Full Width [alt+shift+f] Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
90
Since 2019, Apple has required all MacOS software to be signed and notarized. This is meant to prevent naive users from installing malware while running software from unknown sources. Since this process is convoluted, it stops many indie game developers from releasing their Godot games on Mac. To solve this, this article will attempt to document each and every step of the signing and notarization process. Photo by Natasya Chen Step 0: Get a Mac While there tools exists to codesign/notarize Mac executables from other platforms, I think having access to a MacOS machine will remove quite a few headaches. A Mac VM, or even a cloud machine, might do the job. I have not personally tested those alternatives, so if you do, please tell me if it works well. Step 1: Get an Apple ID and the Developer App You can create an Apple ID through Apple’s website. While the process should be straightforward, it seems like Apple has trust issues when it comes to email from protonmail.com or custom...
9 months ago

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from Alice GG

Thoughts on releasing our first indie game

Two weeks ago we released Dice’n Goblins, our first game on Steam. This project allowed me to discover and learn a lot of new things about game development and the industry. I will use this blog post to write down what I consider to be the most important lessons from the months spent working on this. The development started around 2 years ago when Daphnée started prototyping a dungeon crawler featuring a goblin protagonist. After a few iterations, the game combat started featuring dice, and then those dice could be used to make combos. In May 2024, the game was baptized Dice’n Goblins, and a Steam page was created featuring some early gameplay screenshots and footage. I joined the project full-time around this period. Almost one year later, after amassing more than 8000 wishlists, the game finally released on Steam on April 4th, 2025. It was received positively by the gaming press, with great reviews from PCGamer and LadiesGamers. It now sits at 92% positive reviews from players on Steam. Building RPGs isn’t easy As you can see from the above timeline, building this game took almost two years and two programmers. This is actually not that long if you consider that other indie RPGs have taken more than 6 years to come out. The main issue with the genre is that you need to create a believable world. In practice, this requires programming many different systems that will interact together to give the impression of a cohesive universe. Every time you add a new system, you need to think about how it will fit all the existing game features. For example, players typically expect an RPG to have a shop system. Of course, this means designing a shop non-player character (or building) and creating a UI that is displayed when you interact with it. But this also means thinking through a lot of other systems: combat needs to be changed to reward the player with gold, every item needs a price tag, chests should sometimes reward the player with gold, etc… Adding too many systems can quickly get into scope creep territory, and make the development exponentially longer. But you can only get away with removing so much until your game stops being an RPG. Making a game without a shop might be acceptable, but the experience still needs to have more features than “walking around and fighting monsters” to feel complete. RPGs are also, by definition, narrative experiences. While some games have managed to get away with procedurally generating 90% of the content, in general, you’ll need to get your hands dirty, write a story, and design a bunch of maps. Creating enough content for a game to fit 12h+ without having the player go through repetitive grind will by itself take a lot of time. Having said all that, I definitely wouldn’t do any other kind of games than RPGs, because this is what I enjoy playing. I don’t think I would be able to nail what makes other genres fun if I don’t play them enough to understand what separates the good from the mediocre. Marketing isn’t that complicated Everyone in the game dev community knows that there are way too many games releasing on Steam. To stand out amongst the 50+ games coming out every day, it’s important not only to have a finished product but also to plan a marketing campaign well in advance. For most people coming from a software engineering background, like me, this can feel extremely daunting. Our education and jobs do not prepare us well for this kind of task. In practice, it’s not that complicated. If your brain is able to provision a Kubernetes cluster, then you are most definitely capable of running a marketing campaign. Like anything else, it’s a skill that you can learn over time by practicing it, and iteratively improving your methods. During the 8 months following the Steam page release, we tried basically everything you can think of as a way to promote the game. Every time something was having a positive impact, we would do it more, and we quickly stopped things with low impact. The most important thing to keep in mind is your target audience. If you know who wants the game of games you’re making, it is very easy to find where they hang out and talk to them. This is however not an easy question to answer for every game. For a long while, we were not sure who would like Dice’n Goblins. Is it people who like Etrian Odyssey? Fans of Dicey Dungeons? Nostalgic players of Paper Mario? For us, the answer was mostly #1, with a bit of #3. Once we figured out what was our target audience, how to communicate with them, and most importantly, had a game that was visually appealing enough, marketing became very straightforward. This is why we really struggled to get our first 1000 wishlists, but getting the last 5000 was actually not that complicated. Publishers aren’t magic At some point, balancing the workload of actually building the game and figuring out how to market it felt too much for a two-person team. We therefore did what many indie studios do, and decided to work with a publisher. We worked with Rogue Duck Interactive, who previously published Dice & Fold, a fairly successful dice roguelike. Without getting too much into details, it didn’t work out as planned and we decided, by mutual agreement, to go back to self-publishing Dice’n Goblins. The issue simply came from the audience question mentioned earlier. Even though Dice & Fold and Dice’n Goblins share some similarities, they target a different audience, which requires a completely different approach to marketing. The lesson learned is that when picking a publisher, the most important thing you can do is to check that their current game catalog really matches the idea you have of your own game. If you’re building a fast-paced FPS, a publisher that only has experience with cozy simulation games will not be able to help you efficiently. In our situation, a publisher with experience in roguelikes and casual strategy games wasn’t a good fit for an RPG. In addition to that, I don’t think the idea of using a publisher to remove marketing toil and focus on making the game is that much of a good idea in the long term. While it definitely helps to remove the pressure from handling social media accounts and ad campaigns, new effort will be required in communicating and negotiating with the publishing team. In the end, the difference between the work saved and the work gained might not have been worth selling a chunk of your game. Conclusion After all this was said and done, one big question I haven’t answered is: would I do it again? The answer is definitely yes. Not only building this game was an extremely satisfying endeavor, but so much has been learned and built while doing it, it would be a shame not to go ahead and do a second one.

a month ago 23 votes
Writing GDScript with Neovim

Neovim is by far my favorite text editor. The clutter-free interface and keyboard-only navigation are what keep me productive in my daily programming. In an earlier post, I explained how I configure it into a minimalist development environment. Today, I will show you how to use it with Godot and GDScript. Configure Godot First, we need to tell Godot to use nvim as a text editor instead of the built-in one. Open Godot, and head to Editor Settings > General > Text Editor > External. There, you will need to tick the box Use external editor, indicate your Neovim installation path, and use --server /tmp/godothost --remote-send "<C-\><C-N>:n {file}<CR>{line}G{col}|" as execution flags. While in the settings, head to Network > Language Server and note down the remote port Godot is using. By default, it should be 6005. We will need that value later. Connecting to Godot with vim-godot Neovim will be able to access Godot features by using a plugin called vim-godot. We will need to edit the nvim configuration file to install plugins and configure Neovim. On Mac and Linux, it is located at ~/.config/nvim/init.vim I use vim-plug to manage my plugins, so I can just add it to my configuration like this: call plug#begin('~/.vim/plugged') " ... Plug 'habamax/vim-godot' " ... call plug#end() Once the configuration file is modified and saved, use the :PlugInstall command to install it. You’ll also need to indicate Godot’s executable path. Add this line to your init.vim: let g:godot_executable = '/Applications/Godot.app/Contents/MacOS/Godot' For vim-godot to communicate with the Godot editor, it will need to listen to the /tmp/godothost file we configured in the editor previously. To do that, simply launch nvim with the flag --listen /tmp/godothost. To save you some precious keypress, I suggest creating a new alias in your bashrc/zshrc like this: alias gvim="nvim --listen /tmp/godothost" Getting autocompletion with coc.nvim Godot ships with a language server. It means the Godot editor can provide autocompletion, syntax highlighting, and advanced navigation to external editors like nvim. While Neovim now has built-in support for the language server protocol, I’ve used the plugin coc.nvim to obtain these functionalities for years and see no reason to change. You can also install it with vim-plug by adding the following line to your plugin list: Plug 'neoclide/coc.nvim', {'branch':'release'} Run :PlugInstall again to install it. You’ll need to indicate the Godot language server address and port using the command :CocConfig. It should open Coc’s configuration file, which is a JSON file normally located at ~/.config/nvim/coc-settings.json. In this file enter the following data, and make sure the port number matches the one located in your editor: { "languageserver": { "godot": { "host": "127.0.0.1", "filetypes": ["gdscript"], "port": 6005 } } } I recommend adding Coc’s example configuration to your init.vim file. You can find it on GitHub. It will provide you with a lot of useful shortcuts, such as using gd to go to a function definition and gr to list its references. Debugging using nvim-dap If you want to use the debugger from inside Neovim, you’ll need to install another plugin called nvim-dap. Add the following to your plugins list: Plug 'mfussenegger/nvim-dap' The plugin authors suggest configuring it using Lua, so let’s do that by adding the following in your init.vim: lua <<EOF local dap = require("dap") dap.adapters.godot = { type = "server", host = "127.0.0.1", port = 6006, } dap.configurations.gdscript = { { type = "godot", request = "launch", name = "Launch scene", project = "${workspaceFolder}", launch_scene = true, }, } vim.api.nvim_create_user_command("Breakpoint", "lua require'dap'.toggle_breakpoint()", {}) vim.api.nvim_create_user_command("Continue", "lua require'dap'.continue()", {}) vim.api.nvim_create_user_command("StepOver", "lua require'dap'.step_over()", {}) vim.api.nvim_create_user_command("StepInto", "lua require'dap'.step_into()", {}) vim.api.nvim_create_user_command("REPL", "lua require'dap'.repl.open()", {}) EOF This will connect to the language server (here on port 6005), and allow you to pilot the debugger using the following commands: :Breakpoint to create (or remove) a breakpoint :Continue to launch the game or run until the next breakpoint :StepOver to step over a line :StepInto to step inside a function definition :REPL to launch a REPL (useful if you want to examine values) Conclusion I hope you’ll have a great time developing Godot games with Neovim. If it helps you, you can check out my entire init.vim file on GitHub gist.

7 months ago 72 votes
Stuff I've been working on

It’s been around 2 years that I’ve had to stop with my long-term addiction to stable jobs. Quite a few people who read this blog are wondering what the hell exactly I’ve been doing since then so I’m going to update all of you on the various projects I’ve been working on. Meme credit: Fabian Stadler Mikochi Last year, I created Mikochi, a minimalist remote file browser written in Go and Preact. It has slowly been getting more and more users, and it’s now sitting at more than 200 GitHub stars and more than 6000 Docker pulls. I personally use it almost every day and it fits my use case perfectly. It is basically feature-complete so I don’t do too much development on it. I’ve actually been hoping users help me solve the few remaining GitHub issues. So far it happened twice, a good start I guess. Itako You may have seen a couple of posts on this blog regarding finance. It’s a subject I’ve been trying to learn more about for a while now. This led me to read some excellent books including Nassim Taleb’s Fooled by Randomness, Robert Shiller’s Irrational Exuberance, and Robert Carver’s Smart Portfolios. Those books have pushed me toward a more systematic approach to investing, and I’ve built Itako to help me with that. I’ve not talked about it on this blog so far, but it’s a SaaS software that gives clear data visualizations of a stock portfolio performance, volatility, and diversification. It’s currently in beta and usable for free. I’m quite happy that there are actually people using it and that it seems to work without any major issues. However, I think making it easier to use and adding a couple more features would be necessary to make it into a commercially viable product. I try to work on it when I find the time, but for the next couple of months, I have to prioritize the next project. Dice’n Goblins I play RPGs too much and now I’m even working on making them. This project was actually not started by me but by Daphnée Portheault. In the past, we worked on a couple of game jams and produced Cosmic Delusion and Duat. Now we’re trying to make a real commercial game called Dice’n Goblins. The game is about a Goblin who tries to escape from a dungeon that seems to grow endlessly. It’s inspired by classic dungeon crawlers like Etrian Odyssey and Lands of Lore. The twist is that you have to use dice to fight monsters. Equipping items you find in the dungeon gives you new dice and using skills allows you to change the dice values during combat (and make combos). We managed to obtain a decent amount of traction on this project and now it’s being published by Rogue Duck Interactive. The full game should come out in Q1 2025, for PC, Mac, and Linux. You can already play the demo (and wishlist the game) on Steam. If you’re really enthusiastic about it, don’t hesitate to join the Discord community. Technically it’s quite a big change for me to work on game dev since I can’t use that many of the reflexes I’ve built while working on infra subjects. But I’m getting more and more comfortable with using Godot and figuring out all the new game development related lingo. It’s also been an occasion to do a bit of work with non-code topics, like press relations. Japanese Something totally not relevant to tech. Since I’ve managed to reach a ‘goed genoeg’ level of Dutch, I’ve also started to learn more Japanese. I’ve almost reached the N4 level. (By almost I mean I’ve failed but it was close.) A screenshot from the Kanji Study Android App I’ve managed to learn all the hiraganas, katakanas, basic vocabulary, and grammar. So now all I’ve left to do is a huge amount of immersion and grind more kanjis. This is tougher than I thought it would be but I guess it’s fun that I can pretend to be studying while playing Dragon Quest XI in Japanese.

8 months ago 91 votes
Create a presskit in 10 minutes with Milou

Talking to the press is an inevitable part of marketing a game or software. To make the journalist’s job easier, it’s a good idea to put together a press kit. The press kit should contain all the information someone could want to write an article about your product, as well as downloadable, high-resolution assets. Dice'n Goblins Introducing Milou Milou is a NodeJS software that generates press kits in the form of static websites. It aims at creating beautiful, fast, and responsive press kits, using only YAML configuration files. I built it on top of presskit.html, which solved the same problem but isn’t actively maintained at the moment. Milou improves on its foundation by using a more modern CSS, YAML instead of XML, and up-to-date Javascript code. Installation First, you will need to have NodeJS installed: curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.7/install.sh | bash nvm install 22 Once Node is ready, you can use NPM to install Milou: npm install -g milou Running milou -V should display its version (currently 1.1.1). Let’s build a press kit Let’s create a new project: mkdir mypresskit cd mypresskit milou new The root directory of your project will be used for your company. In this directory, the file data.yml should contain data about your company, such as your company name, location, website, etc… You can find an example of a fully completed company data.yml file on GitHub. To validate that your file is a valid YAML file, you can use an online validator. Your company directory should contain a sub-folder called images, you should put illustrations you want to appear in your press kit inside it. Any file named header.*** will be used as the page header, favicon.ico will be used as the page favicon, and files prefixed by the word logo will appear in a dedicated logo section of the page (eg. logo01.png or logo.jpg). Other images you put in this folder will be included in your page, in the Images section. After completing your company page, we can create a product page. This will be done in a subfolder: mkdir myproduct cd myproduct milou new -t product Just like for a company, you should fill in the data.yml file with info about your product, like its title, features, and prices. You can find an example of a product file on GitHub. The product folder should also contain an images subfolder. It works the same way as for the company. When your product is ready, go back to the company folder and build the press kit: cd ../ milou build . This will generate the HTML and CSS files for your online presskit in the directory build. You can then use any web server to access them. For example, this will make them accessible from http://localhost:3000/ cd build npx serve To put your press kit online, you can upload this folder to any static site host, like CloudFlare Pages, Netlify, or your own server running Nginx. Conclusion Milou is still quite new, and if you encounter issues while using it, don’t hesitate to open an issue. And if it works perfectly for you, leave a star on GitHub.

a year ago 107 votes

More in programming

I Learned We All Have Linux Seats, and I’m Not Entirely Pleased

I recently wrote about How to Use SSH with FIDO2/U2F Security Keys, which I now use on almost all of my machines. The last one that needed this was my Raspberry Pi hooked up to my DEC vt510 terminal and IBM mechanical keyboard. Yes I do still use that setup! To my surprise, generating a … Continue reading I Learned We All Have Linux Seats, and I’m Not Entirely Pleased →

20 hours ago 3 votes
Whatever happened to sandboxfs?

Back in 2017–2020, while I was on the Blaze team at Google, I took on a 20% project that turned into a bit of an obsession: sandboxfs. Born out of my work supporting iOS development, it was my attempt to solve a persistent pain point that frustrated both internal teams and external users alike: Bazel’s

20 hours ago 3 votes
The Continuum From Static to Dynamic

Dan Abramov in “Static as a Server”: Static is a server that runs ahead of time. “Static” and “dynamic” don’t have to be binaries that describe an entire application architecture. As Dan describes in his post, “static” or “dynamic” it’s all just computers doing stuff. Computer A requests something (an HTML document, a PDF, some JSON, who knows) from computer B. That request happens via a URL and the response can be computed “ahead of time” or “at request time”. In this paradigm: “Static” is server responding ahead of time to an anticipated requests with identical responses. “Dynamic” is a server responding at request time to anticipated requests with varying responses. But these definitions aren’t binaries, but rather represent two ends of a spectrum. Ultimately, however you define “static” or “dynamic”, what you’re dealing with is a response generated by a server — i.e. a computer — so the question is really a matter of when you want to respond and with what. Answering the question of when previously had a really big impact on what kind of architecture you inherited. But I think we’re realizing we need more nimble architectures that can flex and grow in response to changing when a request/response cycle happens and what you respond with. Perhaps a poor analogy, but imagine you’re preparing holiday cards for your friends and family: “Static” is the same card sent to everyone “Dynamic” is a hand-written card to each individual But between these two are infinite possibilities, such as: A hand-written card that’s photocopied and sent to everyone A printed template with the same hand-written note to everyone A printed template with a different hand-written note for just some people etc. Are those examples “static” or “dynamic”? [Cue endless debate]. The beauty is that in proving the space between binaries — between what “static” means and what “dynamic” means — I think we develop a firmer grasp of what we mean by those words as well as what we’re trying to accomplish with our code. I love tools that help you think of the request/response cycle across your entire application as an endlessly-changing set of computations that happen either “ahead of time”, “just in time”, or somewhere in-between. Email · Mastodon · Bluesky

15 hours ago 1 votes
Showing UI on mouse move, in Svelte 5

In my note taking application Edna I’ve implemented unorthodox UI feature: in the editor a top left navigation element is only visible when you’re moving the mouse or when mouse is over the element. Here’s UI hidden: Here’s UI visible: The thinking is: when writing, you want max window space dedicated to the editor. When you move mouse, you’re not writing so I can show additional UI. In my case it’s a way to launch note opener or open a starred or recently opened note. Implementation details Here’s how to implement this: the element we show hide has CSS visibility set to hidden. That way the element is not shown but it takes part of layout so we can test if mouse is over it even when it’s not visible. To make the element visible we change the visibility to visible we can register multiple HTML elements for tracking if mouse is over an element. In typical usage we would only we install mousemove handler. In the handler we set isMouseMoving variable and clear it after a second of inactivity using setTimeout for every registered HTML element we check if mouse is over the element Svelte 5 implementation details This can be implemented in any web framework. Here’s how to do it in Svelte 5. We want to use Svelte 5 reactivity so we have: class MouseOverElement { element; isMoving = $state(false); isOver = $state(false); } An element is shown if (isMoving || isOver) == true. To start tracking an element we use registerMuseOverElement(el: HTMLElement) : MouseOverElement function, typically in onMount. Here’s typical usage in a component: let element; let mouseOverElement; onMount(() => { mouseOverElement = registerMuseOverElement(element); }); $effect(() => { if (mouseOverElement) { let shouldShow = mouseOverElement.isMoving || mouseOverElement.isOver; let style = shouldShow ? "visible" : "hidden"; element.style.visibility = style; } }); <div bind:this={element}>...</div> Here’s a full implementation of mouse-track.sveltejs: import { len } from "./util"; class MouseOverElement { /** @type {HTMLElement} */ element; isMoving = $state(false); isOver = $state(false); /** * @param {HTMLElement} el */ constructor(el) { this.element = el; } } /** * @param {MouseEvent} e * @param {HTMLElement} el * @returns {boolean} */ function isMouseOverElement(e, el) { if (!el) { return; } const rect = el.getBoundingClientRect(); let x = e.clientX; let y = e.clientY; return x >= rect.left && x <= rect.right && y >= rect.top && y <= rect.bottom; } /** @type {MouseOverElement[]} */ let registered = []; let timeoutId; /** * @param {MouseEvent} e */ function onMouseMove(e) { clearTimeout(timeoutId); timeoutId = setTimeout(() => { for (let moe of registered) { moe.isMoving = false; } }, 1000); for (let moe of registered) { let el = moe.element; moe.isMoving = true; moe.isOver = isMouseOverElement(e, el); } } let didRegister; /** * @param {HTMLElement} el * @returns {MouseOverElement} */ export function registerMuseOverElement(el) { if (!didRegister) { document.addEventListener("mousemove", onMouseMove); didRegister = true; } let res = new MouseOverElement(el); registered.push(res); return res; } /** * @param {HTMLElement} el */ export function unregisterMouseOverElement(el) { let n = registered.length; for (let i = 0; i < n; i++) { if (registered[i].element != el) { continue; } registered.splice(i, 1); if (len(registered) == 0) { document.removeEventListener("mousemove", onMouseMove); didRegister = null; } return; } }

yesterday 1 votes
The Web as URLs, Not Documents

Dan Abramov on his blog (emphasis mine): The division between the frontend and the backend is physical. We can’t escape from the fact that we’re writing client/server applications. Some logic is naturally more suited to either side. But one side should not dominate the other. And we shouldn’t have to change the approach whenever we need to move the boundary. What we need are the tools that let us compose across the stack. What are these tools that allow us to easily change the computation of an application happening between two computers? I think Dan is arguing that RSC is one of these tools. I tend to think of Remix (v1) as one of these tools. Let me try and articulate why by looking at the difference between how we thought of websites in a “JAMstack” architecture vs. how tools (like Remix) are changing that perspective. JAMstack: a website is a collection of static documents which are created by a static site generator and put on a CDN. If you want dynamism, you “opt-out” of a static document for some host-specific solution whose architecture is starkly different from the rest of your site. Remix: a website is a collection of URLs that follow a request/response cycle handled by a server. Dynamism is “built-in” to the architecture and handled on a URL-by-URL basis. You choose how dynamic you want any particular response to be: from a static document on a CDN for everyone, to a custom response on a request-by-request basis for each user. As your needs grow beyond the basic “static files on disk”, a JAMstack architecture often ends up looking like a microservices architecture where you have disparate pieces that work together to create the final whole: your static site generator here, your lambda functions there, your redirect engine over yonder, each with its own requirements and lifecycles once deployed. Remix, in contrast, looks more like a monolith: your origin server handles the request/response lifecycle of all URLs at the time and in the manner of your choosing. Instead of a build tool that generates static documents along with a number of distinct “escape hatches” to handle varying dynamic needs, your entire stack is “just a server” (that can be hosted anywhere you host a server) and you decide how and when to respond to each request — beforehand (at build), or just in time (upon request). No architectural escape hatches necessary. You no longer have to choose upfront whether your site as a whole is “static” or “dynamic”, but rather how much dynamism (if any) is present on a URL-by-URL basis. It’s a sliding scale — a continuum of dynamism — from “completely static, the same for everyone” to “no one line of markup is the same from one request to another”, all of it modeled under the same architecture. And, crucially, that URL-by-URL decision can change as needs change. As Dan Abramov noted in a tweet: [your] build doesn’t have to be modeled as server. but modeling it as a server (which runs once early) lets you later move stuff around. Instead of opting into a single architecture up front with escape hatches for every need that breaks the mold, you’re opting in to the request/response cycle of the web’s natural grain, and deciding how to respond on a case-by-case basis. The web is not a collection of static documents. It’s a collection of URLs — of requests and responses — and tools that align themselves to this grain make composing sites with granular levels of dynamism so much easier. Email · Mastodon · Bluesky

2 days ago 3 votes