More from Founder's blog
TL;DR The "build vs. buy" equation has flipped. Businesses used to buy SaaS because it was cheaper than building their own. AI has changed that—building your own is now more affordable than ever. The discovery problem. AI recommendations default to well-established solutions. Think SEO is a long game? Try LLM SEO. Everyone worries about AI taking developer jobs, but what if AI wipes out the entire off-the-shelf software industry? The "Why Buy?" Problem Six months ago, we needed an AI-powered code review tool. We explored several options and ultimately "vibe-coded" our own GitHub Action—a simple Bash script that takes a git log, sends it to Claude via curl, and posts the results to Slack. Done. The best part? AI wrote the entire thing faster than it would take to sign up for a SaaS. How long until every company realizes they can do this? Need a simple "CRUD" CRM with JIRA-style tasks? Done. Need a mobile time-tracking app for remote employees? AI will spit out a React Native iOS build in minutes. Why pay for yet another SaaS when you can "vibe-code" something in a week? And mark my words, LLM providers are one step away from actually hosting the code they generate. Who needs to spawn an AWS server if you can just ask OpenAI to host the code it just wrote? - "Hey Siri! build me a Basecamp, but with green buttons, also register a domain, spawn a server and host it all there, charge this credit card when you're done" - "Absolutely, that'd be $1.17 per hour" The Discovery Problem AI doesn’t just make it easier to build software—it makes it harder for new SaaS products to get discovered. When you ask AI for recommendations, it defaults to the biggest names. And not just in SaaS, by the way, in open source too. Imagine launching a killer new JS framework today. AI coding assistants and tools like Cursor will just default to React anyway. And not even the latest version of it! In a recent tweet Adam Wathan, the creator of Tailwind, asked: "Has anyone migrated to Tailwind 4.0 yet?" The most popular response was "Nah! we're still waiting for LLMs to learn it." AI isn’t just "the next internet moment." It’s more like "the social network moment." Echo chambers get louder, big names get bigger, and smaller ones disappear into the noise. What Can SaaS Companies Do? 1. Become an Industry Standard Or at least a "go-to" product in a niche. If your app becomes something people mention on their CVs or job descriptions, you win. Examples: Slack. HubSpot. Salesforce etc. A salesperson moving to a new company simply expects Salesforce to be there. That kind of lock-in ensures survival. 2. Build Moats: Infrastructure & Vendor Lock-In SaaS products that are just CRUD apps will die. The ones that survive will own infrastructure or at least some part of it. Instead of building another AI voice assistant, create one with built-in VoIP and provide landline numbers to customers. Examples: Transistor.fm – Not just a SaaS, but also a podcast hosting and publishing pipeline. Postmark (or any transactional email service really) – yes, AI can code an email-sending app, but it can't get you a 10-year old high-reputation sender IP address trusted by Gmail and Outlook. SignWell, SavvyCal and similar "inter-business" file-sharing, communication & escrow apps that own the communication part (and frankly, are literally easier to use than vibe-code your own). But prepare for tthousands of clones. Which SaaS Will Die First? Side-project-scale, "one simple tool" SaaS products that used to be easy wins—form builders, schedulers, basic dashboards, simple workflow apps—those days are over. If AI can generate it in an afternoon, no one is paying a subscription for it. Oh, and "no code" is toasted too. The SaaS graveyard is about to get a lot more crowded. I give it 4 years. Software consulting is making a comeback though. Someone has to clean up the vibe-coded chaos.
TL;DR The "build vs. buy" equation has flipped. Businesses used to buy SaaS because it was cheaper than building their own. AI has changed that—building your own is now more affordable than ever. The discovery problem. AI recommendations default to well-established solutions. Think SEO is a long game? Try LLM SEO. Everyone worries about AI taking developer jobs, but what if AI wipes out the entire off-the-shelf software industry? The "Why Buy?" Problem Six months ago, we needed an AI-powered code review tool. We explored several options, tested them all, and ultimately "vibe-coded" our own GitHub Action—a simple Bash script that takes a git log, sends it to Claude via curl, and posts the results to Slack. Done. The best part? AI wrote the entire thing—faster than it took to sign up for another SaaS. How long until every company realizes they can do this? Need a simple CRM with JIRA-style tasks? Done. Need a mobile time-tracking app for remote employees? AI will spit out a React Native iOS build in minutes. Why pay for yet another SaaS when you can "vibe-code" something in a week? The Discovery Problem AI doesn’t just make it easier to build software—it makes it harder for new SaaS products to get discovered. When you ask AI for recommendations, it defaults to the biggest names. Here’s an open-source analogy: imagine launching a game-changing JS framework today. AI coding assistants and tools like Cursor will still default to React. And not even the latest version! Adam Wathan recently asked on Twitter, "Has anyone migrated to Tailwind 4.0 yet?" The most popular response was "Nah! we're still waiting for LLMs to learn it." AI isn’t just "the next internet moment." It’s more like "the social network moment." Echo chambers get louder, big names get bigger, and smaller ones disappear into the noise. What Can SaaS Companies Do? 1. Become an Industry Standard Or at least a "go-to" product in a niche. If your app becomes something people mention on their CVs or job descriptions, you win. Examples: Slack. HubSpot. Salesforce etc. A salesperson moving to a new company simply expects Salesforce to be there. That kind of lock-in ensures survival. 2. Build Moats: Infrastructure & Vendor Lock-In SaaS products that are just CRUD apps will die. The ones that survive will own infrastructure. Examples: Transistor.fm – Not just a SaaS, but also a podcast hosting and distribution pipeline. Postmark (or any transactional email service really) – AI can code an email-sending app, but it can't get you a 10-year old high-reputation sender IP address trusted by Gmail and Outlook. SignWell and similar B2B file-sharing apps (literally easier to use then code your own). Don't just build another CRUD sales CRM, build a CRM with an inbound VoIP number – because AI can’t replace telco infrastructure (yet). Which SaaS Will Die First? Side-project-scale, "one simple tool" SaaS products that used to be easy wins—Calendly replacements, form builders, schedulers, basic dashboards, simple workflow apps—those days are over. If AI can generate it in an afternoon, no one is paying a subscription for it. Oh, and "no code" is toasted too. The SaaS graveyard is about to get a lot more crowded. I give it 4 years. Software consulting is making a comeback though. Someone has to clean up the vibe-coded chaos.
I mean, it is! But the whole story about the stock market reacting to the news about DeepSeek V3 and R1 is a fine example of the knee-jerk nature of mass consciousness in the era of clickbait economics. Briefly, by points: No, DeepSeek isn’t “head and shoulders above” every other model. The results vary across benchmarks, but on average, GPT-4o and Gemini-2 are better. You can see this on ChatBot Arena, for example (Reddit thread). Even in the results published by DeepSeek’s authors themselves (benchmark graph), you can see that in several tests, the model lags behind GPT-4o from May 2024—which, mind you, is currently ranked 16th on ChatBot Arena. No, training DeepSeek didn’t cost $6 million, “100 times less than GPT-4.” The $6 million figure refers only to the final training run of the published model. It doesn’t include any prior experiments, earlier versions, or R&D costs. This is just the raw computational cost of that final training run. And guess what? That figure is pretty much in line with models of the same class. No, Nvidia did not deserve this hit Not that we’re shedding tears for them — they could use a push to lower hardware prices. And let's not forget that DeepSeek was still trained on Nvidia’s own hardware. And no, their GPUs aren’t suddenly obsolete. DeepSeek’s computational budget is fairly standard for training, and inference for such a massive model (reminder: it’s an MoE with 671 billion parameters, 37 billion of which are active per token generation) requires a ton of hardware. Inference costs are roughly on par with a 70B dense model. Naturally, they’ll scale this success by throwing even more hardware at it and making the model bigger. Not to mention that Deepseek makes LLMs more accessible for the on-prem customers. Which means smaller businesses will buy more GPU's, which is still good for NVDA, am I right? Does this mean the model is bad? No, the model is very, VERY good. It outperforms the vast majority of open-source models, which is fantastic. DeepSeek used 8-bit floating point numbers (FP8) throughout the entire training process. This sacrifices some of that precision to save memory and boost performance. Additionally, they employed a multi-token prediction system and innovative GPU clustering/connectivity techniques. These are clever and practical engineering choices that undoubtedly contributed to their success. In the end, though, stocks will recover, ideas will spread, models will get better, and progress will march on (hopefully).
After years of working with the "big" Visual Studio, I've had enough. It's buggy, slow, and frustrating, and I've decided to make the switch to Visual Studio Code. While as a C# developer I'm still unsure if I can replicate every aspect of my workflow in VS Code, I'm willing to give it a shot—and so far, I'm really impressed. 1. Performance Visual Studio 2022 performance has been a constant issue. It's sluggish and feels increasingly bloated with every new update. It's like watching paint dry every time I open a project. In contrast, Visual Studio Code feels lightweight and incredibly fast. The first time I opened my large project in VS Code, I was shocked — it loaded in lees than a second, literally, even with extensions like "C#" and "C# Dev Kit" installed. 2. Better Developer Experience Running dotnet watch run in VS Code's terminal has been a revelation. It's fast, responsive, and actually works consistently. Visual Studio's "hot reload" feature, on the other hand, has been a constant source of frustration for me. Half the time it doesn't work, and I'm left restarting debugging sessions over and over again. I can't tell you how many hours I've lost to that unreliable feature. 3. Fewer Bugs, Less Frustration The minor editor bugs in Visual Studio have been endless and exhausting. I remember one particularly infuriating bug where syntax highlighting would break in Razor and .cshtml files whenever I used certain HTML tags or even just adjusted the indentation. It drove me up the wall! Not to mention the bizarre issues with JavaScript formatting that never seemed to get fixed. Since switching to VS Code, I've encountered far fewer bugs. It just feels like an environment that respects my time and sanity. 4. A Thriving Ecosystem The VS Code extension ecosystem is alive and thriving. Need Tailwind CSS IntelliSense? There's an extension for that, and it works beautifully. Want to visualize your Git history for a particular line (better version of git-blame)? The Git History extension has got you covered. In "big" Visual Studio, I'd report issues through the "feedback hub" and wait months — or even years — for a response. With VS Code, the community is constantly contributing new tools and improvements. It's energizing (and sometimes exhausting) to be part of such an active ecosystem. 5. Cross-Platform Flexibility One of the biggest advantages I've found with Visual Studio Code is its true cross-platform support. Whether I'm on my Windows PC gaming rig at home or my MacBook while traveling, VS Code runs smoothly and keeps my workflow consistent. Visual Studio's limited macOS version just doesn't cut it for me. Being able to switch between machines without missing a beat has been a game-changer. I have to admit, I was skeptical at first. I've always had a bit of a grudge against Electron-based apps — they've often felt sluggish and bloated. But VS Code has completely changed my perspective. It's fast, responsive, and flexible enough to let me build the development environment that works best for me. Switching to VS Code has rekindled my passion for coding; it reminds me why I fell in love with development in the first place. While Visual Studio will always have its strengths, I need a tool that evolves with me—not one that holds me back.
More in programming
The 2025 edition of the TokyoDev Developer Survey is now live! If you’re a software developer living in Japan, please take a few minutes to participate. All questions are optional, and it should take less than 10 minutes to complete. The survey will remain open until September 30th. Last year, we received over 800 responses. Highlights included: Median compensation remained stable. The pay gap between international and Japanese companies narrowed to 47%. Fewer respondents had the option to work fully remotely. For 2025, we’ve added several new questions, including a dedicated section on one of the most talked-about topics in development today: AI. The survey is completely anonymous, and only aggregated results will be shared—never personally identifiable information. The more responses we get, the deeper and more meaningful our insights will be. Please help by taking the survey and sharing it with your peers!
Greetings everyone! You might have noticed that it's September and I don't have the next version of Logic for Programmers ready. As penance, here's ten free copies of the book. So a few months ago I wrote a newsletter about how we use nondeterminism in formal methods. The overarching idea: Nondeterminism is when multiple paths are possible from a starting state. A system preserves a property if it holds on all possible paths. If even one path violates the property, then we have a bug. An intuitive model of this is that for this is that when faced with a nondeterministic choice, the system always makes the worst possible choice. This is sometimes called demonic nondeterminism and is favored in formal methods because we are paranoid to a fault. The opposite would be angelic nondeterminism, where the system always makes the best possible choice. A property then holds if any possible path satisfies that property.1 This is not as common in FM, but it still has its uses! "Players can access the secret level" or "We can always shut down the computer" are reachability properties, that something is possible even if not actually done. In broader computer science research, I'd say that angelic nondeterminism is more popular, due to its widespread use in complexity analysis and programming languages. Complexity Analysis P is the set of all "decision problems" (basically, boolean functions) can be solved in polynomial time: there's an algorithm that's worst-case in O(n), O(n²), O(n³), etc.2 NP is the set of all problems that can be solved in polynomial time by an algorithm with angelic nondeterminism.3 For example, the question "does list l contain x" can be solved in O(1) time by a nondeterministic algorithm: fun is_member(l: List[T], x: T): bool { if l == [] {return false}; guess i in 0..<(len(l)-1); return l[i] == x; } Say call is_member([a, b, c, d], c). The best possible choice would be to guess i = 2, which would correctly return true. Now call is_member([a, b], d). No matter what we guess, the algorithm correctly returns false. and just return false. Ergo, O(1). NP stands for "Nondeterministic Polynomial". (And I just now realized something pretty cool: you can say that P is the set of all problems solvable in polynomial time under demonic nondeterminism, which is a nice parallel between the two classes.) Computer scientists have proven that angelic nondeterminism doesn't give us any more "power": there are no problems solvable with AN that aren't also solvable deterministically. The big question is whether AN is more efficient: it is widely believed, but not proven, that there are problems in NP but not in P. Most famously, "Is there any variable assignment that makes this boolean formula true?" A polynomial AN algorithm is again easy: fun SAT(f(x1, x2, …: bool): bool): bool { N = num_params(f) for i in 1..=num_params(f) { guess x_i in {true, false} } return f(x_1, x_2, …) } The best deterministic algorithms we have to solve the same problem are worst-case exponential with the number of boolean parameters. This a real frustrating problem because real computers don't have angelic nondeterminism, so problems like SAT remain hard. We can solve most "well-behaved" instances of the problem in reasonable time, but the worst-case instances get intractable real fast. Means of Abstraction We can directly turn an AN algorithm into a (possibly much slower) deterministic algorithm, such as by backtracking. This makes AN a pretty good abstraction over what an algorithm is doing. Does the regex (a+b)\1+ match "abaabaabaab"? Yes, if the regex engine nondeterministically guesses that it needs to start at the third letter and make the group aab. How does my PL's regex implementation find that match? I dunno, backtracking or NFA construction or something, I don't need to know the deterministic specifics in order to use the nondeterministic abstraction. Neel Krishnaswami has a great definition of 'declarative language': "any language with a semantics has some nontrivial existential quantifiers in it". I'm not sure if this is identical to saying "a language with an angelic nondeterministic abstraction", but they must be pretty close, and all of his examples match: SQL's selects and joins Parsing DSLs Logic programming's unification Constraint solving On top of that I'd add CSS selectors and planner's actions; all nondeterministic abstractions over a deterministic implementation. He also says that the things programmers hate most in declarative languages are features that "that expose the operational model": constraint solver search strategies, Prolog cuts, regex backreferences, etc. Which again matches my experiences with angelic nondeterminism: I dread features that force me to understand the deterministic implementation. But they're necessary, since P probably != NP and so we need to worry about operational optimizations. Eldritch Nondeterminism If you need to know the ratio of good/bad paths, the number of good paths, or probability, or anything more than "there is a good path" or "there is a bad path", you are beyond the reach of heaven or hell. Angelic and demonic nondeterminism are duals: angelic returns "yes" if some choice: correct and demonic returns "no" if !all choice: correct, which is the same as some choice: !correct. ↩ Pet peeve about Big-O notation: O(n²) is the set of all algorithms that, for sufficiently large problem sizes, grow no faster that quadratically. "Bubblesort has O(n²) complexity" should be written Bubblesort in O(n²), not Bubblesort = O(n²). ↩ To be precise, solvable in polynomial time by a Nondeterministic Turing Machine, a very particular model of computation. We can broadly talk about P and NP without framing everything in terms of Turing machines, but some details of complexity classes (like the existence "weak NP-hardness") kinda need Turing machines to make sense. ↩
Learn how to use Vitest’s defaults to eliminate extra configuration and prevent flaky results, letting you write reliable tests with less effort.
In my previous post, I advocate turning against the unproductive. Whenever you decide to turn against a group, it’s very important to prevent purity spirals. There needs to be a bright line that doesn’t move. Here is that line. You should be, on net, producing more than you are consuming. You shouldn’t feel bad if you are producing less than you could be. But at the end of your life, total it all up. You should have produced more than you consumed. We used to make shit in this country, build shit. It needs to stop. I have to believe that the average person is net positive, because if they aren’t, we’re already too far gone, and any prospect of a democracy is over. But if we aren’t too far gone, we have to stop the hemorrhaging. The unproductive rich are in cahoots with the unproductive poor to take from you. And it’s really the unproductive rich that are the problem. They loudly frame helping the unproductive as a moral issue for helping the poor because they know deep down they are unproductive losers. But they aren’t beyond saving. They just need to make different choices. This cultural change starts with you. Private equity, market manipulators, real estate, lawyers, lobbyists. This is no longer okay. You know the type of person I’m talking about. Let’s elevate farmers, engineers, manufacturing, miners, construction, food prep, delivery, operations. Jobs that produce value that you can point to. There’s a role for everyone in society. From productive billionaires to the fry cook at McDonalds. They are both good people. But negative sum jobs need to no longer be socially okay. The days of living off the work of everyone else are over. We live in a society. You have to produce more than you consume.