More from Alice GG
Every 6 months or so, I decide to leave my cave and check out what the cool kids are doing with AI. Apparently the latest trend is to use fancy command line tools to write code using LLMs. This is a very nice change, since it suddenly makes AI compatible with my allergy to getting out of the terminal. The most popular of these tools seems to be Claude Code. It promises to be able to build in total autonomy, being able to use search code, write code, run tests, lint, and commit the changes. While this sounds great on paper, I’m not keen on getting locked into vendor tools from an unprofitable company. At some point, they will either need to raise their prices, enshittify their product, or most likely do both. So I went looking for what the free and open source alternatives are. Picking a model There’s a large amount of open source large language models on the market, with new ones getting released all the time. However, they are not all ready to be used locally in coding tasks, so I had to try a bunch of them before settling on one. deepseek-r1:8b Deepseek is the most popular open source model right now. It was created by the eponymous Chinese company. It made the news by beating numerous benchmarks while being trained on a budget that is probably lower than the compensation of some OpenAI workers. The 8b variant only weights 5.2 GB and runs decently on limited hardware, like my three years old Mac. This model is famous for forgetting about world events from 1989, but also seems to have a few issues when faced with concrete coding tasks. It is a reasoning model, meaning it “thinks” before acting, which should lead to improved accuracy. In practice, it regularly gets stuck indefinitely searching where it should start and jumping from one problem to the other in a loop. This can happen even on simple problems, and made it unusable for me. mistral:7b Mistral is the French alternative to American and Chinese models. I have already talked about their 7b model on this blog. It is worth noting that they have kept updating their models, and it should now be much more accurate than two years ago. Mistral is not a reasoning model, so it will jump straight to answering. This is very good if you’re working with tasks where speed and low compute use are a priority. Sadly, the accuracy doesn’t seem good enough for coding. Even on simple tasks, it will hallucinate functions or randomly delete parts of the code I didn’t want to touch. qwen3:8b Another model from China, qwen3 was created by the folks at Alibaba. It also claims impressive benchmark results, and can work as both a reasoning or non-thinking model. It was made with modern AI tooling in mind, by supporting MCPs and a framework for agentic development. This model actually seems to work as expected, providing somewhat accurate code output while not hanging in the reasoning part. Since it runs decently on my local setup, I decided to stick to that model for now. Setting up a local API with Ollama Ollama is now the default way to download and run local LLMs. It can be simply installed by downloading it from their website. Once installed, it works like Docker for models, by giving us access to commands like pull, run, or rm. Ollama will expose an API on localhost which can be used by other programs. For example, you can use it from your Python programs through ollama-python. Pair programming with aider The next piece of software I installed is aider. I assume it’s pronounced like the French word, but I could not confirm that. Aider describes itself as a “pair programming” application. Its main job is to pass context to the model, let it write the output to files, run linters, and commit the changes. Getting started It can be installed using the official Python package or via Homebrew if you use Mac. Once it is installed, just navigate to your code repository and launch it: export OLLAMA_API_BASE=http://127.0.0.1:11434 aider --model ollama_chat/qwen3:8b The CLI should automatically create some configuration files and add them to the repo’s .gitignore. Usage Aider isn’t meant to be left alone in complete autonomy. You’ll have to guide the AI through the process of making changes to your repository. To start, use the /add command to add files you want to focus on. Those files will be passed entirely to the model’s context and the model will be able to write in them. You can then ask questions using the /ask command. If you want to generate code, a good strategy can be to starting by requesting a plan of actions. When you want it to actually write to the files, you can prompt it using the /code command. This is also the default mode. There’s no absolute guarantee that it will follow a plan if you agreed on one previously, but it is still a good idea to have one. The /architect command seems to automatically ask for a plan, accept it, and write the code. The specificity of this command is that it lets you use different models to plan and write the changes. Refactoring I tried coding with aider in a few situations to see how it performs in practice. First, I tried making it do a simple refactoring on Itako, which is a project of average complexity. When pointed to the exact part of code where the issues happened, and explained explicitly what to do, the model managed to change the target struct according to the instructions. It did unexpectedly change a function that was outside the scope of what I asked, but this was easy to spot. On paper, this looks like a success. In practice, the time spent crafting a prompt, waiting for the AI to run and fixing the small issue that came up immensely exceeds the 10 minutes it would have taken me to edit the file myself. I don’t think coding that way would lead me to a massive performance improvement for now. Greenfield project For a second scenario, I wanted to see how it would perform on a brand-new project. I quickly set up a Python virtual environment, and asked aider to work with me at building a simple project. We would be opening a file containing Japanese text, parsing it with fugashi, and counting the words. To my surprise, this was a disaster. All I got was a bunch on hallucination riddled python that wouldn’t run under any circumstances. It may be that the lack of context actually made it harder for the model to generate code. Troubleshooting Finally, I went back to Itako, and decided to check how it would perform on common troubleshooting tasks. I introduced a few bugs to my code and gathered some error messages. I then proceeded to simply give aider the files mentioned by the error message and just use /ask to have it explain the errors to me, without requiring it to implement the code. This part did work very well. If I compare it with Googling unknown error messages, I think this can cut the time spent on the issue by half This is not just because Google is getting worse every day, but the model having access to the actual code does give it a massive advantage. I do think this setup is something I can use instead of the occasional frustration of scrolling through StackOverflow threads when something unexpected breaks. What about the Qwen CLI? With everyone jumping on the trend of CLI tools for LLMs, the Qwen team released its own Qwen Code. It can be installed using npm, and connects to a local model if configured like this: export OPENAI_API_KEY="ollama" export OPENAI_BASE_URL="http://localhost:11434/v1/" export OPENAI_MODEL="qwen3:8b" Compared to aider, it aims at being fully autonomous. For example, it will search your repository using grep. However, I didn’t manage to get it to successfully write any code. The tool seems optimized for larger, online models, with context sizes up to 1M tokens. Our local qwen3 context only has a 40k tokens context size, which can get overwhelmed very quickly when browsing entire code repositories. Even when I didn’t run out of context, the tool mysteriously failed when trying to write files. It insists it can only write to absolute paths, which the model doesn’t seem to agree with providing. I did not investigate the issue further.
Kubernetes is not exactly the most fun piece of technology around. Learning it isn’t easy, and learning the surrounding ecosystem is even harder. Even those who have managed to tame it are still afraid of getting paged by an ETCD cluster corruption, a Kubelet certificate expiration, or the DNS breaking down (and somehow, it’s always the DNS). Samuel Sianipar If you’re like me, the thought of making your own orchestrator has crossed your mind a few times. The result would, of course, be a magical piece of technology that is both simple to learn and wouldn’t break down every weekend. Sadly, the task seems daunting. Kubernetes is a multi-million lines of code project which has been worked on for more than a decade. The good thing is someone wrote a book that can serve as a good starting point to explore the idea of building our own container orchestrator. This book is named “Build an Orchestrator in Go”, written by Tim Boring, published by Manning. The tasks The basic unit of our container orchestrator is called a “task”. A task represents a single container. It contains configuration data, like the container’s name, image and exposed ports. Most importantly, it indicates the container state, and so acts as a state machine. The state of a task can be Pending, Scheduled, Running, Completed or Failed. Each task will need to interact with a container runtime, through a client. In the book, we use Docker (aka Moby). The client will get its configuration from the task and then proceed to pull the image, create the container and start it. When it is time to finish the task, it will stop the container and remove it. The workers Above the task, we have workers. Each machine in the cluster runs a worker. Workers expose an API through which they receive commands. Those commands are added to a queue to be processed asynchronously. When the queue gets processed, the worker will start or stop tasks using the container client. In addition to exposing the ability to start and stop tasks, the worker must be able to list all the tasks running on it. This demands keeping a task database in the worker’s memory and updating it every time a task change’s state. The worker also needs to be able to provide information about its resources, like the available CPU and memory. The book suggests reading the /proc Linux file system using goprocinfo, but since I use a Mac, I used gopsutil. The manager On top of our cluster of workers, we have the manager. The manager also exposes an API, which allows us to start, stop, and list tasks on the cluster. Every time we want to create a new task, the manager will call a scheduler component. The scheduler has to list the workers that can accept more tasks, assign them a score by suitability and return the best one. When this is done, the manager will send the work to be done using the worker’s API. In the book, the author also suggests that the manager component should keep track of every tasks state by performing regular health checks. Health checks typically consist of querying an HTTP endpoint (i.e. /ready) and checking if it returns 200. In case a health check fails, the manager asks the worker to restart the task. I’m not sure if I agree with this idea. This could lead to the manager and worker having differing opinions about a task state. It will also cause scaling issues: the manager workload will have to grow linearly as we add tasks, and not just when we add workers. As far as I know, in Kubernetes, Kubelet (the equivalent of the worker here) is responsible for performing health checks. The CLI The last part of the project is to create a CLI to make sure our new orchestrator can be used without having to resort to firing up curl. The CLI needs to implement the following features: start a worker start a manager run a task in the cluster stop a task get the task status get the worker node status Using cobra makes this part fairly straightforward. It lets you create very modern feeling command-line apps, with properly formatted help commands and easy argument parsing. Once this is done, we almost have a fully functional orchestrator. We just need to add authentication. And maybe some kind of DaemonSet implementation would be nice. And a way to handle mounting volumes…
In the past few years, social media use has gained a bad reputation. More or less everyone is now aware that TikTok is ruining your attention span, and Twitter is radicalizing you into extreme ideologies. But, despite its enormous popularity amongst technology enthusiasts, there’s not a lot of attention given to Discord. I personally have been using Discord so much for so long that the majority of my social circle is made of people I met through the platform. I even spent two years of my life helping run the infrastructure behind the most popular Bot available on Discord. In this article, I will try to give my perspective on Discord, why I think it is harmful, and what can we do about it. appshunter.io A tale of two book clubs To explain my point of view about Discord, I will compare the experience between joining a real-life book-club, and one that communicates exclusively through Discord. This example is about books, but the same issues would apply if it was a community talking about investing, knitting, or collecting stamps. As Marshall McLuhan showed last century, examining media should be done independently of their content. In the first scenario, we have Bob. Bob enjoys reading books, which is generally a solitary hobby. To break this solitude, Bob decides to join a book club. This book club reunites twice a month in a library where they talk about a new book each time. In the second scenario, we have Alice. Alice also likes books. Alice also wants to meet fellow book lovers. Being a nerd, Alice decides to join a Discord server. This server does not have fixed meeting times. Most users simply use the text channels to talk about what they are reading anytime during the day. Crumbs of Belongingness In Bob’s book club, a session typically lasts an hour. First, the librarian takes some time to welcome everyone and introduce newcomers. After, that each club member talks about the book they were expected to read. They can talk about what they liked and disliked, how the book made them feel, and the chapters they found particularly noteworthy. Once each member had the time to talk about the book, they vote on the book they are going to read for the next date. After the session is concluded, some members move to the nearest coffeehouse to keep talking. During this session of one hour, Bob spent around one hour socializing. The need for belongingness that drove Bob to join this book club is fully met. On Alice’s side, the server is running 24/7. When she opens the app, even if there are sometimes more than 4000 members of her virtual book club online, most of the time, nobody is talking. If she was to spend an entire hour staring at the server she might witness a dozen or so messages. Those messages may be part of small conversations in which Alice can take part. Sadly, most of the time they will be simple uploads of memes, conversations about books she hasn’t read, or messages that do not convey enough meaning to start a conversation. In one hour of constant Discord use, Alice’s need for socializing has not been met. Susan Q Yin The shop is closed Even if Bob’s library is open every day, the book club is only open for a total of two hours a month. It is enough for Bob. Since the book club fulfills his need, he doesn’t want it to be around for longer. He has not even entertained the thought of joining a second book club, because too many meetings would be overwhelming. For Alice, Discord is always available. No matter if she is at home or away, it is always somewhere in her phone or taskbar. At any moment of the day, she might notice a red circle above the icon. It tells her there are unread messages on Discord. When she notices that, she instinctively stops her current task and opens the app to spend a few minutes checking her messages. Most of the time those messages do not lead to a meaningful conversation. Reading a few messages isn’t enough to meet her need for socialization. So, after having scrolled through the messages, she goes back to waiting for the next notification. Each time she interrupts her current task to check Discord, getting back into the flow can take several minutes or not happen at all. This can easily happen dozens of times a day and cost Alice hundreds of hours each month. Book hopping When Bob gets home, the club only requires him to read the next book. He may also choose to read two books at the same time, one for the book club and one from his personal backlog. But, if he were to keep his efforts to a strict minimum, he would still have things to talk about in the next session. Alice wants to be able to talk with other users about the books they are reading. So she starts reading the books that are trending and get mentionned often. The issue is, Discord’s conversation are instantaneous, and instantaneity compresses time. A book isn’t going to stay popular and relevant for two whole weeks, if it manages to be the thing people talk about for two whole days, it’s already great. Alice might try to purchase and read two to three books a week to keep up with the server rythm. Even if books are not terribly expensive, this can turn a 20 $/month hobby into a 200 $/month hobby. In addition to that, if reading a book takes Alice on average 10 hours, reading 3 books a week would be like adding a part-time job to her schedule. All this, while being constantly interrupted by the need to check if new conversations have been posted to the server. visnu deva Quitting Discord If you are in Alice’s situation, the solution is quite simple: use Discord less, ideally not at all. On my side, I’ve left every server that is not relevant to my current work. I blocked discord.com from the DNS of my coding computer (using NextDNS) and uninstalled the app from my phone. This makes the platform only usable as a direct messaging app, exclusively from my gaming device, which I cannot carry with me. I think many people realize the addictive nature of Discord, yet keep using the application all the time. One common objection to quitting the platform, is that there’s a need for an alternative: maybe we should go back to forums, or IRC, or use Matrix, etc… I don’t think any alternative internet chat platform can solve the problem. The real problem is that we want to be able to talk to people without leaving home, at any time, without any inconvenience. But what we should do is exactly that, leave home and join a real book club, one that is not open 24/7, and one where the members take the time to listen to each other. In the software community, we have also been convinced that every one of our projects needs to be on Discord. Every game needs a server, open-source projects offer support on Discord, and a bunch of AI startups even use it as their main user interface. I even made a server for Dice’n Goblins. I don’t think it’s really that useful. I’m not even sure it’s that convenient. Popular games are not popular because they have big servers, they have big servers because they are popular. Successful open-source projects often don’t even have a server.
Two weeks ago we released Dice’n Goblins, our first game on Steam. This project allowed me to discover and learn a lot of new things about game development and the industry. I will use this blog post to write down what I consider to be the most important lessons from the months spent working on this. The development started around 2 years ago when Daphnée started prototyping a dungeon crawler featuring a goblin protagonist. After a few iterations, the game combat started featuring dice, and then those dice could be used to make combos. In May 2024, the game was baptized Dice’n Goblins, and a Steam page was created featuring some early gameplay screenshots and footage. I joined the project full-time around this period. Almost one year later, after amassing more than 8000 wishlists, the game finally released on Steam on April 4th, 2025. It was received positively by the gaming press, with great reviews from PCGamer and LadiesGamers. It now sits at 92% positive reviews from players on Steam. Building RPGs isn’t easy As you can see from the above timeline, building this game took almost two years and two programmers. This is actually not that long if you consider that other indie RPGs have taken more than 6 years to come out. The main issue with the genre is that you need to create a believable world. In practice, this requires programming many different systems that will interact together to give the impression of a cohesive universe. Every time you add a new system, you need to think about how it will fit all the existing game features. For example, players typically expect an RPG to have a shop system. Of course, this means designing a shop non-player character (or building) and creating a UI that is displayed when you interact with it. But this also means thinking through a lot of other systems: combat needs to be changed to reward the player with gold, every item needs a price tag, chests should sometimes reward the player with gold, etc… Adding too many systems can quickly get into scope creep territory, and make the development exponentially longer. But you can only get away with removing so much until your game stops being an RPG. Making a game without a shop might be acceptable, but the experience still needs to have more features than “walking around and fighting monsters” to feel complete. RPGs are also, by definition, narrative experiences. While some games have managed to get away with procedurally generating 90% of the content, in general, you’ll need to get your hands dirty, write a story, and design a bunch of maps. Creating enough content for a game to fit 12h+ without having the player go through repetitive grind will by itself take a lot of time. Having said all that, I definitely wouldn’t do any other kind of games than RPGs, because this is what I enjoy playing. I don’t think I would be able to nail what makes other genres fun if I don’t play them enough to understand what separates the good from the mediocre. Marketing isn’t that complicated Everyone in the game dev community knows that there are way too many games releasing on Steam. To stand out amongst the 50+ games coming out every day, it’s important not only to have a finished product but also to plan a marketing campaign well in advance. For most people coming from a software engineering background, like me, this can feel extremely daunting. Our education and jobs do not prepare us well for this kind of task. In practice, it’s not that complicated. If your brain is able to provision a Kubernetes cluster, then you are most definitely capable of running a marketing campaign. Like anything else, it’s a skill that you can learn over time by practicing it, and iteratively improving your methods. During the 8 months following the Steam page release, we tried basically everything you can think of as a way to promote the game. Every time something was having a positive impact, we would do it more, and we quickly stopped things with low impact. The most important thing to keep in mind is your target audience. If you know who wants the game of games you’re making, it is very easy to find where they hang out and talk to them. This is however not an easy question to answer for every game. For a long while, we were not sure who would like Dice’n Goblins. Is it people who like Etrian Odyssey? Fans of Dicey Dungeons? Nostalgic players of Paper Mario? For us, the answer was mostly #1, with a bit of #3. Once we figured out what was our target audience, how to communicate with them, and most importantly, had a game that was visually appealing enough, marketing became very straightforward. This is why we really struggled to get our first 1000 wishlists, but getting the last 5000 was actually not that complicated. Publishers aren’t magic At some point, balancing the workload of actually building the game and figuring out how to market it felt too much for a two-person team. We therefore did what many indie studios do, and decided to work with a publisher. We worked with Rogue Duck Interactive, who previously published Dice & Fold, a fairly successful dice roguelike. Without getting too much into details, it didn’t work out as planned and we decided, by mutual agreement, to go back to self-publishing Dice’n Goblins. The issue simply came from the audience question mentioned earlier. Even though Dice & Fold and Dice’n Goblins share some similarities, they target a different audience, which requires a completely different approach to marketing. The lesson learned is that when picking a publisher, the most important thing you can do is to check that their current game catalog really matches the idea you have of your own game. If you’re building a fast-paced FPS, a publisher that only has experience with cozy simulation games will not be able to help you efficiently. In our situation, a publisher with experience in roguelikes and casual strategy games wasn’t a good fit for an RPG. In addition to that, I don’t think the idea of using a publisher to remove marketing toil and focus on making the game is that much of a good idea in the long term. While it definitely helps to remove the pressure from handling social media accounts and ad campaigns, new effort will be required in communicating and negotiating with the publishing team. In the end, the difference between the work saved and the work gained might not have been worth selling a chunk of your game. Conclusion After all this was said and done, one big question I haven’t answered is: would I do it again? The answer is definitely yes. Not only building this game was an extremely satisfying endeavor, but so much has been learned and built while doing it, it would be a shame not to go ahead and do a second one.
Neovim is by far my favorite text editor. The clutter-free interface and keyboard-only navigation are what keep me productive in my daily programming. In an earlier post, I explained how I configure it into a minimalist development environment. Today, I will show you how to use it with Godot and GDScript. Configure Godot First, we need to tell Godot to use nvim as a text editor instead of the built-in one. Open Godot, and head to Editor Settings > General > Text Editor > External. There, you will need to tick the box Use external editor, indicate your Neovim installation path, and use --server /tmp/godothost --remote-send "<C-\><C-N>:n {file}<CR>{line}G{col}|" as execution flags. While in the settings, head to Network > Language Server and note down the remote port Godot is using. By default, it should be 6005. We will need that value later. Connecting to Godot with vim-godot Neovim will be able to access Godot features by using a plugin called vim-godot. We will need to edit the nvim configuration file to install plugins and configure Neovim. On Mac and Linux, it is located at ~/.config/nvim/init.vim I use vim-plug to manage my plugins, so I can just add it to my configuration like this: call plug#begin('~/.vim/plugged') " ... Plug 'habamax/vim-godot' " ... call plug#end() Once the configuration file is modified and saved, use the :PlugInstall command to install it. You’ll also need to indicate Godot’s executable path. Add this line to your init.vim: let g:godot_executable = '/Applications/Godot.app/Contents/MacOS/Godot' For vim-godot to communicate with the Godot editor, it will need to listen to the /tmp/godothost file we configured in the editor previously. To do that, simply launch nvim with the flag --listen /tmp/godothost. To save you some precious keypress, I suggest creating a new alias in your bashrc/zshrc like this: alias gvim="nvim --listen /tmp/godothost" Getting autocompletion with coc.nvim Godot ships with a language server. It means the Godot editor can provide autocompletion, syntax highlighting, and advanced navigation to external editors like nvim. While Neovim now has built-in support for the language server protocol, I’ve used the plugin coc.nvim to obtain these functionalities for years and see no reason to change. You can also install it with vim-plug by adding the following line to your plugin list: Plug 'neoclide/coc.nvim', {'branch':'release'} Run :PlugInstall again to install it. You’ll need to indicate the Godot language server address and port using the command :CocConfig. It should open Coc’s configuration file, which is a JSON file normally located at ~/.config/nvim/coc-settings.json. In this file enter the following data, and make sure the port number matches the one located in your editor: { "languageserver": { "godot": { "host": "127.0.0.1", "filetypes": ["gdscript"], "port": 6005 } } } I recommend adding Coc’s example configuration to your init.vim file. You can find it on GitHub. It will provide you with a lot of useful shortcuts, such as using gd to go to a function definition and gr to list its references. Debugging using nvim-dap If you want to use the debugger from inside Neovim, you’ll need to install another plugin called nvim-dap. Add the following to your plugins list: Plug 'mfussenegger/nvim-dap' The plugin authors suggest configuring it using Lua, so let’s do that by adding the following in your init.vim: lua <<EOF local dap = require("dap") dap.adapters.godot = { type = "server", host = "127.0.0.1", port = 6006, } dap.configurations.gdscript = { { type = "godot", request = "launch", name = "Launch scene", project = "${workspaceFolder}", launch_scene = true, }, } vim.api.nvim_create_user_command("Breakpoint", "lua require'dap'.toggle_breakpoint()", {}) vim.api.nvim_create_user_command("Continue", "lua require'dap'.continue()", {}) vim.api.nvim_create_user_command("StepOver", "lua require'dap'.step_over()", {}) vim.api.nvim_create_user_command("StepInto", "lua require'dap'.step_into()", {}) vim.api.nvim_create_user_command("REPL", "lua require'dap'.repl.open()", {}) EOF This will connect to the language server (here on port 6005), and allow you to pilot the debugger using the following commands: :Breakpoint to create (or remove) a breakpoint :Continue to launch the game or run until the next breakpoint :StepOver to step over a line :StepInto to step inside a function definition :REPL to launch a REPL (useful if you want to examine values) Conclusion I hope you’ll have a great time developing Godot games with Neovim. If it helps you, you can check out my entire init.vim file on GitHub gist.
More in programming
I always had a diffuse idea of why people are spending so much time and money on amateur radio. Once I got my license and started to amass radios myself, it became more clear.
What does it mean when someone writes that a programming language is “strongly typed”? I’ve known for many years that “strongly typed” is a poorly-defined term. Recently I was prompted on Lobsters to explain why it’s hard to understand what someone means when they use the phrase. I came up with more than five meanings! how strong? The various meanings of “strongly typed” are not clearly yes-or-no. Some developers like to argue that these kinds of integrity checks must be completely perfect or else they are entirely worthless. Charitably (it took me a while to think of a polite way to phrase this), that betrays a lack of engineering maturity. Software engineers, like any engineers, have to create working systems from imperfect materials. To do so, we must understand what guarantees we can rely on, where our mistakes can be caught early, where we need to establish processes to catch mistakes, how we can control the consequences of our mistakes, and how to remediate when somethng breaks because of a mistake that wasn’t caught. strong how? So, what are the ways that a programming language can be strongly or weakly typed? In what ways are real programming languages “mid”? Statically typed as opposed to dynamically typed? Many languages have a mixture of the two, such as run time polymorphism in OO languages (e.g. Java), or gradual type systems for dynamic languages (e.g. TypeScript). Sound static type system? It’s common for static type systems to be deliberately unsound, such as covariant subtyping in arrays or functions (Java, again). Gradual type systems migh have gaping holes for usability reasons (TypeScript, again). And some type systems might be unsound due to bugs. (There are a few of these in Rust.) Unsoundness isn’t a disaster, if a programmer won’t cause it without being aware of the risk. For example: in Lean you can write “sorry” as a kind of “to do” annotation that deliberately breaks soundness; and Idris 2 has type-in-type so it accepts Girard’s paradox. Type safe at run time? Most languages have facilities for deliberately bypassing type safety, with an “unsafe” library module or “unsafe” language features, or things that are harder to spot. It can be more or less difficult to break type safety in ways that the programmer or language designer did not intend. JavaScript and Lua are very safe, treating type safety failures as security vulnerabilities. Java and Rust have controlled unsafety. In C everything is unsafe. Fewer weird implicit coercions? There isn’t a total order here: for instance, C has implicit bool/int coercions, Rust does not; Rust has implicit deref, C does not. There’s a huge range in how much coercions are a convenience or a source of bugs. For example, the PHP and JavaScript == operators are made entirely of WAT, but at least you can use === instead. How fancy is the type system? To what degree can you model properties of your program as types? Is it convenient to parse, not validate? Is the Curry-Howard correspondance something you can put into practice? Or is it only capable of describing the physical layout of data? There are probably other meanings, e.g. I have seen “strongly typed” used to mean that runtime representations are abstract (you can’t see the underlying bytes); or in the past it sometimes meant a language with a heavy type annotation burden (as a mischaracterization of static type checking). how to type So, when you write (with your keyboard) the phrase “strongly typed”, delete it, and come up with a more precise description of what you really mean. The desiderata above are partly overlapping, sometimes partly orthogonal. Some of them you might care about, some of them not. But please try to communicate where you draw the line and how fuzzy your line is.
(Last week's newsletter took too long and I'm way behind on Logic for Programmers revisions so short one this time.1) In classical logic, two operators F/G are duals if F(x) = !G(!x). Three examples: x || y is the same as !(!x && !y). <>P ("P is possibly true") is the same as ![]!P ("not P isn't definitely true"). some x in set: P(x) is the same as !(all x in set: !P(x)). (1) is just a version of De Morgan's Law, which we regularly use to simplify boolean expressions. (2) is important in modal logic but has niche applications in software engineering, mostly in how it powers various formal methods.2 The real interesting one is (3), the "quantifier duals". We use lots of software tools to either find a value satisfying P or check that all values satisfy P. And by duality, any tool that does one can do the other, by seeing if it fails to find/check !P. Some examples in the wild: Z3 is used to solve mathematical constraints, like "find x, where f(x) >= 0. If I want to prove a property like "f is always positive", I ask z3 to solve "find x, where !(f(x) >= 0), and see if that is unsatisfiable. This use case powers a LOT of theorem provers and formal verification tooling. Property testing checks that all inputs to a code block satisfy a property. I've used it to generate complex inputs with certain properties by checking that all inputs don't satisfy the property and reading out the test failure. Model checkers check that all behaviors of a specification satisfy a property, so we can find a behavior that reaches a goal state G by checking that all states are !G. Here's TLA+ solving a puzzle this way.3 Planners find behaviors that reach a goal state, so we can check if all behaviors satisfy a property P by asking it to reach goal state !P. The problem "find the shortest traveling salesman route" can be broken into some route: distance(route) = n and all route: !(distance(route) < n). Then a route finder can find the first, and then convert the second into a some and fail to find it, proving n is optimal. Even cooler to me is when a tool does both finding and checking, but gives them different "meanings". In SQL, some x: P(x) is true if we can query for P(x) and get a nonempty response, while all x: P(x) is true if all records satisfy the P(x) constraint. Most SQL databases allow for complex queries but not complex constraints! You got UNIQUE, NOT NULL, REFERENCES, which are fixed predicates, and CHECK, which is one-record only.4 Oh, and you got database triggers, which can run arbitrary queries and throw exceptions. So if you really need to enforce a complex constraint P(x, y, z), you put in a database trigger that queries some x, y, z: !P(x, y, z) and throws an exception if it finds any results. That all works because of quantifier duality! See here for an example of this in practice. Duals more broadly "Dual" doesn't have a strict meaning in math, it's more of a vibe thing where all of the "duals" are kinda similar in meaning but don't strictly follow all of the same rules. Usually things X and Y are duals if there is some transform F where X = F(Y) and Y = F(X), but not always. Maybe the category theorists have a formal definition that covers all of the different uses. Usually duals switch properties of things, too: an example showing some x: P(x) becomes a counterexample of all x: !P(x). Under this definition, I think the dual of a list l could be reverse(l). The first element of l becomes the last element of reverse(l), the last becomes the first, etc. A more interesting case is the dual of a K -> set(V) map is the V -> set(K) map. IE the dual of lived_in_city = {alice: {paris}, bob: {detroit}, charlie: {detroit, paris}} is city_lived_in_by = {paris: {alice, charlie}, detroit: {bob, charlie}}. This preserves the property that x in map[y] <=> y in dual[x]. And after writing this I just realized this is partial retread of a newsletter I wrote a couple months ago. But only a partial retread! ↩ Specifically "linear temporal logics" are modal logics, so "eventually P ("P is true in at least one state of each behavior") is the same as saying !always !P ("not P isn't true in all states of all behaviors"). This is the basis of liveness checking. ↩ I don't know for sure, but my best guess is that Antithesis does something similar when their fuzzer beats videogames. They're doing fuzzing, not model checking, but they have the same purpose check that complex state spaces don't have bugs. Making the bug "we can't reach the end screen" can make a fuzzer output a complete end-to-end run of the game. Obvs a lot more complicated than that but that's the general idea at least. ↩ For CHECK to constraint multiple records you would need to use a subquery. Core SQL does not support subqueries in check. It is an optional database "feature outside of core SQL" (F671), which Postgres does not support. ↩
Omarchy 2.0 was released on Linux's 34th birthday as a gift to perhaps the greatest open-source project the world has ever known. Not only does Linux run 95% of all servers on the web, billions of devices as an embedded OS, but it also turns out to be an incredible desktop environment! It's crazy that it took me more than thirty years to realize this, but while I spent time in Apple's walled garden, the free software alternative simply grew better, stronger, and faster. The Linux of 2025 is not the Linux of the 90s or the 00s or even the 10s. It's shockingly more polished, capable, and beautiful. It's been an absolute honor to celebrate Linux with the making of Omarchy, the new Linux distribution that I've spent the last few months building on top of Arch and Hyprland. What began as a post-install script has turned into a full-blown ISO, dedicated package repository, and flourishing community of thousands of enthusiasts all collaborating on making it better. It's been improving rapidly with over twenty releases since the premiere in late June, but this Version 2.0 update is the biggest one yet. If you've been curious about giving Linux a try, you're not afraid of an operating system that asks you to level up and learn a little, and you want to see what a totally different computing experience can look and feel like, I invite you to give it a go. Here's a full tour of Omarchy 2.0.
In 2020, Apple released the M1 with a custom GPU. We got to work reverse-engineering the hardware and porting Linux. Today, you can run Linux on a range of M1 and M2 Macs, with almost all hardware working: wireless, audio, and full graphics acceleration. Our story begins in December 2020, when Hector Martin kicked off Asahi Linux. I was working for Collabora working on Panfrost, the open source Mesa3D driver for Arm Mali GPUs. Hector put out a public call for guidance from upstream open source maintainers, and I bit. I just intended to give some quick pointers. Instead, I bought myself a Christmas present and got to work. In between my university coursework and Collabora work, I poked at the shader instruction set. One thing led to another. Within a few weeks, I drew a triangle. In 3D graphics, once you can draw a triangle, you can do anything. Pretty soon, I started work on a shader compiler. After my final exams that semester, I took a few days off from Collabora to bring up an OpenGL driver capable of spinning gears with my new compiler. Over the next year, I kept reverse-engineering and improving the driver until it could run 3D games on macOS. Meanwhile, Asahi Lina wrote a kernel driver for the Apple GPU. My userspace OpenGL driver ran on macOS, leaving her kernel driver as the missing piece for an open source graphics stack. In December 2022, we shipped graphics acceleration in Asahi Linux. In January 2023, I started my final semester in my Computer Science program at the University of Toronto. For years I juggled my courses with my part-time job and my hobby driver. I faced the same question as my peers: what will I do after graduation? Maybe Panfrost? I started reverse-engineering of the Mali Midgard GPU back in 2017, when I was still in high school. That led to an internship at Collabora in 2019 once I graduated, turning into my job throughout four years of university. During that time, Panfrost grew from a kid’s pet project based on blackbox reverse-engineering, to a professional driver engineered by a team with Arm’s backing and hardware documentation. I did what I set out to do, and the project succeeded beyond my dreams. It was time to move on. What did I want to do next? Finish what I started with the M1. Ship a great driver. Bring full, conformant OpenGL drivers to the M1. Apple’s drivers are not conformant, but we should strive for the industry standard. Bring full, conformant Vulkan to Apple platforms, disproving the myth that Vulkan isn’t suitable for Apple hardware. Bring Proton gaming to Asahi Linux. Thanks to Valve’s work for the Steam Deck, Windows games can run better on Linux than even on Windows. Why not reap those benefits on the M1? Panfrost was my challenge until we “won”. My next challenge? Gaming on Linux on M1. Once I finished my coursework, I started full-time on gaming on Linux. Within a month, we shipped OpenGL 3.1 on Asahi Linux. A few weeks later, we passed official conformance for OpenGL ES 3.1. That put us at feature parity with Panfrost. I wanted to go further. OpenGL (ES) 3.2 requires geometry shaders, a legacy feature not supported by either Arm or Apple hardware. The proprietary OpenGL drivers emulate geometry shaders with compute, but there was no open source prior art to borrow. Even though multiple Mesa drivers need geometry/tessellation emulation, nobody did the work to get there. My early progress on OpenGL was fast thanks to the mature common code in Mesa. It was time to pay it forward. Over the rest of the year, I implemented geometry/tessellation shader emulation. And also the rest of the owl. In January 2024, I passed conformance for the full OpenGL 4.6 specification, finishing up OpenGL. Vulkan wasn’t too bad, either. I polished the OpenGL driver for a few months, but once I started typing a Vulkan driver, I passed 1.3 conformance in a few weeks. What remained was wiring up the geometry/tessellation emulation to my shiny new Vulkan driver, since those are required for Direct3D. Et voilà, Proton games. Along the way, Karol Herbst passed OpenCL 3.0 conformance on the M1, running my compiler atop his “rusticl” frontend. Meanwhile, when the Vulkan 1.4 specification was published, we were ready and shipped a conformant implementation on the same day. After that, I implemented sparse texture support, unlocking Direct3D 12 via Proton. …Now what? Ship a great driver? Check. Conformant OpenGL 4.6, OpenGL ES 3.2, and OpenCL 3.0? Check. Conformant Vulkan 1.4? Check. Proton gaming? Check. That’s a wrap. We’ve succeeded beyond my dreams. The challenges I chased, I have tackled. The drivers are fully upstream in Mesa. Performance isn’t too bad. With the Vulkan on Apple myth busted, conformant Vulkan is now coming to macOS via LunarG’s KosmicKrisp project building on my work. Satisfied, I am now stepping away from the Apple ecosystem. My friends in the Asahi Linux orbit will carry the torch from here. As for me? Onto the next challenge!