More from Many Worlds
I had the pleasure of reporting and writing the Many Worlds column — sponsored by NASA’s NExSS initiative and the Lunar & Planetary Institute — for almost eight years. But the run came to an end in October. Now an archive of the more than 400 columns is easily available at http://www.manyworlds.space. The stories focus … Continue reading "Many Worlds Archive is Available"
In a solar system far, far away, life of some sort is just waiting to be found. Or so the world of astrobiology sure hopes it is. The new player in the astrobiology world, now called the Habitable Worlds Observatory (HWO), is planned to launch in the 2040s if all goes well. While it’s possible … Continue reading "Preparing For The Habitable Worlds Observatory, Our Best Shot at Finding ET Life"
Beware easy answers to the question of whether life exists beyond Earth. Be they “alien” skeletons in Mexico City, interstellar probes that briefly pass through our solar system, UFOs of all sorts and claims to have found “biosignature” chemical byproducts of life around planets where many other factors say that life cannot exist — their … Continue reading "A Real ET Discovery With Promise, Amid Some Other Quite Questionable Claims"
Bits of pebbles and dust from the asteriod Bennu that were collected during the long journey of the OSIRIS-REx spacecraft should be landing in the Utah desert later this month. The delivery will be a first for NASA — its first sample return from an asteroid and one of a very small handful of space … Continue reading "After Seven Years Away Exploring an Asteroid, OSIRIS-REx is Landing Soon with Precious Samples"
An Indian spacecraft landed on the moon this month and a pioneering Japanese lunar lander is awaiting an imminent launch. A Russian craft trying to land in the same area — the southern polar region — recently crashed, as did a private effort by a joint Japanese-United Arab Emirates group and one by several Israeli … Continue reading "The Moon Rush Is On. Are We on Earth Ready For That?"
More in science
Image generators are designed to mimic their training data, so where does their apparent creativity come from? A recent study suggests that it’s an inevitable by-product of their architecture. The post Researchers Uncover Hidden Ingredients Behind AI Creativity first appeared on Quanta Magazine
Humans are dramatically changing the environment of the Earth in many ways. Only about 23% of the land surface (excluding Antarctica) is considered to be “wilderness”, and this is rapidly decreasing. What wilderness is left is also mostly managed conservation areas. Meanwhile, about 3% of the surface is considered urban. I could not find a […] The post Animals Adapting to Cities first appeared on NeuroLogica Blog.
I participated in a program about 15 years ago that looked at science and technology challenges faced by a subset of the US government. I came away thinking that such problems fall into three broad categories. Actual science and engineering challenges, which require foundational research and creativity to solve. Technology that may be fervently desired but is incompatible with the laws of nature, economic reality, or both. Alleged science and engineering problems that are really human/sociology issues. Part of science and engineering education and training is giving people the skills to recognize which problems belong to which categories. Confusing these can strongly shape the perception of whether science and engineering research is making progress. There has been a lot of discussion in the last few years about whether scientific progress (however that is measured) has slowed down or stagnated. For example, see here: https://www.theatlantic.com/science/archive/2018/11/diminishing-returns-science/575665/ https://news.uchicago.edu/scientific-progress-slowing-james-evans https://www.forbes.com/sites/roberthart/2023/01/04/where-are-all-the-scientific-breakthroughs-forget-ai-nuclear-fusion-and-mrna-vaccines-advances-in-science-and-tech-have-slowed-major-study-says/ https://theweek.com/science/world-losing-scientific-innovation-research A lot of the recent talk is prompted by this 2023 study, which argues that despite the world having many more researchers than ever before (behold population growth) and more global investment in research, somehow "disruptive" innovations are coming less often, or are fewer and farther between these days. (Whether this is an accurate assessment is not a simple matter to resolve; more on this below.) There is a whole tech bro culture that buys into this, however. For example, see this interview from last week in the New York Times with Peter Thiel, which points out that Thiel has been complaining about this for a decade and a half. On some level, I get it emotionally. The unbounded future spun in a lot of science fiction seems very far away. Where is my flying car? Where is my jet pack? Where is my moon base? Where are my fusion power plants, my antigravity machine, my tractor beams, my faster-than-light drive? Why does the world today somehow not seem that different than the world of 1985, while the world of 1985 seems very different than that of 1945? Some of the folks that buy into this think that science is deeply broken somehow - that we've screwed something up, because we are not getting the future they think we were "promised". Some of these people have this as an internal justification underpinning the dismantling of the NSF, the NIH, basically a huge swath of the research ecosystem in the US. These same people would likely say that I am part of the problem, and that I can't be objective about this because the whole research ecosystem as it currently exists is a groupthink self-reinforcing spiral of mediocrity. Science and engineering are inherently human ventures, and I think a lot of these concerns have an emotional component. My take at the moment is this: Genuinely transformational breakthroughs are rare. They often require a combination of novel insights, previously unavailable technological capabilities, and luck. They don't come on a schedule. There is no hard and fast rule that guarantees continuous exponential technological progress. Indeed, in real life, exponential growth regimes never last. The 19th and 20th centuries were special. If we think of research as a quest for understanding, it's inherently hierarchal. Civilizational collapses aside, you can only discover how electricity works once. You can only discover the germ theory of disease, the nature of the immune system, and vaccination once (though in the US we appear to be trying really hard to test that by forgetting everything). You can only discover quantum mechanics once, and doing so doesn't imply that there will be an ongoing (infinite?) chain of discoveries of similar magnitude. People are bad at accurately perceiving rare events and their consequences, just like people have a serious problem evaluating risk or telling the difference between correlation and causation. We can't always recognize breakthroughs when they happen. Sure, I don't have a flying car. I do have a device in my pocket that weighs only a few ounces, gives me near-instantaneous access to the sum total of human knowledge, let's me video call people around the world, can monitor aspects of my fitness, and makes it possible for me to watch sweet videos about dogs. The argument that we don't have transformative, enormously disruptive breakthroughs as often as we used to or as often as we "should" is in my view based quite a bit on perception. Personally, I think we still have a lot more to learn about the natural world. AI tools will undoubtedly be helpful in making progress in many areas, but I think it is definitely premature to argue that the vast majority of future advances will come from artificial superintelligences and thus we can go ahead and abandon the strategies that got us the remarkable achievements of the last few decades. I think some of the loudest complainers (Thiel, for example) about perceived slowing advancement are software people. People who come from the software development world don't always appreciate that physical infrastructure and understanding are hard, and that there are not always clever or even brute-force ways to get to an end goal. Solving foundational problems in molecular biology or quantum information hardware or photonics or materials is not the same as software development. (The tech folks generally know this on an intellectual level, but I don't think all of them really understand it in their guts. That's why so many of them seem to ignore real world physical constraints when talking about AI.). Trying to apply software development inspired approaches to science and engineering research isn't bad as a component of a many-pronged strategy, but alone it may not give the desired results - as warned in part by this piece in Science this week. More frequent breakthroughs in our understanding and capabilities would be wonderful. I don't think dynamiting the US research ecosystem is the way to get us there, and hoping that we can dismantle everything because AI will somehow herald a new golden age seems premature at best.
The Trump administration is outwardly hostile to clean energy sourced from solar and wind. But thanks to close ties to the fossil fuel industry and new technological breakthroughs, U.S. geothermal power may survive the GOP assaults on support for renewables and even thrive. Read more on E360 →
Scientists reconstructed 500 million years of evolutionary history to reveal which came first: colorful signals or the color vision needed to see them. The post When Did Nature Burst Into Vivid Color? first appeared on Quanta Magazine