guiding me through the very fundamentals of computer science, down to binary calculations, Boolean logic, gate theory, and von Neumann architecture. He explains the fine minutia and often concludes with, ‘That’s how it works. There’s no magic to it.’ “Meanwhile, in the back of my mind, I can’t help but be mystified at the things we are all now able to do, such as having video calls from completely different parts of the world, or even me here typing on squares of plastic to make letters appear on a screen that has its own source of light inside it. . . . [It] sounds like the highest of high-fantasy wizardry to me.” I’ve always had a love for technomancy, but I never figured I might one day get the chance to be a technomancer myself. And I love it! We have the ability to create nigh unto anything in the digital world. A practical solution When Paulo D’Alberti moved to Japan in 2019, he only spoke a little Japanese, which limited his employment prospects. With his prior business experience, he landed an online marketing role for a blockchain startup, but eventually exited the company to pursue a more stable work environment. “But when I decided to leave the company,” D’Alberti said, “my Japanese was still not good enough to do business. So I was at a crossroads.” Do I decide to join a full-time Japanese language course, aiming to get JLPT N2 or the equivalent, and find a job on the business side? . . . Or do I say screw it and go for a complete career change and get skills in something more technical, that would allow me to carry those skills [with me] even if I were to move again to another country?” The portability of a career in development was a major plus for D’Alberti. “That was one of the big reasons. Another consideration was that, looking at the boot camps that were available, the promise was ‘Yeah, we’ll teach you to be a software developer in nine weeks or two months.’ That was a much shorter lead time than getting from JLPT N4 to N2. I definitely wouldn’t be able to do that in two months.” Since D’Alberti had family obligations, the timeline for his career switch was crucial. “We still had family costs and rent and groceries and all of that. I needed to find a job as soon as possible. I actually already at that point had been unsuccessfully job hunting for two months. So that was like, ‘Okay, the savings are winding up, and we are running out of options. I need to make a decision and make it fast.’” How to switch careers Method 1: Software Development Bootcamp Under pressure to find new employment quickly, D’Alberti decided to enter the Le Wagon Coding Bootcamp in Tokyo. Originally, he wavered between Le Wagon and Code Chrysalis, which has since ended its bootcamp programs. “I went with Le Wagon for two reasons,” he explained. “There were some scheduling reasons. . . . But the main reason was that Code Chrysalis required you to pass a coding exam before being admitted to their bootcamp.” Since D’Alberti was struggling to learn development by himself, he knew his chances of passing any coding exam were slim. “I tried Code Academy, I tried Solo Learn, I tried a whole bunch of apps online, I would follow the examples, the exercises . . . nothing clicked. I wouldn’t understand what I was doing or why I was doing it.” At the time, Le Wagon only offered full-time web development courses, although they now also have part-time courses and a data science curriculum. Since D’Alberti was unemployed, a full-time program wasn’t a problem for him, “But it did mean that the people who were present were very particular [kinds] of people: students who could take some time off to add this to their [coursework], or foreigners who took three months off and were traveling and decide to come here and do studying plus sightseeing, and I think there were one or two who actually asked for time off from the job in order to participate.” It was a very intense course, and the experience itself gave me exactly what I needed. I had been trying to learn by myself. It did not work. I did not understand. [After joining], the first day or second day, suddenly everything clicked. D’Alberti appreciated how Le Wagon organized the curriculum to build continuously off previous lessons. By the time he graduated in June of 2019, he’d built three applications from scratch, and felt far more confident in his coding abilities. “It was great. [The curriculum] was amazing, and I really felt super confident in my abilities after the three months. Which, looking back,” he joked, “I still had a lot to learn.” D’Alberti did have some specific advice for those considering a bootcamp: “Especially in the last couple of weeks, it can get very dramatic. You are divided into teams and as a team, you’re supposed to develop an application that you will be demonstrating in front of other people.” Some of the students, D’Alberti explained, felt that pressure intensely; one of his classmates broke down in tears. “Of course,” he added, “one of the big difficulties of joining a bootcamp is economical. The bootcamp itself is quite expensive.” While between 700,000 and 800,000 yen when D’Alberti went through the bootcamp, Le Wagon’s tuition has now risen to 890,000 yen for Web Development and 950,000 for Data Science. At the time D’Alberti joined there was no financial assistance. Now, Le Wagon has an agreement with Hello Work, so that students who are enrolled in the Hello Work system can be reimbursed for up to 70 percent of the bootcamp’s tuition. Though already studying development by himself, Asakura also enrolled in Le Wagon Tokyo in 2024, “to gain structure and accountability,” he said. One lesson that really stayed with me came from Sylvain Pierre, our bootcamp director. He said, ‘You stop being a developer the moment you stop learning or coding.’ That mindset helped me stay on track. Method 2: Online computer science degree Wilson considered going the bootcamp route, but decided against it. He knew, from his experience in recruiting, that a degree would give him an edge—especially in Japan, where having the right degree can make a difference in visa eligibility “The quality of bootcamps is perfectly fine,” he explained. “If you go through a bootcamp and study hard, you can get a job and become a developer no problem. I wanted to differentiate myself on paper as much as I could . . . [because] there are a lot of smart, motivated people who go through a bootcamp.” Whether it’s true or not, whether it’s valid or not, if you take two candidates who are very similar on paper, and one has a coding bootcamp and one has a degree, from a typical Japanese HR perspective, they’re going to lean toward the person with the degree. “Whether that’s good or not, that’s sort of a separate situation,” Wilson added. “But the reality [is] I’m older and I’m trying to make a career change, so I want to make sure that I’m giving myself every advantage that I can.” For these reasons, Wilson opted to get his computer science degree online. “There’s a program out of the University of Oregon, for people who already had a Bachelor’s degree in a different subject to get a Bachelor’s degree in Computer Science. “Because it’s limited to people who already have a Bachelor’s degree, that means you don’t need to take any non-computer science classes. You don’t need any electives or prerequisites or anything like that.” As it happened, Wilson was on paternity leave when he started studying for his degree. “That was one of my motivations to finish quickly!” he said. In the end, with his employer’s cooperation, he extended his paternity leave to two years, and finished the degree in five quarters. Method 3: Self-taught Hendricks took a different route, combining online learning materials with direct experience. He primarily used YouTube tutorials, like this project from one of his favorite channels, to teach himself. Once he had the basics down, he started creating websites for friends, as well as for the publishing company he worked for at the time. With every site, he’d put his name at the bottom of the page, as a form of marketing. This worked well enough that Hendricks was able to quit his work at the translation company and transition to full-time freelancing. However, eventually the freelancing work dried up, and he decided he wanted to experience working at a tech company—and not just for job security reasons. Hendricks saw finding a full-time development role as the perfect opportunity to push himself and see just how far he could get in his new career. There’s a common trope, probably belonging more to the sports world at large, about the importance of shedding ‘blood, sweat, and tears’ in the pursuit of one’s passion . . . and that’s also how I wanted to cut my teeth in the software engineering world. The job hunt While all four are now successfully employed as developers, Asakura, D’Alberti, Wilson, and Hendricks approached and experienced the job hunt differently. Following is their hard-earned advice on best practices and common mistakes. DO network When Hendricks started his job hunt, he faced the disadvantages of not having any formal experience, and also being both physically and socially isolated from other developers. Since he and his family were living in Nagano, he wasn’t able to participate in most of the tech events and meet-ups available in Tokyo or other big cities. His initial job hunt took around a year, and at one point he was sending so many applications that he received a hundred rejections in a week. It wasn’t until he started connecting with the community that he was able to turn it around, eventually getting three good job offers in a single week. Networking, for me, is what made all the difference. It was through networking that I found my mentors, found community, and joined and even started a few great Discord servers. These all undeniably contributed to me ultimately landing my current job, but they also made me feel welcome in the industry. Hendricks particularly credits his mentors, Ean More and Bob Cousins, for giving him great advice. “My initial mentor [Ean More] I actually met through a mutual IT networking Facebook group. I noticed that he was one of the more active members, and that he was always ready to lend a hand to help others with their questions and spread a deeper understanding of programming and computer science. He also often posted snippets of his own code to share with the community and receive feedback, and I was interested in a lot of what he was posting. “I reached out to him and told him I thought it was amazing how selfless he was in the group, and that, while I’m still a junior, if there was ever any grunt work I could do under his guidance, I would be happy to do so. Since he had a history of mentoring others, he offered to do so for me, and we’ve been mentor/mentee and friends ever since.” “My other mentor [Bob Cousins],” Hendricks continued, “was a friend of my late uncle’s. My uncle had originally begun mentoring me shortly before his passing. We were connected through a mutual friend whom I lamented to about not having any clue how to continue following the path my uncle had originally laid before me. He mentioned that he knew just the right person and gave me an email address to contact. I sent an email to the address and was greeted warmly by the man who would become another mentor, and like an uncle to me.” Although Hendricks found him via a personal connection, Cousins runs a mentorship program that caters to a wide variety of industries. Wilson also believes in the power of networking—and not just for the job hunt. “One of the things I like about programming,” he said, “is that it’s a very collaborative community. Everybody wants to help everybody.” We remember that everyone had to start somewhere, and we’ll take time to help those starting out. It’s a very welcoming community. Just do it! We’re all here for you, and if you need help I’ll refer you. Asakura, by contrast, thinks that networking can help, but that it works a little differently in Japan than in other countries. “Don’t rely on it too much,” he said. “Unlike in Western countries, personal referrals don’t always lead directly to job opportunities in Japan. Your skills, effort, and consistency will matter more in the long run.” DO treat the job hunt like a job Once he’d graduated from Le Wagon, D’Alberti said, “I considered job-hunting my full-time job.”  I checked all the possible networking events and meetup events that were going on in the city, and tried to attend all of them, every single day. I had a list of 10 different job boards that I would go and just refresh on a daily basis to see, ‘Okay, Is there anything new now?’ And, of course, I talked with recruiters. D’Alberti suggests beginning the search earlier than you think you need to. “I had started actively job hunting even before graduating [from Le Wagon],” he said. “That’s advice I give to everyone who joins the bootcamp. “Two weeks before graduation, you have one simple web application that you can show. You have a second one you’re working on in a team, and you have a third one that you know what it’s going to be about. So, already, there are three applications that you can showcase or you can use to explain your skills. I started going to meetups and to different events, talking with people, showing my CV.” The process wasn’t easy, as most companies and recruiters weren’t interested in hiring for junior roles. But his intensive strategy paid off within a month, as D’Albert landed three invitations to interview: one from a Japanese job board, one from a recruiter, and one from LinkedIn. For Asakura, treating job hunting like a job was as much for his mental health as for his career. “The biggest challenge was dealing with impostor syndrome and feeling like I didn’t belong because I didn’t have a computer science degree,” he explained. “I also experienced burnout from pushing myself too hard.” To cope, I stuck to a structured routine. I went to the gym daily to decompress, kept a consistent study schedule as if I were working full-time, and continued applying for jobs even when it felt hopeless. At first, Asakura tried to apply to jobs strategically by tracking each application, tailoring his resume, and researching every role. “But after dozens of rejections,” he said, “I eventually switched to applying more broadly and sent out over one hundred applications. I also reached out to friends who were already software engineers and asked for direct referrals, but unfortunately, nothing worked out.” Still, Asakura didn’t give up. He practiced interviews in both English and Japanese with his friends, and stayed in touch with recruiters. Most importantly, he kept developing and adding to his portfolio. DO make use of online resources “What ultimately helped me was staying active and visible,” Asakura said. I consistently updated my GitHub, LInkedIn, and Wantedly profiles. Eventually, I received a message on Wantedly from the CTO of a company who was impressed with my portfolio, and that led to my first developer job.” “If you have the time, certifications can also help validate your knowledge,” Asakura added, “especially in fields like cloud and AI. Some people may not realize this, but the rise of artificial intelligence is closely tied to the growth of cloud computing. Earning certifications such as AWS, Kubernetes, and others can give you a strong foundation and open new opportunities, especially as these technologies continue to evolve.” Hendricks also heavily utilized LinkedIn and similar sites, though in a slightly different way. “I would also emphasize the importance of knowing how to use job-hunting sites like Indeed and LinkedIn,” he said. “I had the best luck when I used them primarily to do initial research into companies, then applied directly through the companies’ own websites, rather than through job postings that filter applicants before their resumés ever make it to the actual people looking to hire.” In addition, Hendricks recommends studying coding interview prep tutorials from freeCodeCamp. Along with advice from his mentors and the online communities he joined, he credits those tutorials with helping him successfully receive offers after a long job hunt. DO highlight experience with Japanese culture and language Asakura felt that his experience in Japan, and knowledge of Japanese, gave him an edge. “I understand Japanese work culture [and] can speak the language,” Asakura said, “and as a Japanese national I didn’t require visa sponsorship. That made me a lower-risk hire for companies here.” Hendricks also felt that his excellent Japanese made him a more attractive hire. While applying, he emphasized to companies that he could be a bridge to the global market and business overseas. However, he also admitted this strategy steered him towards applying with more domestic Japanese companies, which were also less likely to hire someone without a computer science degree. “So,” he said, “it sort of washed out.” Wilson is another who put a lot of emphasis on his Japanese language skills, from a slightly different angle. A lot of interviewees typically don’t speak Japanese well . . . and a lot of companies here say that they’re very international, but if they want very good programmers, [those people] spend their lives programming, not studying English. So having somebody who can bridge the language gap on the IT side can be helpful. DO lean into your other experience Several career switchers discovered that their past experiences and skills, while not immediately relevant to their new career, still proved quite helpful in landing that first role—sometimes in very unexpected ways. When Wilson was pitching his language skills to companies, he wasn’t talking about just Japanese–English translation. He also highlighted his prior experience in sales to suggest that he could help communicate with and educate non-technical audiences. “Actually to be a software engineer, there’s a lot of technical communication you have to do.” I have worked with some incredible coders who are so good at the technical side and just don’t want to do the personal side. But for those of us who are not super-geniuses and can’t rely purely on our tech skills . . . there’s a lot of non-technical discussion that goes around building a product.” This strategy, while eventually fruitful, didn’t earn Wilson a job right away. Initially, he applied to more than sixty companies over the course of three to four months. “I didn’t have any professional [coding] experience, so it was actually quite a rough time,” he said. “I interviewed all over the place. I was getting rejected all over town.” The good news was, Wilson said, “I’m from Chicago. I don’t know what it is, but there are a lot of Chicagoans who work in Tokyo for whatever reason.” When he finally landed an interview, one of the three founders of the company was also from Chicago, giving them something in common. “We hit it off really well in the interview. I think that kind of gave me the edge to get the role, to be honest.” Like Wilson, D’Alberti found that his previous work as a marketer helped him secure his first developer role—which was ironic, he felt, given that he’d partially chosen to switch careers because he hadn’t been able to find an English-language marketing job in Japan. “I had my first interview with the CEO,” he told me, “and this was for a Japanese startup that was building chatbots, and they wanted to expand into the English market. So I talked with the CEO, and he was very excited to get to know me and sent me to talk with the CTO.” The CTO, unfortunately, wasn’t interested in hiring a junior developer with no professional experience. “And I thought that was the end of it. But then I got called again by the CEO. I wanted to join for the engineering position, and he wanted to have me for my marketing experience.” In the end we agreed that I would join in a 50-50 arrangement. I would do 50 percent of my job in marketing and going to conferences and talking to people, and 50 percent on the engineering side. I was like, ‘Okay, I’ll take that.’ This ended up working better than D’Alberti had expected, partially due to external circumstances. “When COVID came, we couldn’t travel abroad, so most of the job I was doing in my marketing role I couldn’t perform anymore. “So they sat me down and [said], ‘What are we going to do with you, since we cannot use you for marketing anymore?’ And I was like, ‘Well, I’m still a software developer. I could continue working in that role.’ And that actually allowed me to fully transition.” DON’T make these mistakes It was D’Alberti’s willingness to compromise on that first development role that led to his later success, so he would explicitly encourage other career-changers to avoid, in his own words, “being too picky.” This advice is based, not just on his own experience, but also on his time working as a teaching assistant at Le Wagon. “There were a couple of people who would be like, ‘Yeah, I’d really like to find a job and I’m not getting any interviews,’” he explained. “And then we’d go and ask, ‘Okay, how many companies are you applying to? What are you doing?’ But [they’d say] ‘No, see, [this company] doesn’t offer enough’ or ‘I don’t really like this company’ or ‘I’d like to do something else.’ Those who would be really picky or wouldn’t put in the effort, they wouldn’t land a job. Those who were deadly serious about ‘I need to get a job as a software developer,’ they’d find one. It might not be a great job, it might not be at a good company, but it would be a good first start from which to move on afterwards. Asakura also knew some other bootcamp graduates who struggled to find work. “A major reason was a lack of Japanese language skills,” he said. Even for junior roles, many companies in Japan require at least conversational Japanese, especially domestic ones. On the other hand, if you prioritize learning Japanese, that can give you an edge on entering the industry: “Many local companies are open to training junior developers, as long as they see your motivation and you can communicate effectively. International companies, on the other hand, often have stricter technical requirements and may pass on candidates without degrees or prior experience.” Finally, Hendricks said that during his own job hunt, “Not living in Tokyo was a problem.” It was something that he was able to overcome via diligent digital networking, but he’d encourage career-changers to think seriously about their future job prospects before settling outside a major metropolis in Japan. Their top advice I asked each developer to share their number one piece of advice for career-changers. D’Alberti wasn’t quite sure what to suggest, given recent changes in the tech market overall. “I don’t have clear advice to someone who’s trying to break into tech right now,” he said. “It might be good to wait and see what happens with the AI path. Might be good to actually learn how to code using AI, if that’s going to be the way to distinguish yourself from other junior developers. It might be to just abandon the idea of [being] a linear software developer in the traditional sense, and maybe look more into data science, if there are more opportunities.” But assuming they still decide ‘Yes, I want to join, I love the idea of being a software developer and I want to go forward’ . . . my main suggestion is patience. “It’s going to be tough,” he added. By contrast, Hendricks and Wilson had the same suggestion: if you want to change careers, then go for it, full speed ahead. “Do it now, or as soon as you possibly can,” Hendricks stated adamantly. His life has been so positively altered by discovering and pursuing his passion, that his only regret is he didn’t do it sooner. Wilson said something strikingly similar. “Do it. Just do it. I went back and forth a lot,” he explained. “‘Oh, should I do this, it’s so much money, I already have a job’ . . . just rip the bandaid off. Just do it. You probably have a good reason.” He pointed out that while starting over and looking for work is scary, it’s also possible that you’ll lose your current job anyway, at which point you’ll still be job hunting but in an industry you no longer even enjoy. “If you keep at it,” he said, “you can probably do it.” “Not to talk down to developers,” he added, “but it’s not the hardest job in the world. You have to study and learn and be the kind of person who wants to sit at the computer and write code, but if you’re thinking about it, you’re probably the kind of person who can do it, and that also means you can probably weather the awful six months of job hunting.” You only need to pass one job interview. You only need to get your foot in the door. Asakura agreed with “just do it,” but with a twist. “Build in public,” he suggested. “Share your progress. Post on GitHub. Keep your LinkedIn active.” Let people see your journey, because even small wins build momentum and credibility. “To anyone learning to code right now,” Asakura added, “don’t get discouraged by setbacks or rejections. Focus on building, learning, and showing up every day. Your portfolio speaks louder than your past, and consistency will eventually open the door.” If you want to read more how-tos and success stories around networking, working with recruitment agencies, writing your resume, etc., check out TokyoDev’s other articles. If you’d like to hear more about being a developer in Japan, we invite you to join the TokyoDev Discord, which has over 6,000 members as well as dedicated channels for resume review, job posts, life in Japan, and more.

3 days ago 12 votes