Full Width [alt+shift+f] Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
46
Earlier this year, I decided to build a 3D-printed Nerf turret with streaming video that is fully controllable from a web browser. It’s something a 6th grader would have thought was a good use of time, but for some reason as a dad in my thirties, I spent the last several months hacking it together. I’ve created a printables project and github repo if you are interested in making one. Starting the Build I started this build focused on finding a way to fire darts using Python. I figured the best option was to repurpose an old Nerf blaster so I settled on using the Nerf Swarmfire. I liked that the Swarmfire had an electronic trigger and used a motorized direct plunger which is quieter than most flywheel blasters. Also, the lack of a flywheel meant it could shoot instantly and didn’t have to wait to get up to speed. I pulled the internals out of the blaster’s plastic shell, removed the trigger button, and replaced the six C batteries with two 18650s. I then created a 3D printed mount to...
over a year ago

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from Alex Meub

The Magic of Solving Problems with 3D Printing

3D Printing has allowed me to be creative in ways I never thought possible. It has allowed me to create products that provide real value, products that didn’t exist before I designed them. On top of that, it’s satisfied my desire to ship products, even if the end-user is just me. Another great thing is how quickly 3D printing provides value. If I see a problem, I can design and print a solution that works in just a few hours. Even if I’m the only one who benefits, that’s enough. But sharing these creations takes the experience even further. When I see others use or improve on something I’ve made, it makes the process feel so much more worthwhile. It gives me the same feeling of fulfillment when I ship software products at work. Before mass-market 3D printing, creators would need to navigate the complexity and high costs of mass-production methods (like injection molding) even to get a limited run of a niche product produced. With 3D printing, they can transfer the cost of production to others. Millions of people have access to good 3D printers now (at home, work, school, libraries, maker spaces), which means almost anyone can replicate a design. Having a universal format for sharing 3D designs dramatically lowers the effort that goes into sharing them. Creators can share their design as an STL file, which describes the surface geometry of their 3D object as thousands of little triangles. This “standard currency” of the 3D printing world is often all that is required to precisely replicate a design. This dramatically lowers the effort that goes into sharing printable designs. The widespread availability of 3D printers and the universal format for sharing 3D designs has allowed 3D-printed products to not only exist but thrive in maker communities. This is the magic of 3D printing: it empowers individuals to solve their own problems by designing solutions while enabling others to reproduce those designs at minimal cost and effort.

6 months ago 89 votes
Building the DataToaster 3000

Last summer, I was inspired by a computer that was built inside of a toaster that I saw at a local computer recycling store. The idea of a computer with the design of a home appliance was really appealing and so was the absurdity of it. It occurred to me that this would be a fun and creative way to integrate technology into my life. After thinking about it, I realized there’s also something visually appealing about how simple and utilitarian toasters are. I have major nostalgia for the famous After Dark screensaver and I think this is why. I knew now that I wanted to make my own attempt at a toaster/computer hybrid. I decided to do just that when I created the DataToaster 3000: a toaster NAS with two 3.5 inch hard disk docking stations built inside it. The hard disks can be easily swapped out (while powered off) without taking anything apart. It uses a Zimaboard x86-64 single board computer and even has a functional knob that controls the color of the power LED. I designed a fairly complex set of 3D-printed parts that attach to the base of the toaster and hold everything neatly in place. This allows it to be easily disassembled if I ever want to make any modifications and also hopefully makes the project easier to build for others. It’s a ridiculous thing but I really do love it. You can find the build guide on Instructables and the 3D models on Printables.

9 months ago 79 votes
Building a Removable Bike Basket for the Yepp Rack

I wanted to add more hauling capacity to my bike and was looking for something compatible with my Yepp rear rack. I also use my rack with a child seat (the Yepp Maxi) which has a mechanism that allows it to attach and detach easily without sacrificing safety. I was thinking it would be great to build a Yepp compatible rear basket that could I just as quickly attach/detach from my rack. I designed a removable Yepp-rack-compatible rear basket that consists of a milk crate, some plywood for stability and a 3D printed bracket threaded for M6 bolts which hold it all together. It can be attached and removed in seconds and is very secure. 3D Printed Mounting Bracket I modeled my mounting bracket after the one on the Yepp Maxi childseat. After a few iterations I was able to make it perfectly fit. I printed it in PETG filament so it was UV resistant and then installed threaded inserts for M6 bolts to attach it to the milk crate and my rear rack. 3D Print and Build Instructions You can find the 3D print on Printables and a full build guide on Instructables.

10 months ago 74 votes
The Yoto Mini is Perfect

The Yoto Mini is one of my favorite products. The team behind it deeply understands its users and put just the right set of features into a brilliantly designed package. I have no affiliation with Yoto, I’m just a happy customer with kids who love it. If you aren’t aware, Yoto is an audio platform for kids with what they call “screen-free” audio players (even though they have little pixel LED screens on them). The players are Wi-Fi enabled and support playing audio from credit card-sized NFC tags called Yoto cards. Yoto sells audio players and also licenses audio content and offers it on its platform as well. The cards themselves do not contain any audio data, just a unique ID of the audio content that is pulled from the cloud. After content is pulled on the first play, it is saved and played locally from the player after that. Yoto also supports playing podcasts and music stations without using cards. Their marketing puts a lot of emphasis on the platform being “ad-free” which is mostly true as there are never ads on Yoto cards or official Yoto podcasts. However, some of the other podcasts do advertise their content. So, what’s so great about the Yoto Mini? This concept isn’t new as there have been many examples of audio players for kids over the years. What sets it apart is how every detail of the hardware, mobile app, and exclusive content is meticulously designed and well executed. Yoto Mini Hardware The main input methods of the Yoto Mini are two orange knobs, turning the left knob controls volume and the right knob navigates chapters or tracks. Pressing the right knob instantly plays the Yoto Daily podcast and pressing it twice plays Yoto Radio (a kid-friendly music station). These actions are both configurable in the mobile app. The NFC reader slot accepts Yoto cards and instantly starts playing where you left off after you insert one. It has a high-quality speaker that can be surprisingly loud, an on/off button, a USB-C charging port, an audio output jack, and a small pixel display that shows images related to the audio content. The Yoto Mini is also surprisingly durable. My kids have dropped it many times on hard surfaces and it still basically looks as good as new. Yoto understands that the physical audio player itself is primarily used by younger kids and the design reflects this. My 3-year-old daughter was able to figure out how to turn it on/off, start listening to books using cards, and play the Yoto Daily podcast each morning which was empowering for her. This was her first technology product that she was fully capable of using without help from an adult. I can’t think of many other products that do this better. Yoto Mobile App The Yoto team understands that parents are users of this product too, mostly for managing the device and its content. Yoto has built a very good mobile experience that is tightly integrated with the hardware and provides all the features you’d want as a parent. From the app, you can start playing any of the content from cards you own on the player or your phone (nice if your kids lose a card), you can set volume limits for both night and day time, you can set alarms, and configure the shortcut buttons. You can record audio onto a blank Yoto card (which comes with the player) if your kid wants to create their own story, link it to their favorite podcast or favorite music. The app even lets you give each track custom pixel art that is displayed on the screen. Audio Content By far the most underrated feature is a daily podcast called Yoto Daily. This ad-free podcast is run by a charming British host and it is funny, entertaining, and educational. My kids (now 4 and 7) look forward to it every morning and the fact that it’s daily free content that is integrated directly into the Yoto hardware is amazing. To me, this is the killer feature, as my kids get to enjoy it every day and it’s always fresh and interesting. Yoto licenses content from child book authors, popular kid’s shows, movies, and music (recently the Beatles) which are made available in their store. I also discovered that Yoto does not seem to lock down its content with DRM. My son traded some Yoto cards with a friend and I assumed there would be some kind of transfer or de-registration process but to my surprise, they just worked without issue. Conclusion The Yoto Mini is a delightful product. The team behind it thought through every detail and made it an absolute joy to use both as a child and parent. I’m impressed at how well the Yoto team understands their users and prioritizes simplicity and ease of use above all else.

a year ago 66 votes
How To Quiet Down Your 3D Printer

When I first got my 3D printer, I built an enclosure to protect it from dust, maintain a consistent temperature, and minimize noise. I was surprised to find that the enclosure didn’t reduce noise that significantly. I then placed a patio paver under my printer, which made it noticeably quieter, but it was still audible from other rooms in my house. Recently, I found the most effective noise reduction solution: squash balls. These balls are designed with varying bounce levels, indicated by colored dots. The “double-yellow dot” balls have a very low bounce, making them ideal for dampening vibration, which is the primary cause of printer noise. I found an existing design for squash ball feet, printed it, and hot glued them evenly under my patio paver. My current setup includes the enclosure, patio paver, and squash balls under the paver. Now, the printer is so quiet that I actually can’t tell if it’s running, even when I’m in the same room. Occasionally, I will hear the stepper motors, but that’s rare. Most of the time I need to open the enclosure to make sure it’s still printing.

a year ago 35 votes

More in programming

Thoughts on Motivation and My 40-Year Career

I’ve never published an essay quite like this. I’ve written about my life before, reams of stuff actually, because that’s how I process what I think, but never for public consumption. I’ve been pushing myself to write more lately because my co-authors and I have a whole fucking book to write between now and October. […]

10 hours ago 4 votes
Single-Use Disposable Applications

As search gets worse and “working code” gets cheaper, apps get easier to make from scratch than to find.

15 hours ago 4 votes
Desktop UI frameworks written by a single person

Less known desktop UI frameworks Writing desktop software is hard. The UI technologies of Windows or MacOS are awful compared to web technology. What can trivially be done with HTML/CSS/JavaScript in few minutes can take hours using Windows’s win32 APIs or Mac’s Cocoa. That’s why the default technology for desktop apps, especially cross-platform, is Electron: a Chrome browser combined with Node runtime. The problem is that it’s bloaty: each app is a unique build of Chrome with a little bit of application code. Chrome is over 100MB so many apps ship less than 1MB of code in a 100M wrapper. People tried to address the problem of poor OS APIs by writing UI frameworks, often meant to be cross-platform. You’ve heard about QT, GTK, wxWindows. The problem with those is that they are also old, their APIs are not the greatest either and they are bloaty as well. There just doesn’t seem to be a good option. Writing your own framework seems impossible due to the size of task. But is it? I’ll show a couple of less-known UI frameworks written mostly be a single person, often done simply to enable writing an application. SWELL in WDL WDL is interesting. Justin Frankel, the guy who created Winamp, has a repository of C++ code he uses in different projects. After selling Winamp to AOL, a side quest of writing file sharing application, getting fired from AOL for writing file sharing application, he started a company building Reaper a digital audio workstation software for Windows. Winamp is a win32 API program and so is Reaper. At some point Justin decided to make a Mac version but by then he had a lot of code heavily using win32 APIs. So he did what anyone in his position would: he implemented win32 APIs for Mac OS and Linux and called it SWELL - Simple Windows Emulation Layer. Ok, actually no-one else would do it. It was an insane idea but it worked. It’s important to not over-state SWELL capabilities. It’s not Wine. You can’t take any win32 program and recompile for Mac with SWELL. Frankel is insanely pragmatic and so is his code. SWELL only implements the subset of APIs he uses in Reaper. At the same time Reaper is a big app so if SWELL works for Reaper, it could work for your app. WDL is open-source using permissive MIT license. Sublime Text For a few years Sublime Text was THE programmer’s editor. It was written by a single developer in C++ and he wrote a custom UI toolkit for it. Not open source but its existence shows it can be done. RAD Debugger RAD Debugger is an open-source Windows debugger for C/C++ apps written in C by mostly a single person. It implements a custom UI framework based on 3D renderer. The UI is integral part of the the app but the code is well structured so you probably can take just their UI / render code and use it in your own C / C++ app. Currently the app / UI is only for Windows but it’s designed to be cross-platform and they are working on porting the renderer to Mac OS / Linux. They use permissive MIT license and everything is written in C. Dear ImGUI Dear ImGui is a newer cross-platform, UI framework in C++. Open source, permissive MIT license. Written by mostly a single person. Ghostty Ghostty is a cross-platform terminal emulator and UI. It’s written in Zig by mostly a single person and uses it’s own low-level GPU renderer for the UI. You too can write your own UI framework At first the idea of writing your own UI framework seems impossibly daunting. What I’m hoping to show is that if you’re ambitious enough it’s possible to build cross platform desktop apps that are not just bloated 100MB Chrome wrappers around few kilobytes of custom code. I’m not saying it’s a simple thing, just that enough people did it that it’s possible. It shouldn’t be necessary but both Microsoft and Apple have tragically dropped the ball on providing decent, high-performance UI libraries for their OS. Microsoft even writes their own apps, like Teams, in web technologies. Thanks to open source you’re not at the staring line. You can just use Dear ImGUI or WDL’s SWELL. Or you can extract the UI code from RAD Debugger or Ghostty (if you write in Zig). Or you can look at how their implementation to speed up your own design and implementation.

yesterday 2 votes
Logic for Programmers Turns One

I released Logic for Programmers exactly one year ago today. It feels weird to celebrate the anniversary of something that isn't 1.0 yet, but software projects have a proud tradition of celebrating a dozen anniversaries before 1.0. I wanted to share about what's changed in the past year and the work for the next six+ months. The Road to 0.1 I had been noodling on the idea of a logic book since the pandemic. The first time I wrote about it on the newsletter was in 2021! Then I said that it would be done by June and would be "under 50 pages". The idea was to cover logic as a "soft skill" that helped you think about things like requirements and stuff. That version sucked. If you want to see how much it sucked, I put it up on Patreon. Then I slept on the next draft for three years. Then in 2024 a lot of business fell through and I had a lot of free time, so with the help of Saul Pwanson I rewrote the book. This time I emphasized breadth over depth, trying to cover a lot more techniques. I also decided to self-publish it instead of pitching it to a publisher. Not going the traditional route would mean I would be responsible for paying for editing, advertising, graphic design etc, but I hoped that would be compensated by much higher royalties. It also meant I could release the book in early access and use early sales to fund further improvements. So I wrote up a draft in Sphinx, compiled it to LaTeX, and uploaded the PDF to leanpub. That was in June 2024. Since then I kept to a monthly cadence of updates, missing once in November (short-notice contract) and once last month (Systems Distributed). The book's now on v0.10. What's changed? A LOT v0.1 was very obviously an alpha, and I have made a lot of improvements since then. For one, the book no longer looks like a Sphinx manual. Compare! Also, the content is very, very different. v0.1 was 19,000 words, v.10 is 31,000.1 This comes from new chapters on TLA+, constraint/SMT solving, logic programming, and major expansions to the existing chapters. Originally, "Simplifying Conditionals" was 600 words. Six hundred words! It almost fit in two pages! The chapter is now 2600 words, now covering condition lifting, quantifier manipulation, helper predicates, and set optimizations. All the other chapters have either gotten similar facelifts or are scheduled to get facelifts. The last big change is the addition of book assets. Originally you had to manually copy over all of the code to try it out, which is a problem when there are samples in eight distinct languages! Now there are ready-to-go examples for each chapter, with instructions on how to set up each programming environment. This is also nice because it gives me breaks from writing to code instead. How did the book do? Leanpub's all-time visualizations are terrible, so I'll just give the summary: 1180 copies sold, $18,241 in royalties. That's a lot of money for something that isn't fully out yet! By comparison, Practical TLA+ has made me less than half of that, despite selling over 5x as many books. Self-publishing was the right choice! In that time I've paid about $400 for the book cover (worth it) and maybe $800 in Leanpub's advertising service (probably not worth it). Right now that doesn't come close to making back the time investment, but I think it can get there post-release. I believe there's a lot more potential customers via marketing. I think post-release 10k copies sold is within reach. Where is the book going? The main content work is rewrites: many of the chapters have not meaningfully changed since 1.0, so I am going through and rewriting them from scratch. So far four of the ten chapters have been rewritten. My (admittedly ambitious) goal is to rewrite three of them by the end of this month and another three by the end of next. I also want to do final passes on the rewritten chapters; as most of them have a few TODOs left lying around. (Also somehow in starting this newsletter and publishing it I realized that one of the chapters might be better split into two chapters, so there could well-be a tenth technique in v0.11 or v0.12!) After that, I will pass it to a copy editor while I work on improving the layout, making images, and indexing. I want to have something worthy of printing on a dead tree by 1.0. In terms of timelines, I am very roughly estimating something like this: Summer: final big changes and rewrites Early Autumn: graphic design and copy editing Late Autumn: proofing, figuring out printing stuff Winter: final ebook and initial print releases of 1.0. (If you know a service that helps get self-published books "past the finish line", I'd love to hear about it! Preferably something that works for a fee, not part of royalties.) This timeline may be disrupted by official client work, like a new TLA+ contract or a conference invitation. Needless to say, I am incredibly excited to complete this book and share the final version with you all. This is a book I wished for years ago, a book I wrote because nobody else would. It fills a critical gap in software educational material, and someday soon I'll be able to put a copy on my bookshelf. It's exhilarating and terrifying and above all, satisfying. It's also 150 pages vs 50 pages, but admittedly this is partially because I made the book smaller with a larger font. ↩

2 days ago 5 votes
Implementing UI translation in SumatraPDF, a C++ Windows application

Translating user interface of SumatraPDF SumatraPDF is the best PDF/eBook/Comic Book viewer for Windows. It’s small, fast, full of features, free and open-source. It became popular enough that it made sense to translate the UI for non-English users. Currently we support 72 languages. This article describes how I designed and implemented a translation system in SumatraPDF, a native win32 C++ Windows application. Hard things about translating the UI There are 2 hard things about translating an application code for translation system (extracting strings to translate, translate strings from English to user’s language) translating them into many languages Extracting strings to translate from source code Currently there are 381 strings in SumatraPDF subject to translation. It’s important that the system requires the least amount of effort when adding new strings to translate. Every string that needs to be translated is marked in .cpp or .h file with one of two macros: _TRA("Rename") _TRN("Open") I have a script that extracts those strings from source files. Mine is written in Go but it could just as well be Python or JavaScript. It’s a simple regex job. _TR stands for “translation”. _TRA(s) expands into const char* trans::GetTranslation(const char* str) function which returns str translated to current UI language. We auto-detect language at startup based on Windows settings and allow the user to explicitly set UI language. For English we just return the original string. If a string to be translated is e.g. a part of const char* array[], we can’t use trans::GetTranslation(). For cases like that we have _TRN() which expands to English string. We have to write code to translate it at some point. Adding new strings is therefore as simple as wrapping them in _TRA() or _TRN() macros. Translating strings into many languages Now that we’ve extracted strings to be translated, we need to translate them into 72 languages. SumatraPDF is a free, open-source program. I don’t have a budget to hire translators. I don’t have a budget, period. The only option was to get help from SumatraPDF users. It was vital to make it very easy for users to send me translations. I didn’t want to ask them, for example, to download some translation software. Design and implementation of AppTranslator web app I couldn’t find a really simple software for crowd sourcing translations so I wrote my own: https://github.com/kjk/apptranslator You can see it in action: https://www.apptranslator.org/app/SumatraPDF I designed it to be generic but I don’t think anyone else is using it. AppTranslator is simple. Per https://tools.arslexis.io/wc/: 4k lines of Go server code 451 lines of html code a single dependency: bootstrap CSS framework (the project is old) It’s simple because I don’t want to spend a lot of time writing translation software. It’s just a side project in service of the goal of translating SumatraPDF. Login is exclusively via GitHub. It doesn’t even use a database. Like in Redis, changes are stored as a series of operations in an append-only log. We keep the whole state in memory and re-create it from the log at startup. Main operation is translate a string from English to language X represented as [kOpTranslation, english string, language, translation, user who provided translation]. When user provides a translation in the web UI, we send an API call to the server which appends the translation operation to the log. Simple and reliable. Because the code is written in Go, it’s very fast and memory efficient. When running it uses mere megabytes of RAM. It can comfortably run on the smallest 256 MB VPS server. I backup the log to S3 so if the server ever fails, I can re-install the program on a new server and re-download the translations from S3. I provide RSS feed for each language so that people who provide translations can monitor for new strings to be translated. Sending strings for translation and receiving translations So I have a web app for collecting translations and a script that extracts strings to be translated from source code. How do they connect? AppTranslator has an API for submitting the current set of strings to be translated in the simplest possible format: a line for each string (I ensure there are no newlines in the string itself by escaping them with \n) API is password protected because only I can submit the strings. The server compares the strings sent with the current set and records a difference in the log. It also sends a response with translations. Again the simplest possible format: AppTranslator: SumatraPDF 651b739d7fa110911f25563c933f42b1d37590f8 :%s annotation. Ctrl+click to edit. am:%s մեկնաբանություն: Ctrl+քլիք՝ խմբագրելու համար: ar:ملاحظة %s. اضغط Ctrl للتحرير. az:Qeyd %s. Düzəliş etmək üçün Ctrl+düyməyə basın. As you can see: a string to translate is on a line starting with : is followed by translations of that strings in the format: ${lang}: ${translation} An optimization: 651b739d7fa110911f25563c933f42b1d37590f8 is a hash of this response. If I submit this hash with my request and translations didn’t change on the server, the response is empty. Implementing C++ part of translation system So now I have a text file with translation downloaded from the server. How do I get a translation in my C++ code? As with everything in SumatraPDF, I try to do things in a simple and efficient way. The whole Translation.cpp is only 239 lines of code. The core of translation system is const char* trans::GetTranslation(const char* s); function. I embed the translations in exact the same format as received from AppTranslator in the executable as data file in resources. If the UI language is English, we do nothing. trans::GetTranslation() returns its argument. When we switch the language, we load the translations from resources and build an index: an array of English strings an array of corresponding translations Both arrays use my own StrVec class optimized for storing an array of strings. To find a translation we scan the first array to find an index of the string and return translation from the second array, at the same index. Linear scan seems like it would be slow but it isn’t. Resizing dialogs I have a few dialogs defined in SumatraPDF.rc file. The problem with dialogs is that position of UI elements is fixed. A translated string will almost certainly have a different size than the English string which will mess up fixed layout. Thankfully someone wrote DialogSizer that smartly resizes dialogs and solves this problem. The evolution of a solution No AppTranslator My initial implementation was simpler. I didn’t yet have AppTranslator so I stored the strings in a text file in repository in the same format as what I described above. People would download it, make changes using a text editor and send me the file via email which I would then checkin. It worked for a while but it became worse over time. More strings, more languages created more work for me to manually manage e-mail submissions. I decided to automate the process. Code generation My first implementation of C++ side used code generation instead of embedding the text file in resources. My Go script would generate C++ source code files with static const char* [] arrays. This worked well but I decided to improve it further by making the code use the text file with translations embedded in the app. The main motivation for the change was to open a possibility of downloading latest translations from the server to fix the problem of translations not being all ready when I build the release executable. I haven’t done that yet but it’s now easier to implement given that the format of strings embedded in the exe is the same as the one I can download from AppTranslator. Only utf-8 SumatraPDF started by using both WCHAR* Unicode strings and char* utf8 strings. For that reason the translation system had to support returning translation in both WCHAR* and char* version. Over time I refactored the code to use mostly utf8 and at some point I no longer needed to support WCHAR* version. That made the code even smaller and reduced memory usage. The experience I’m happy how things turned out. AppTranslator proved to be reliable and hassle free. It runs for many years now and collected 35440 string translations from users. I automated everything so that all I need to do is to periodically re-run the script that extracts strings from source code, uploads them to AppTranslator and downloads latest translations. One problem is that translations are not always ready in time for release so I make a release and then people start translating strings added since last release. I’ve considered downloading the latest translations from the server, in addition to embedding them in an executable at the time of building the app. Would I do the same today? While AppTranslator is reliable and doesn’t require on-going work, it would be better to not have to run a server at all. The world has changed since I started SumatraPDF. Namely: people are comfortable using GitHub and you can edit files directly in GitHub UI. It’s not a great experience but it works. One option would be to generate a translation text file for each language, in this format: :first untranslated string :second untranslated string :first translated string translation of first string :second translated string translation of second string Untranslated strings are listed at the top, to make it easier to find. A link would send a translator directly to edit this file in GitHub UI. When translator saves translations, it creates a PR for me to review and merge. The roads not taken But why did you re-invent everything? You should do X instead. All other X that I know about suck. Using per-language .rc resource files Traditional way of localizing / translating Window GUI apps is to store all strings and dialog definitions in an .rc file. Each language gets its own .rc file (or files) and the program picks the right resource based on a language. This doesn’t solve the 2 hard problems: having an easy way to add strings for translations having an easy way for users to provide translations XML horror show There was a dark time when the world was under the iron grip of XML fanaticism. Everything had to be an XML file even when it was the worst possible solution for the problem. XML doesn’t solve the 2 hard problems and a string storage format is an absolute nightmare for human editing. GNU gettext There’s a C library gettext that uses .po files. This is much saner solution than XML horror show. .po files are relatively simple text format. The code is already written. Warning: tooting my own horn. My format is better. It’s easier for people to edit, it’s easier to write code to parse it. This looks like many times more than 239 lines of code. Ok, gettext probably does a bit more than my code, but clearly nothing than I need. It also doesn’t solve the 2 hard problems. I would still have to write code to extract strings from source code and build a way to allow users to translate them easily.

2 days ago 3 votes