More from A Beautiful Site
It's been awhile since I wrote about FOUCE and I've since come up with an improved solution that I think is worth a post. This approach is similar to hiding the page content and then fading it in, but I've noticed it's far less distracting without the fade. It also adds a two second timeout to prevent network issues or latency from rendering an "empty" page. First, we'll add a class called reduce-fouce to the <html> element. <html class="reduce-fouce"> ... </html> Then we'll add this rule to the CSS. <style> html.reduce-fouce { opacity: 0; } </style> Finally, we'll wait until all the custom elements have loaded or two seconds have elapsed, whichever comes first, and we'll remove the class causing the content to show immediately. <script type="module"> await Promise.race([ // Load all custom elements Promise.allSettled([ customElements.whenDefined('my-button'), customElements.whenDefined('my-card'), customElements.whenDefined('my-rating') // ... ]), // Resolve after two seconds new Promise(resolve => setTimeout(resolve, 2000)) ]); // Remove the class, showing the page content document.documentElement.classList.remove('reduce-fouce'); </script> This approach seems to work especially well and won't end up "stranding" the user if network issues occur.
Once upon a midnight dreary, while I pondered, weak and weary, While I nodded, nearly napping, suddenly there came a tapping, "'Tis a design system," I muttered, "bringing order to the core— Ah, distinctly I remember, every button, every splendor, Each component, standardized, like a raven's watchful eyes, Unified in system's might, like patterns we restore— And each separate style injection, linked with careful introspection, 'Tis a design system, nothing more.
It’s disappointing that some of the most outspoken individuals against Web Components are framework maintainers. These individuals are, after all, in some of the best positions to provide valuable feedback. They have a lot of great ideas! Alas, there’s little incentive for them because standards evolve independently and don’t necessarily align with framework opinions. How could they? Opinions are one of the things that make frameworks unique. And therein lies the problem. If you’re convinced that your way is the best and only way, it’s natural to feel disenchanted when a decision is made that you don’t fully agree with. This is my open response to Ryan Carniato’s post from yesterday called “Web Components Are Not the Future.” WTF is a component anyway? # The word component is a loaded term, but I like to think of it in relation to interoperability. If I write a component in Framework A, I would like to be able to use it in Framework B, C, and D without having to rewrite it or include its entire framework. I don’t think many will disagree with that objective. We’re not there yet, but the road has been paved and instead of learning to drive on it, frameworks are building…different roads. Ryan states: If the sheer number of JavaScript frameworks is any indicator we are nowhere near reaching a consensus on how one should author components on the web. And even if we were a bit closer today we were nowhere near there a decade ago. The thing is, we don’t need to agree on how to write components, we just need to agree on the underlying implementation, then you can use classes, hooks, or whatever flavor you want to create them. Turns out, we have a very well-known, ubiquitous technology that we’ve chosen to do this with: HTML. But it also can have a negative effect. If too many assumptions are made it becomes harder to explore alternative space because everything gravitates around the establishment. What is more established than a web standard that can never change? If the concern is premature standardization, well, it’s a bit late for that. So let’s figure out how to get from where we are now to where we want to be. The solution isn’t to start over at the specification level, it’s to rethink how front end frameworks engage with current and emerging standards and work to improve them. Respectfully, it’s time to stop complaining, move on, and fix the things folks perceive as suboptimal. The definition of component # That said, we also need to realize that Web Components aren’t a 1:1 replacement for framework components. They’re tangentially related things, and I think a lot of confusion stems from this. We should really fix the definition of component. So the fundamental problem with Web Components is that they are built on Custom Elements. Elements !== Components. More specifically, Elements are a subset of Components. One could argue that every Element could be a Component but not all Components are Elements. To be fair, I’ve never really liked the term “Web Components” because it competes with the concept of framework components, but that’s what caught on and that's what most people are familiar with these days. Alas, there is a very important distinction here. Sure, a button and a text field can be components, but there are other types. For example, many frameworks support a concept of renderless components that exist in your code, but not in the final HTML. You can’t do that with Web Components, because every custom element results in an actual DOM element. (FWIW I don’t think this is a bad thing — but I digress…) As to why Web components don’t do all the things framework components do, that’s because they’re a lower level implementation of an interoperable element. They’re not trying to do everything framework components do. That’s what frameworks are for. It’s ok to be shiny # In fact, this is where frameworks excel. They let you go above and beyond what the platform can do on its own. I fully support this trial-and-error way of doing things. After all, it’s fun to explore new ideas and live on the bleeding edge. We got a lot of cool stuff from doing that. We got document.querySelector() from jQuery. CSS Custom Properties were inspired by Sass. Tagged template literals were inspired by JSX. Soon we’re getting signals from Preact. And from all the component-based frameworks that came before them, we got Web Components: custom HTML elements that can be authored in many different ways (because we know people like choices) and are fully interoperable (if frameworks and metaframeworks would continue to move towards the standard instead of protecting their own). Frameworks are a testbed for new ideas that may or may not work out. We all need to be OK with that. Even framework authors. Especially framework authors. More importantly, we all need to stop being salty when our way isn’t what makes it into the browser. There will always be a better way to do something, but none of us have the foresight to know what a perfect solution looks like right now. Hindsight is 20/20. As humans, we’re constantly striving to make things better. We’re really good at it, by the way. But we must have the discipline to reach various checkpoints to pause, reflect, and gather feedback before continuing. Even the cheapest cars on the road today will outperform the Model T in every way. I’m sure Ford could have made the original Model T way better if they had spent another decade working on it, but do you know made the next version even better than 10 more years? The feedback they got from actual users who bought them, sat in them, and drove them around on actual roads. Web Standards offer a promise of stability and we need to move forward to improve them together. Using one’s influence to rally users against the very platform you’ve built your success on is damaging to both the platform and the community. We need these incredible minds to be less divisive and more collaborative. The right direction # Imagine if we applied the same arguments against HTML early on. What if we never standardized it at all? Would the Web be a better place if every site required a specific browser? (Narrator: it wasn't.) Would it be better if every site was Flash or a Java applet? (Remember Silverlight? lol) Sure, there are often better alternatives for every use case, but we have to pick something that works for the majority, then we can iterate on it. Web Components are a huge step in the direction of standardization and we should all be excited about that. But the Web Component implementation isn’t compatible with existing frameworks, and therein lies an existential problem. Web Components are a threat to the peaceful, proprietary way of life for frameworks that have amassed millions of users — the majority of web developers. Because opinions vary so wildly, when a new standard emerges frameworks can’t often adapt to them without breaking changes. And breaking changes can be detrimental to a user base. Have you spotted the issue? You can’t possibly champion Web Standards when you’ve built a non-standard thing that will break if you align with the emerging standard. It’s easier to oppose the threat than to adapt to it. And of course Web Components don’t do everything a framework does. How can the platform possibly add all the features every framework added last week? That would be absolutely reckless. And no, the platform doesn’t move as fast as your framework and that’s sometimes painful. But it’s by design. This process is what gives us APIs that continue to work for decades. As users, we need to get over this hurdle and start thinking about how frameworks can adapt to current standards and how to evolve them as new ones emerge. Let’s identify shortcomings in the spec and work together to improve the ecosystem instead of arguing about who’s shit smells worse. Reinventing the wheel isn’t the answer. Lock-in isn’t the answer. This is why I believe that next generation of frameworks will converge on custom elements as an interoperable component model, enhance that model by sprinkling in awesome features of their own, and focus more on flavors (class-based, functional, signals, etc.) and higher level functionality. As for today's frameworks? How they adapt will determine how relevant they remain. Living dangerously # Ryan concludes: So in a sense there are nothing wrong with Web Components as they are only able to be what they are. It's the promise that they are something that they aren't which is so dangerous. The way their existence warps everything around them that puts the whole web at risk. It's a price everyone has to pay. So Web Components aren’t the specific vision you had for components. That's fine. But that's how it is. They're not Solid components. They’re not React components. They’re not Svelte components. They’re not Vue components. They’re standards-based Web Components that work in all of the above. And they could work even better in all of the above if all of the above were interested in advancing the platform instead of locking users in. I’m not a conspiracy theorist, but I find interesting the number of people who are and have been sponsored and/or hired by for-profit companies whose platforms rely heavily on said frameworks. Do you think it’s in their best interest to follow Web Standards if that means making their service less relevant and less lucrative? Of course not. If you’ve built an empire on top of something, there’s absolutely zero incentive to tear it down for the betterment of humanity. That’s not how capitalism works. It’s far more profitable to lock users in and keep them paying. But you know what…? Web Standards don't give a fuck about monetization. Longevity supersedes ingenuity # The last thing I’d like to talk about is this line here. Web Components possibly pose the biggest risk to the future of the web that I can see. Of course, this is from the perspective of a framework author, not from the people actually shipping and maintaining software built using these frameworks. And the people actually shipping software are the majority, but that’s not prestigious so they rarely get the high follower counts. The people actually shipping software are tired of framework churn. They're tired of shit they wrote last month being outdated already. They want stability. They want to know that the stuff they build today will work tomorrow. As history has proven, no framework can promise that. You know what framework I want to use? I want a framework that aligns with the platform, not one that replaces it. I want a framework that values incremental innovation over user lock-in. I want a framework that says it's OK to break things if it means making the Web a better place for everyone. Yes, that comes at a cost, but almost every good investment does, and I would argue that cost will be less expensive than learning a new framework and rebuilding buttons for the umpteenth time. The Web platform may not be perfect, but it continuously gets better. I don’t think frameworks are bad but, as a community, we need to recognize that a fundamental piece of the platform has changed and it's time to embrace the interoperable component model that Web Component APIs have given us…even if that means breaking things to get there. The component war is over.
Components are like little machines. You build them once. Use them whenever you need them. Every now and then you open them up to oil them or replace a part, then you send them back to work. And work, they do. Little component machines just chugging along so you never have to write them from scratch ever again. Adapted from this tweet.
I've been struggling with the idea of reflecting attributes in custom elements and when it's appropriate. I think I've identified a gap in the platform, but I'm not sure exactly how we should fill it. I'll explain with an example. Let's say I want to make a simple badge component with primary, secondary, and tertiary variants. <my-badge variant="primary">foo</my-badge> <my-badge variant="secondary">bar</my-badge> <my-badge variant="tertiary">baz</my-badge> This is a simple component, but one that demonstrates the problem well. I want to style the badge based on the variant property, but sprouting attributes (which occurs as a result of reflecting a property back to an attribute) is largely considered a bad practice. A lot of web component libraries do it out of necessary to facilitate styling — including Shoelace — but is there a better way? The problem # I need to style the badge without relying on reflected attributes. This means I can't use :host([variant="..."]) because the attribute may or may not be set by the user. For example, if the component is rendered in a framework that sets properties instead of attributes, or if the property is set or changed programmatically, the attribute will be out of sync and my styles will be broken. So how can I style the badge based its variants without reflection? Let's assume we have the following internals, which is all we really need for the badge. <my-badge> #shadowRoot <slot></slot> </my-badge> What can we do about it? # I can't add classes to the slot, because :host(:has(.slot-class)) won't match. I can't set a data attribute on the host element, because that's the same as reflection and might cause issues with SSR and DOM morphing libraries. I could add a wrapper element around the slot and apply classes to it, but I'd prefer not to bloat the internals with additional elements. With a wrapper, users would have to use ::part(wrapper) to target it. Without the wrapper, they can set background, border, and other CSS properties directly on the host element which is more desirable. I could add custom states for each variant, but this gets messy for non-Boolean values and feels like an abuse of the API. Filling the gap # I'm not sure what the best solution is or could be, but one thing that comes to mind is a way to provide some kind of cross-root version of :has that works with :host. Something akin to: :host(:has-in-shadow-root(.some-selector)) { /* maybe one day… */ } If you have any thoughts on this one, hit me up on Twitter.
More in programming
Go team wrote golang.org/x/sys/windows package to call functions in a Windows DLL. Their way is inefficient and this article describes a better way. The sys/windows way To call a function in a DLL, let’s say kernel32.dll, we must: load the dll into memory with LoadLibrary get the address of a function in the dll call the function at that address Here’s how it looks when you use sys/windows library: var ( libole32 *windows.LazyDLL coCreateInstance *windows.LazyProc ) func init() { libole32 = windows.NewLazySystemDLL("ole32.dll") coCreateInstance = libole32.NewProc("CoCreateInstance") } func CoCreateInstance(rclsid *GUID, pUnkOuter *IUnknown, dwClsContext uint32, riid *GUID, ppv *unsafe.Pointer) HRESULT { ret, _, _ := syscall.SyscallN(coCreateInstance.Addr(), 5, uintptr(unsafe.Pointer(rclsid)), uintptr(unsafe.Pointer(pUnkOuter)), uintptr(dwClsContext), uintptr(unsafe.Pointer(riid)), uintptr(unsafe.Pointer(ppv)), 0, ) return HRESULT(ret) } The problem The problem is that this is memory inefficient. For every function all we need is: name of the function to get its address in a dll. That is a string so its 8 bytes (address of the string) + 8 bytes (size of the string) + the content of the string. address of a function, which is 8 bytes on a 64-bit CPU Unfortunately in sys/windows each function requires this: type LazyProc struct { Name string mu sync.Mutex l *LazyDLL proc *Proc } type Proc struct { Dll *DLL Name string addr uintptr } // sync.Mutex type Mutex struct { _ noCopy mu isync.Mutex } // isync.Mutex type Mutex struct { state int32 sema uint32 } Let’s eyeball the size of all those structures: LazyProc : 16 + sizeof(Mutex) + 8 + 8 = 32 + sizeof(Mutex) Proc : 8 + 16 + 8 = 32 Mutex : 8 Total: 32 + 32 + 8 = 72 and that’s not counting possible memory padding for allocations. Windows has a lot of functions so this adds up. Additionally, at startup we call NewProcfor every function, even if they are not used by the program. This increases startup time. The better way What we ultimately need is uintptr for the address of the function. It’ll be lazily looked up. Let’s say we use 8 functions from ole32.dll. We can use a single array of uintptr values for storing function pointers: var oleFuncPtrs = [8]uintptr var oleFuncNames = []string{"CoCreateInstance", "CoGetClassObject", ... } const kCoCreateInstance = 0 const kCoGetClassObject = 1 // etc. const kFuncMissing = 1 func funcAddrInDLL(dll *windows.LazyDLL, funcPtrs []uintptr, funcIdx int, funcNames []string) uintptr { addr := funcPtrs[funcIdx]; if addr == kFuncMissing { // we already tried to look it up and didn't find it // this can happen becuse older version of Windows might not implement this function return 0 } if addr != 0 { return addr } // lookup the funcion by name in dll name := funcNames[funcIdx] /// ... return addr } In real life this would need multi-threading protection with e.g. a mutex. Saving on strings The following is not efficient: var oleFuncNames = []string{"CoCreateInstance", "CoGetClassObject", ... } In addition to the text of the string Go needs 16 bytes: 8 for a pointer to the string and 8 for the size of the string. We can be more efficient by storing all names as a single string: var oleFuncNames ` CoCreateInstance CoGetClassObject ` Only when we’re looking up the function by name we need to construct temporary string that is a slice of oleFuncNames. We need to know the offset and size inside oleFuncNames which we can cleverly encode as a single number: // Auto-generated shell procedure identifier: cache index | str start | str past-end. const ( _PROC_SHCreateItemFromIDList _PROC_SHELL = 0 | (9 << 16) | (31 << 32) _PROC_SHCreateItemFromParsingName _PROC_SHELL = 1 | (32 << 16) | (59 << 32) // ... ) We pack the info into a single number: bits 0-15 : index of function in array of function pointers bits 16-31: start of function name in multi-name string bits 32-47: end of function name in multi-name string This technique requires code generation. It would be too difficult to write those numbers manually. References This technique is used in https://github.com/rodrigocfd/windigo win32 bindings Go library. See e.g. https://github.com/rodrigocfd/windigo/blob/master/internal/dll/dll_gdi.go
How a wild side-quest became the source of many of the articles you’ve read—and have come to expect—in this publication
Watch now | Privilege levels, syscall conventions, and how assembly code talks to the Linux kernel
Learn how disposable objects solve test cleanup problems in flat testing. Use TypeScript's using keyword to ensure reliable resource disposal in tests.
Digital Ghosts My mom recently had a free consultation from her electric company to assess replacing her propane water heater with an electric water pump heater. She forwarded the assessment report to me, and I spent some time reviewing and researching the program. Despite living quite far away, I have been surprised by how much […]