Full Width [alt+shift+f] Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
28
Overcast 4.1 is now in the App Store with some small but nice new features. Smart Resume is actually two features: It jumps back by up to a few seconds after having been paused to help remind you of the conversation. It slightly adjusts resumes and seeks to fall in the silences between spoken words when reasonably possible. Both are subtle but noticeable benefits (my favorite kind), especially when you’re being interrupted a lot, such as while following turn-by-turn navigation directions. Smart Resume is on by default, and can be turned off in Nitpicky Details. Delete episodes 24 hours after completion: Before, episodes could either be auto-deleted immediately upon completion, or not at all. There’s now a third option, auto-deleting 24 hours after completion, which will soon be the default for new accounts. The 24-hour threshold is only enforced after a successful sync, so it won’t auto-delete anything in the middle of an extended offline period, such as a long flight. Auto-deletion,...
over a year ago

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from Marco.org

Ten years of Overcast: A new foundation

Today, on the tenth anniversary of Overcast 1.0, I’m happy to launch a complete rewrite and redesign of most of the iOS app, built to carry Overcast into the next decade — and hopefully beyond. Like podcasts better than blog posts? Listen to ATP #596 for more! What’s new Much faster, more responsive, more reliable, and more accessible. Modern design, optimized for easily-reached controls on today’s phone sizes. Improvements throughout, such as undoing large seeks, new playlist-priority options, easier navigation, and more. What’s not Most features. Overcast is still Overcast! The audio engine. It’s the best part of Overcast, and still leads the industry in sound quality, silence skipping, and volume normalization. (More soon!) The business. I’m still a one-person operation, with no funding or external ownership, serving only my customers. My principles. I always want to make the best podcast app, and I’ll never disrespect your time, attention, or privacy. What’s gone Streaming. Most big podcasts now use dynamic ad insertion, which causes bugs and problems for streaming playback.1 Downloading episodes completely before they begin playback is much more reliable. Tapping a non-downloading episode will now open the playback screen, download it, then start playback. It works similarly to the way streaming did before, but playback begins after the download completes, not after a portion of it is buffered. On today’s fast networks, this usually only takes a few extra seconds. And in the near future, I’ll be adding smarter options and more control over selective downloading of episodes to further improve the experience for people who don’t automatically download every episode. What’s next The last few missing features from the old app, such as Shortcuts support, storage management, and OPML. These are absent now, but will return soon. More options for downloading and deleting episodes. Upgrading the Apple Watch app to the new, faster sync engine. (The Watch app is currently unchanged from the previous one.) And, of course, more features, including some of your most-requested features over the last decade. Getting this rewrite out the door was a monumental task. Thank you for your patience as I work through this list! Why? Most of Overcast’s core code was 10 years old, which made it cumbersome or impossible to easily move with the times, adopt new iOS functionality, or add new features, especially as one person. That’s why there haven’t been many new features or changes in years. You saw it, and I saw it. I wasn’t able to serve my customers as well as I wanted. For Overcast to have a future, it needed a modern foundation for its second decade. I’ve spent the past 18 months rebuilding most of the app with Swift, SwiftUI, Blackbird, and modern Swift concurrency. Now, development is rapidly accelerating. I’m more responsive, iterating more quickly, and ultimately making the app much better. Thank you all so much for the first decade of Overcast. Here’s to the next one. Dynamic ad insertion (DAI) splices ads into each download, and no two downloads are guaranteed to have the same number or duration of ads. So, for example, if the first half of an episode downloads, then the download fails, and it downloads the second half with another request, the combined audio may jump forward or back at the halfway mark, losing or repeating content. ↩︎

10 months ago 67 votes
The Overcast Redesign: Part One

Overcast’s latest update (2022.2) brings the largest redesign in its nearly-eight-year history, plus many of the most frequently requested features and lots of under-the-hood improvements. I’m pretty proud of this one. For this first and largest phase of the redesign, I focused on the home screen, playlist screen, typography, and spacing. (I plan to revamp the now-playing and individual-podcast screens in a later update.) The home screen is radically different: Home screen, before (left) and after (right). Playlists now have strong visual identities for nicer and easier navigation. Each playlist has a customizable color, and a custom icon can be selected from over 3,000 SF Symbols to match modern iOS design and the other icons within Overcast. And playlists can be manually reordered with drag-and-drop. Recently played and newly published episodes can now be displayed on the home screen for quick access, much like the widget and CarPlay experience. Podcasts can now be pinned to the top of the home-screen list. Pinned podcasts can also be manually reordered with drag-and-drop. I’ve also rethought the old stacked “Podcasts” and “Played Podcasts” sections to better match people’s needs and expectations. Now, the toggle atop the podcast list switches between three modes: podcasts with current episodes, all followed podcasts, and inactive podcasts (those that you don’t follow and therefore won’t get any more episodes from, or haven’t posted a new episode in a long time). The playlist screen’s structure remains mostly the same, while refining the design for the modern era: Playlist screen, before (left) and after (right). Here, it’s more apparent that I’ve replaced the system San Francisco font with an alternate variant, San Francisco Rounded, to increase legibility and better match the personality of the app. I’ve also added highly demanded features: By far, Overcast’s most-requested feature is a Mark as Played feature. That’s now available as a checkmark button on episode rows, as well as a left-side swipe action. The second-most-requested feature is a way to view all starred episodes. Special playlists for Starred, Downloaded, and In Progress can now be created. The light and dark themes now each have a customizable tint color from the modern iOS UI-color palette, including these favorites from beta testers: And throughout the app, I’ve made tons of tweaks and bug fixes, including: Notifications and background downloads are now much more reliable. Episode downloads can now be individually deleted or re-downloaded. Links can now be opened in Safari. (under Nitpicky Details) Performance is now significantly better with very large playlists and collections. Fixed bugs with episode-duration detection, CarPlay lists, Mac-app sharing, and much more. So much is better in this update that I can’t even remember it all. Thank you so much to everyone who helped me beta-test this massive update. As always, Overcast is free in the App Store. Go get it!

over a year ago 37 votes
Ten years after we lost Steve Jobs

Losing Steve affected me more than it probably should have, given that I never met him or had any correspondence with him. But losing him was devastating — not just to my world, but the world. He was a sort of virtual father figure: I was always hoping that maybe Steve would notice something I did. We all wanted his attention and approval, and that drove us to do better work — even those of us who never worked at Apple. Nobody replaced him in this role. Nobody can. But as an outsider who had no personal relationship with him to mourn, it has been most depressing to consider how much of his work the world missed out on. He wasn’t taken from us after a long, complete life — he was taken in his prime. He had so much more to offer the world.

over a year ago 38 votes
The future of the App Store

After the dust settles from the developer class-action settlement, the South Korean law, the JFTC announcement, and the Apple v. Epic decision, I think the most likely long-term outcome isn’t very different from the status quo — and that’s a good thing. Allowing external purchases Here’s what I think we’ll end up with: Apple will still require apps to use their IAP system for any qualifying purchases that occur in the apps themselves. All app types will be allowed to link out to a browser for other purchase methods. Most apps will be required to also offer IAP side-by-side with any external methods.1 Only “Reader apps” will be exempt from this requirement.2 Apple will have many rules regarding the display, descriptions, and behavior of external purchases, many of which will be unpublished and ever-changing. App Review will be extremely harsh, inconsistent, capricious, petty, and punitive with their enforcement.3 Apple won’t require price-matching between IAP and external purchases. These few but important corrections reduce Apple’s worst behavior and should relieve most regulatory pressure. The result won’t look much different than the status quo: Most big media apps (qualifying as “reader” apps) won’t offer IAP, but will finally be allowed to link to their websites from their apps and offer purchases there. Many games will offer both IAP and external purchases, with the external choice offering a discount, bonus gems, extra loot boxes, or other manipulative tricks to optimize the profitability of casino games for children (commissions from which have been the largest portion of Apple’s “services revenue” to date). Most importantly, many products, services, and business models will become possible that previously weren’t, leading to more apps, more competition, and more money going to more places. External purchase methods will evolve to be almost as convenient as IAP (especially if Apple Pay is permitted in this context), and payment processors will reduce the burden of manual credit-card entry with shared credentials available across multiple apps. The payment-fraud doomsday scenarios argued by Apple and many fans mostly won’t happen, in part because App Review will prevent most obvious cases, but also because parents don’t typically offer their credit cards to untrustworthy children; and for buyers of all ages, most credit cards themselves provide stronger fraud prevention and easier recourse from unwanted charges than the App Store ever has. No side-loading I don’t expect side-loading or alternative app stores to become possible, and I’m relieved, because that is not a future I want for iOS. When evaluating such ideas, I merely ask myself: “What would Facebook do?” Facebook owns four of the top ten apps in the world. If side-loading became possible, Facebook could remove Instagram, WhatsApp, the Facebook app, and Messenger from Apple’s App Store, requiring customers to install these extremely popular apps directly from Facebook via side-loading. And everyone would. Most people use a Facebook-owned app not because it’s a good app, but because it’s a means to an important end in their life. Social pressure, family pressure, and network lock-in prevent most users from seeking meaningful alternatives. People would jump through a few hoops if they had to. Facebook would soon have apps that bypassed App Review installed on the majority of iPhones in the world. Technical limitations of the OS would prevent the most egregious abuses, but there’s a lot they could still do. We don’t need to do much imagining — they already have attempted multiple hacks, workarounds, privacy invasions, and other unscrupulous and technically invasive behavior with their apps over time to surveil user behavior outside of their app and stay running longer in the background than users intend or expect. The OS could evolve over time to reduce some of these vulnerabilities, but technical measures alone cannot address all of them. Without the threat of App Review to keep them in check, Facebook’s apps would become even more monstrous than they already are. As a user and a fan of iOS, I don’t want any part of that. No alternative app stores Alternative app stores would be even worse. Rather than offering individual apps via side-loading, Facebook could offer just one: The Facebook App Store. Instagram, WhatsApp, the Facebook app, and Messenger could all be available exclusively there. The majority of iOS users in the world would soon install it, and Facebook would start using leverage in other areas — apps’ social accounts, stats packages, app-install ads, ad-attribution requirements — to heavily incentivize (and likely strong-arm) a huge number of developers to offer their apps in the Facebook App Store, likely in addition to Apple’s. Maybe I’d be required to add the Facebook SDK to my app in order to be in their store, which they would then use to surveil my users. Maybe I’d need to buy app-install ads to show up in search there at all. Maybe I’d need to pay Facebook to “promote” each app update to reach more than a tiny percentage of my existing customers. And Facebook wouldn’t even be the only app store likely to become a large player on iOS. Amazon would almost certainly bring their garbage “Appstore” to iOS, but at least that one probably wouldn’t go anywhere. Maybe Google would bring the Play Store to iOS and offer a unified SDK to develop a single codebase for iOS and Android, effectively making every app feel like an Android app and further marginalizing native apps when they’re already hurting. Media conglomerates that own many big-name properties, like Disney, might each have their own app stores for their high-profile apps. Running your own store means you can promote all of your own apps as much as you want. What giant corporation would resist? Don’t forget games! Epic and Steam would come to iOS with their own game stores. Maybe Microsoft and Nintendo, too. Maybe you’d need to install seven different app stores on your iPhone just to get the apps and games you already use — and all without App Review to keep them in check. Most developers would probably need to start submitting our apps to multiple app stores, each with its own rules, metadata, technical requirements, capabilities, approval delays, payment processing, stats, crash reports, ads, promotion methods, and user reviews. As a user, a multiple-app-store world sounds like an annoying mess; as a developer, it terrifies me. Apple’s App Store is the devil we know. The most viable alternatives that would crop up would be far worse. Course correction The way Apple runs its business isn’t perfect, but it’s also not a democracy. I loved this part of Judge Yvonne Gonzalez Rogers’ decision in Apple v. Epic, as quoted by Ben Thompson’s excellent article that you should read: Apple has not offered any justification for the actions other than to argue entitlement. Where its actions harm competition and result in supracompetitive pricing and profits, Apple is wrong. I interpret “entitlement” without a negative connotation here — Apple is entitled to run their platform mostly as they wish, with governmental interference only warranted to fix market-scale issues that harm large segments of commerce or society. As a developer, I’d love to see more changes to Apple’s control over iOS. But it’s hard to make larger changes without potentially harming much of what makes iOS great for both users and developers. Judge Gonzalez Rogers got it right: we needed a minor course correction to address the most egregiously anticompetitive behavior, but most of the way Apple runs iOS is best left to Apple. If the South Korean law holds, IAP may not be required — but only in South Korea. With this exception, I expect the rest of these rules to be enforced the same way globally. ↩︎ Apple defines “reader” apps as “[allowing] a user to access previously purchased content or content subscriptions (specifically: magazines, newspapers, books, audio, music, and video).” This includes many apps that Apple’s services compete with, such as Netflix, Spotify, and Kindle, that raise anticompetitive concerns among regulators and legislators when forced to give Apple 30%. ↩︎ App Review has higher-level queues for managerial review of controversial rules or edge cases, typically identifiable from the outside by an app stuck with “In Review” status for days or weeks, and often ending in a phone call from “Bill”. I’d expect any app offering external purchases to have a very high chance of being escalated to a slower, more pain-in-the-ass review process, possibly causing it not to be worthwhile for most small developers to deal with. I have no plans to add external purchases to Overcast for multiple reasons, including this — but mostly because, for my purposes, I’m satisfied with Apple’s IAP system. ↩︎

over a year ago 36 votes
Developer relations

Apple’s leaders continue to deny developers of two obvious truths: That our apps provide substantial value to iOS beyond the purchase commissions collected by Apple. That any portion of our customers came to our apps from our own marketing or reputation, rather than the App Store. For Apple to continue to deny these is dishonest, factually wrong, and extremely insulting — not only to our efforts, but to the intelligence of all Apple developers and customers. This isn’t about the 30%, or the 15%, or the prohibition of other payment systems, or the rules against telling our customers about our websites, or Apple’s many other restrictions. (Not today, at least.) It’s about what Apple’s leadership thinks of us and our work. *     *     * It isn’t the App Store’s responsibility to the rest of Apple to “pay its way” by leveraging hefty fees on certain types of transactions. Modern society has come to rely so heavily on mobile apps that any phone manufacturer must ensure that such a healthy ecosystem exists as table stakes for anyone to buy their phones. Without our apps, the iPhone has little value to most of its customers today. If Apple wishes to continue advancing bizarre corporate-accounting arguments, the massive profits from the hardware business are what therefore truly “pay the way” of the App Store, public APIs, developer tools, and other app-development resources, just as the hardware profits must fund the development of Apple’s own hardware, software, and services that make the iPhone appeal to customers. The forced App Store commissions, annual developer fees, and App Store Search Ads income are all just gravy. The “way” is already paid by the hardware — but Apple uses their position of power to double-dip. And that’s just business. Apple’s a lot of things, and “generous” isn’t one. But to bully and gaslight developers into thinking that we need to be kissing Apple’s feet for permitting us to add billions of dollars of value to their platform is not only greedy, stingy, and morally reprehensible, but deeply insulting. *     *     * Apple further extends the value argument, and defends their justification for forced commissions, by claiming responsibility for and ownership of the customer relationship between all iOS users and each app they choose to use. This argument only makes sense — and even then, only somewhat — when apps are installed by a customer browsing the App Store, finding an app they hadn’t previously heard of, and choosing to install it based on App Store influence alone. But in the common case — and for most app installations, the much more common case — of searching for a specific app by name or following a link or ad based on its developer’s own marketing or reputation, Apple has served no meaningful role in the customer acquisition and “deserves” nothing more from the transaction than what a CDN and commodity credit-card processor would charge. The idea that the App Store is responsible for most customers of any reasonably well-known app is a fantasy. It isn’t the App Store that has enabled all of the commerce on iOS — it’s the entire world of computing and modern society, created by a symbiotic ecosystem in which Apple played one part alongside many others. The world was already moving in this direction, and had Apple not played its part, someone else would’ve. The App Store is merely one platform’s forced distribution gateway, “facilitating” the commerce no more and no less than a web browser, an ISP or cellular carrier, a server-hosting company, or a credit-card processor. For Apple to continue to claim otherwise is beyond insulting, and borders on delusion. *     *     * At WWDC next week, these same people are going to try to tell us a different story. They’re going to tell us how amazing we are, how important our work is, and how much they value us. And for thousands of Apple employees who’ve made the great products and platforms that we love, including the hundreds of engineers presenting the sessions and working the labs, it’ll be genuine and true. But the leaders have already shown us who they really are, what they really think of us, and how much they value our work. Please forgive some sloppiness in my metaphors or phrasing — my writing skills are pretty rusty — and I’ll return the favor to anyone who responds.

over a year ago 37 votes

More in programming

Notes from Alexander Petros’ “Building the Hundred-Year Web Service”

I loved this talk from Alexander Petros titled “Building the Hundred-Year Web Service”. What follows is summation of my note-taking from watching the talk on YouTube. Is what you’re building for future generations: Useful for them? Maintainable by them? Adaptable by them? Actually, forget about future generations. Is what you’re building for future you 6 months or 6 years from now aligning with those goals? While we’re building codebases which may not be useful, maintainable, or adaptable by someone two years from now, the Romans built a bridge thousands of years ago that is still being used today. It should be impossible to imagine building something in Roman times that’s still useful today. But if you look at [Trajan’s Bridge in Portugal, which is still used today] you can see there’s a little car on its and a couple pedestrians. They couldn’t have anticipated the automobile, but nevertheless it is being used for that today. That’s a conundrum. How do you build for something you can’t anticipate? You have to think resiliently. Ask yourself: What’s true today, that was true for a software engineer in 1991? One simple answer is: Sharing and accessing information with a uniform resource identifier. That was true 30+ years ago, I would venture to bet it will be true in another 30 years — and more! There [isn’t] a lot of source code that can run unmodified in software that is 30 years apart. And yet, the first web site ever made can do precisely that. The source code of the very first web page — which was written for a line mode browser — still runs today on a touchscreen smartphone, which is not a device that Tim Berners-less could have anticipated. Alexander goes on to point out how interaction with web pages has changed over time: In the original line mode browser, links couldn’t be represented as blue underlined text. They were represented more like footnotes on screen where you’d see something like this[1] and then this[2]. If you wanted to follow that link, there was no GUI to point and click. Instead, you would hit that number on your keyboard. In desktop browsers and GUI interfaces, we got blue underlines to represent something you could point and click on to follow a link On touchscreen devices, we got “tap” with your finger to follow a link. While these methods for interaction have changed over the years, the underlying medium remains unchanged: information via uniform resource identifiers. The core representation of a hypertext document is adaptable to things that were not at all anticipated in 1991. The durability guarantees of the web are absolutely astounding if you take a moment to think about it. In you’re sprinting you might beat the browser, but it’s running a marathon and you’ll never beat it in the long run. If your page is fast enough, [refreshes] won’t even repaint the page. The experience of refreshing a page, or clicking on a “hard link” is identical to the experience of partially updating the page. That is something that quietly happened in the last ten years with no fanfare. All the people who wrote basic HTML got a huge performance upgrade in their browser. And everybody who tried to beat the browser now has to reckon with all the JavaScript they wrote to emulate these basic features. Email · Mastodon · Bluesky

20 hours ago 2 votes
Modeling Awkward Social Situations with TLA+

You're walking down the street and need to pass someone going the opposite way. You take a step left, but they're thinking the same thing and take a step to their right, aka your left. You're still blocking each other. Then you take a step to the right, and they take a step to their left, and you're back to where you started. I've heard this called "walkwarding" Let's model this in TLA+. TLA+ is a formal methods tool for finding bugs in complex software designs, most often involving concurrency. Two people trying to get past each other just also happens to be a concurrent system. A gentler introduction to TLA+'s capabilities is here, an in-depth guide teaching the language is here. The spec ---- MODULE walkward ---- EXTENDS Integers VARIABLES pos vars == <<pos>> Double equals defines a new operator, single equals is an equality check. <<pos>> is a sequence, aka array. you == "you" me == "me" People == {you, me} MaxPlace == 4 left == 0 right == 1 I've gotten into the habit of assigning string "symbols" to operators so that the compiler complains if I misspelled something. left and right are numbers so we can shift position with right - pos. direction == [you |-> 1, me |-> -1] goal == [you |-> MaxPlace, me |-> 1] Init == \* left-right, forward-backward pos = [you |-> [lr |-> left, fb |-> 1], me |-> [lr |-> left, fb |-> MaxPlace]] direction, goal, and pos are "records", or hash tables with string keys. I can get my left-right position with pos.me.lr or pos["me"]["lr"] (or pos[me].lr, as me == "me"). Juke(person) == pos' = [pos EXCEPT ![person].lr = right - @] TLA+ breaks the world into a sequence of steps. In each step, pos is the value of pos in the current step and pos' is the value in the next step. The main outcome of this semantics is that we "assign" a new value to pos by declaring pos' equal to something. But the semantics also open up lots of cool tricks, like swapping two values with x' = y /\ y' = x. TLA+ is a little weird about updating functions. To set f[x] = 3, you gotta write f' = [f EXCEPT ![x] = 3]. To make things a little easier, the rhs of a function update can contain @ for the old value. ![me].lr = right - @ is the same as right - pos[me].lr, so it swaps left and right. ("Juke" comes from here) Move(person) == LET new_pos == [pos[person] EXCEPT !.fb = @ + direction[person]] IN /\ pos[person].fb # goal[person] /\ \A p \in People: pos[p] # new_pos /\ pos' = [pos EXCEPT ![person] = new_pos] The EXCEPT syntax can be used in regular definitions, too. This lets someone move one step in their goal direction unless they are at the goal or someone is already in that space. /\ means "and". Next == \E p \in People: \/ Move(p) \/ Juke(p) I really like how TLA+ represents concurrency: "In each step, there is a person who either moves or jukes." It can take a few uses to really wrap your head around but it can express extraordinarily complicated distributed systems. Spec == Init /\ [][Next]_vars Liveness == <>(pos[me].fb = goal[me]) ==== Spec is our specification: we start at Init and take a Next step every step. Liveness is the generic term for "something good is guaranteed to happen", see here for more. <> means "eventually", so Liveness means "eventually my forward-backward position will be my goal". I could extend it to "both of us eventually reach out goal" but I think this is good enough for a demo. Checking the spec Four years ago, everybody in TLA+ used the toolbox. Now the community has collectively shifted over to using the VSCode extension.1 VSCode requires we write a configuration file, which I will call walkward.cfg. SPECIFICATION Spec PROPERTY Liveness I then check the model with the VSCode command TLA+: Check model with TLC. Unsurprisingly, it finds an error: The reason it fails is "stuttering": I can get one step away from my goal and then just stop moving forever. We say the spec is unfair: it does not guarantee that if progress is always possible, progress will be made. If I want the spec to always make progress, I have to make some of the steps weakly fair. + Fairness == WF_vars(Next) - Spec == Init /\ [][Next]_vars + Spec == Init /\ [][Next]_vars /\ Fairness Now the spec is weakly fair, so someone will always do something. New error: \* First six steps cut 7: <Move("me")> pos = [you |-> [lr |-> 0, fb |-> 4], me |-> [lr |-> 1, fb |-> 2]] 8: <Juke("me")> pos = [you |-> [lr |-> 0, fb |-> 4], me |-> [lr |-> 0, fb |-> 2]] 9: <Juke("me")> (back to state 7) In this failure, I've successfully gotten past you, and then spend the rest of my life endlessly juking back and forth. The Next step keeps happening, so weak fairness is satisfied. What I actually want is for both my Move and my Juke to both be weakly fair independently of each other. - Fairness == WF_vars(Next) + Fairness == WF_vars(Move(me)) /\ WF_vars(Juke(me)) If my liveness property also specified that you reached your goal, I could instead write \A p \in People: WF_vars(Move(p)) etc. I could also swap the \A with a \E to mean at least one of us is guaranteed to have fair actions, but not necessarily both of us. New error: 3: <Move("me")> pos = [you |-> [lr |-> 0, fb |-> 2], me |-> [lr |-> 0, fb |-> 3]] 4: <Juke("you")> pos = [you |-> [lr |-> 1, fb |-> 2], me |-> [lr |-> 0, fb |-> 3]] 5: <Juke("me")> pos = [you |-> [lr |-> 1, fb |-> 2], me |-> [lr |-> 1, fb |-> 3]] 6: <Juke("me")> pos = [you |-> [lr |-> 1, fb |-> 2], me |-> [lr |-> 0, fb |-> 3]] 7: <Juke("you")> (back to state 3) Now we're getting somewhere! This is the original walkwarding situation we wanted to capture. We're in each others way, then you juke, but before either of us can move you juke, then we both juke back. We can repeat this forever, trapped in a social hell. Wait, but doesn't WF(Move(me)) guarantee I will eventually move? Yes, but only if a move is permanently available. In this case, it's not permanently available, because every couple of steps it's made temporarily unavailable. How do I fix this? I can't add a rule saying that we only juke if we're blocked, because the whole point of walkwarding is that we're not coordinated. In the real world, walkwarding can go on for agonizing seconds. What I can do instead is say that Liveness holds as long as Move is strongly fair. Unlike weak fairness, strong fairness guarantees something happens if it keeps becoming possible, even with interruptions. Liveness == + SF_vars(Move(me)) => <>(pos[me].fb = goal[me]) This makes the spec pass. Even if we weave back and forth for five minutes, as long as we eventually pass each other, I will reach my goal. Note we could also by making Move in Fairness strongly fair, which is preferable if we have a lot of different liveness properties to check. A small exercise for the reader There is a presumed invariant that is violated. Identify what it is, write it as a property in TLA+, and show the spec violates it. Then fix it. Answer (in rot13): Gur vainevnag vf "ab gjb crbcyr ner va gur rknpg fnzr ybpngvba". Zbir thnenagrrf guvf ohg Whxr qbrf abg. More TLA+ Exercises I've started work on an exercises repo. There's only a handful of specific problems now but I'm planning on adding more over the summer. learntla is still on the toolbox, but I'm hoping to get it all moved over this summer. ↩

23 hours ago 2 votes
the penultimate conditional syntax

About half a year ago I encountered a paper bombastically titled “the ultimate conditional syntax”. It has the attractive goal of unifying pattern match with boolean if tests, and its solution is in some ways very nice. But it seems over-complicated to me, especially for something that’s a basic work-horse of programming. I couldn’t immediately see how to cut it down to manageable proportions, but recently I had an idea. I’ll outline it under the “penultimate conditionals” heading below, after reviewing the UCS and explaining my motivation. what the UCS? whence UCS out of scope penultimate conditionals dangling syntax examples antepenultimate breath what the UCS? The ultimate conditional syntax does several things which are somewhat intertwined and support each other. An “expression is pattern” operator allows you to do pattern matching inside boolean expressions. Like “match” but unlike most other expressions, “is” binds variables whose scope is the rest of the boolean expression that might be evaluated when the “is” is true, and the consequent “then” clause. You can “split” tests to avoid repeating parts that are the same in successive branches. For example, if num < 0 then -1 else if num > 0 then +1 else 0 can be written if num < 0 then -1 > 0 then +1 else 0 The example shows a split before an operator, where the left hand operand is the same and the rest of the expression varies. You can split after the operator when the operator is the same, which is common for “is” pattern match clauses. Indentation-based syntax (an offside rule) reduces the amount of punctuation that splits would otherwise need. An explicit version of the example above is if { x { { < { 0 then −1 } }; { > { 0 then +1 } }; else 0 } } (This example is written in the paper on one line. I’ve split it for narrow screens, which exposes what I think is a mistake in the nesting.) You can also intersperse let bindings between splits. I doubt the value of this feature, since “is” can also bind values, but interspersed let does have its uses. The paper has an example using let to avoid rightward drift: if let tp1_n = normalize(tp1) tp1_n is Bot then Bot let tp2_n = normalize(tp2) tp2_n is Bot then Bot let m = merge(tp1_n, tp2_n) m is Some(tp) then tp m is None then glb(tp1_n, tp2_n) It’s probably better to use early return to avoid rightward drift. The desugaring uses let bindings when lowering the UCS to simpler constructions. whence UCS Pattern matching in the tradition of functional programming languages supports nested patterns that are compiled in a way that eliminates redundant tests. For example, this example checks that e1 is Some(_) once, not twice as written. if e1 is Some(Left(lv)) then e2 Some(Right(rv)) then e3 None then e4 Being cheeky, I’d say UCS introduces more causes of redundant checks, then goes to great effort to to eliminate redundant checks again. Splits reduce redundant code at the source level; the bulk of the paper is about eliminating redundant checks in the lowering from source to core language. I think the primary cause of this extra complexity is treating the is operator as a two-way test rather than a multi-way match. Splits are introduced as a more general (more complicated) way to build multi-way conditions out of two-way tests. There’s a secondary cause: the tradition of expression-oriented functional languages doesn’t like early returns. A nice pattern in imperative code is to write a function as a series of preliminary calculations and guards with early returns that set things up for the main work of the function. Rust’s ? operator and let-else statement support this pattern directly. UCS addresses the same pattern by wedging calculate-check sequences into if statements, as in the normalize example above. out of scope I suspect UCS’s indentation-based syntax will make programmers more likely to make mistakes, and make compilers have more trouble producing nice error messages. (YAML has put me off syntax that doesn’t have enough redundancy to support good error recovery.) So I wondered if there’s a way to have something like an “is pattern” operator in a Rust-like language, without an offside rule, and without the excess of punctuation in the UCS desugaring. But I couldn’t work out how to make the scope of variable bindings in patterns cover all the code that might need to use them. The scope needs to extend into the consequent then clause, but also into any follow-up tests – and those tests can branch so the scope might need to reach into multiple then clauses. The problem was the way I was still thinking of the then and else clauses as part of the outer if. That implied the expression has to be closed off before the then, which troublesomely closes off the scope of any is-bound variables. The solution – part of it, at least – is actually in the paper, where then and else are nested inside the conditional expression. penultimate conditionals There are two ingredients: The then and else clauses become operators that cause early return from a conditional expression. They can be lowered to a vaguely Rust syntax with the following desugaring rules. The 'if label denotes the closest-enclosing if; you can’t use then or else inside the expr of a then or else unless there’s another intervening if. then expr ⟼ && break 'if expr else expr ⟼ || break 'if expr else expr ⟼ || _ && break 'if expr There are two desugarings for else depending on whether it appears in an expression or a pattern. If you prefer a less wordy syntax, you might spell then as => (like match in Rust) and else as || =>. (For symmetry we might allow && => for then as well.) An is operator for multi-way pattern-matching that binds variables whose scope covers the consequent part of the expression. The basic form is like the UCS, scrutinee is pattern which matches the scrutinee against the pattern returning a boolean result. For example, foo is None Guarded patterns are like, scrutinee is pattern && consequent where the scope of the variables bound by the pattern covers the consequent. The consequent might be a simple boolean guard, for example, foo is Some(n) && n < 0 or inside an if expression it might end with a then clause, if foo is Some(n) && n < 0 => -1 // ... Simple multi-way patterns are like, scrutinee is { pattern || pattern || … } If there is a consequent then the patterns must all bind the same set of variables (if any) with the same types. More typically, a multi-way match will have consequent clauses, like scrutinee is { pattern && consequent || pattern && consequent || => otherwise } When a consequent is false, we go on to try other alternatives of the match, like we would when the first operand of boolean || is false. To help with layout, you can include a redundant || before the first alternative. For example, if foo is { || Some(n) && n < 0 => -1 || Some(n) && n > 0 => +1 || Some(n) => 0 || None => 0 } Alternatively, if foo is { Some(n) && ( n < 0 => -1 || n > 0 => +1 || => 0 ) || None => 0 } (They should compile the same way.) The evaluation model is like familiar shortcutting && and || and the syntax is supposed to reinforce that intuition. The UCS paper spends a lot of time discussing backtracking and how to eliminate it, but penultimate conditionals evaluate straightforwardly from left to right. The paper briefly mentions as patterns, like Some(Pair(x, y) as p) which in Rust would be written Some(p @ Pair(x, y)) The is operator doesn’t need a separate syntax for this feature: Some(p is Pair(x, y)) For large examples, the penultimate conditional syntax is about as noisy as Rust’s match, but it scales down nicely to smaller matches. However, there are differences in how consequences and alternatives are punctuated which need a bit more discussion. dangling syntax The precedence and associativity of the is operator is tricky: it has two kinds of dangling-else problem. The first kind occurs with a surrounding boolean expression. For example, when b = false, what is the value of this? b is true || false It could bracket to the left, yielding false: (b is true) || false Or to the right, yielding true: b is { true || false } This could be disambiguated by using different spellings for boolean or and pattern alternatives. But that doesn’t help for the second kind which occurs with an inner match. foo is Some(_) && bar is Some(_) || None Does that check foo is Some(_) with an always-true look at bar ( foo is Some(_) ) && bar is { Some(_) || None } Or does it check bar is Some(_) and waste time with foo? foo is { Some(_) && ( bar is Some(_) ) || None } I have chosen to resolve the ambiguity by requiring curly braces {} around groups of alternative patterns. This allows me to use the same spelling || for all kinds of alternation. (Compare Rust, which uses || for boolean expressions, | in a pattern, and , between the arms of a match.) Curlies around multi-way matches can be nested, so the example in the previous section can also be written, if foo is { || Some(n) && n < 0 => -1 || Some(n) && n > 0 => +1 || { Some(0) || None } => 0 } The is operator binds tigher than && on its left, but looser than && on its right (so that a chain of && is gathered into a consequent) and tigher than || on its right so that outer || alternatives don’t need extra brackets. examples I’m going to finish these notes by going through the ultimate conditional syntax paper to translate most of its examples into the penultimate syntax, to give it some exercise. Here we use is to name a value n, as a replacement for the |> abs pipe operator, and we use range patterns instead of split relational operators: if foo(args) is { || 0 => "null" || n && abs(n) is { || 101.. => "large" || ..10 => "small" || => "medium" ) } In both the previous example and the next one, we have some extra brackets where UCS relies purely on an offside rule. if x is { || Right(None) => defaultValue || Right(Some(cached)) => f(cached) || Left(input) && compute(input) is { || None => defaultValue || Some(result) => f(result) } } This one is almost identical to UCS apart from the spellings of and, then, else. if name.startsWith("_") && name.tailOption is Some(namePostfix) && namePostfix.toIntOption is Some(index) && 0 <= index && index < arity && => Right([index, name]) || => Left("invalid identifier: " + name) Here are some nested multi-way matches with overlapping patterns and bound values: if e is { // ... || Lit(value) && Map.find_opt(value) is Some(result) => Some(result) // ... || { Lit(value) || Add(Lit(0), value) || Add(value, Lit(0)) } => { print_int(value); Some(value) } // ... } The next few examples show UCS splits without the is operator. In my syntax I need to press a few more buttons but I think that’s OK. if x == 0 => "zero" || x == 1 => "unit" || => "?" if x == 0 => "null" || x > 0 => "positive" || => "negative" if predicate(0, 1) => "A" || predicate(2, 3) => "B" || => "C" The first two can be written with is instead, but it’s not briefer: if x is { || 0 => "zero" || 1 => "unit" || => "?" } if x is { || 0 => "null" || 1.. => "positive" || => "negative" } There’s little need for a split-anything feature when we have multi-way matches. if foo(u, v, w) is { || Some(x) && x is { || Left(_) => "left-defined" || Right(_) => "right-defined" } || None => "undefined" } A more complete function: fn zip_with(f, xs, ys) { if [xs, ys] is { || [x :: xs, y :: ys] && zip_with(f, xs, ys) is Some(tail) => Some(f(x, y) :: tail) || [Nil, Nil] => Some(Nil) || => None } } Another fragment of the expression evaluator: if e is { // ... || Var(name) && Map.find_opt(env, name) is { || Some(Right(value)) => Some(value) || Some(Left(thunk)) => Some(thunk()) } || App(lhs, rhs) => // ... // ... } This expression is used in the paper to show how a UCS split is desugared: if Pair(x, y) is { || Pair(Some(xv), Some(yv)) => xv + yv || Pair(Some(xv), None) => xv || Pair(None, Some(yv)) => yv || Pair(None, None) => 0 } The desugaring in the paper introduces a lot of redundant tests. I would desugar straightforwardly, then rely on later optimizations to eliminate other redundancies such as the construction and immediate destruction of the pair: if Pair(x, y) is Pair(xx, yy) && xx is { || Some(xv) && yy is { || Some(yv) => xv + yv || None => xv } || None && yy is { || Some(yv) => yv || None => 0 } } Skipping ahead to the “non-trivial example” in the paper’s fig. 11: if e is { || Var(x) && context.get(x) is { || Some(IntVal(v)) => Left(v) || Some(BoolVal(v)) => Right(v) } || Lit(IntVal(v)) => Left(v) || Lit(BoolVal(v)) => Right(v) // ... } The next example in the paper compares C# relational patterns. Rust’s range patterns do a similar job, with the caveat that Rust’s ranges don’t have a syntax for exclusive lower bounds. fn classify(value) { if value is { || .. -4.0 => "too low" || 10.0 .. => "too high" || NaN => "unknown" || => "acceptable" } } I tend to think relational patterns are the better syntax than ranges. With relational patterns I can rewrite an earlier example like, if foo is { || Some(< 0) => -1 || Some(> 0) => +1 || { Some(0) || None } => 0 } I think with the UCS I would have to name the Some(_) value to be able to compare it, which suggests that relational patterns can be better than UCS split relational operators. Prefix-unary relational operators are also a nice way to write single-ended ranges in expressions. We could simply write both ends to get a complete range, like >= lo < hi or like if value is > -4.0 < 10.0 => "acceptable" || => "far out" Near the start I quoted a normalize example that illustrates left-aligned UCS expression. The penultimate version drifts right like the Scala version: if normalize(tp1) is { || Bot => Bot || tp1_n && normalize(tp2) is { || Bot => Bot || tp2_n && merge(tp1_n, tp2_n) is { || Some(tp) => tp || None => glb(tp1_n, tp2_n) } } } But a more Rusty style shows the benefits of early returns (especially the terse ? operator) and monadic combinators. let tp1 = normalize(tp1)?; let tp2 = normalize(tp2)?; merge(tp1, tp2) .unwrap_or_else(|| glb(tp1, tp2)) antepenultimate breath When I started writing these notes, my penultimate conditional syntax was little more than a sketch of an idea. Having gone through the previous section’s exercise, I think it has turned out better than I thought it might. The extra nesting from multi-way match braces doesn’t seem to be unbearably heavyweight. However, none of the examples have bulky then or else blocks which are where the extra nesting is more likely to be annoying. But then, as I said before it’s comparable to a Rust match: match scrutinee { pattern => { consequent } } if scrutinee is { || pattern => { consequent } } The || lines down the left margin are noisy, but hard to get rid of in the context of a curly-brace language. I can’t reduce them to | like OCaml because what would I use for bitwise OR? I don’t want presence or absence of flow control to depend on types or context. I kind of like Prolog / Erlang , for && and ; for ||, but that’s well outside what’s legible to mainstream programmers. So, dunno. Anyway, I think I’ve successfully found a syntax that does most of what UCS does, but much in a much simpler fashion.

2 days ago 5 votes
Coding should be a vibe!

The appeal of "vibe coding" — where programmers lean back and prompt their way through an entire project with AI — appears partly to be based on the fact that so many development environments are deeply unpleasant to work with. So it's no wonder that all these programmers stuck working with cumbersome languages and frameworks can't wait to give up on the coding part of software development. If I found writing code a chore, I'd be looking for retirement too. But I don't. I mean, I used to! When I started programming, it was purely because I wanted programs. Learning to code was a necessary but inconvenient step toward bringing systems to life. That all changed when I learned Ruby and built Rails. Ruby's entire premise is "programmer happiness": that writing code should be a joy. And historically, the language was willing to trade run-time performance, memory usage, and other machine sympathies against the pursuit of said programmer happiness. These days, it seems like you can eat your cake and have it too, though. Ruby, after thirty years of constant improvement, is now incredibly fast and efficient, yet remains a delight to work with. That ethos couldn't shine brighter now. Disgruntled programmers have finally realized that an escape from nasty syntax, boilerplate galore, and ecosystem hyper-churn is possible. That's the appeal of AI: having it hide away all that unpleasantness. Only it's like cleaning your room by stuffing the mess under the bed — it doesn't make it go away! But the instinct is correct: Programming should be a vibe! It should be fun! It should resemble English closely enough that line noise doesn't obscure the underlying ideas and decisions. It should allow a richness of expression that serves the human reader instead of favoring the strictness preferred by the computer. Ruby does. And given that, I have no interest in giving up writing code. That's not the unpleasant part that I want AI to take off my hands. Just so I can — what? — become a project manager for a murder of AI crows? I've had the option to retreat up the manager ladder for most of my career, but I've steadily refused, because I really like writing Ruby! It's the most enjoyable part of the job! That doesn't mean AI doesn't have a role to play when writing Ruby. I'm conversing and collaborating with LLMs all day long — looking up APIs, clarifying concepts, and asking stupid questions. AI is a superb pair programmer, but I'd retire before permanently handing it the keyboard to drive the code. Maybe one day, wanting to write code will be a quaint concept. Like tending to horses for transportation in the modern world — done as a hobby but devoid of any economic value. I don't think anyone knows just how far we can push the intelligence and creativity of these insatiable token munchers. And I wouldn't bet against their advance, but it's clear to me that a big part of their appeal to programmers is the wisdom that Ruby was founded on: Programming should favor and flatter the human.

2 days ago 8 votes
Tempest Rising is a great game

I really like RTS games. I pretty much grew up on them, starting with Command&Conquer 3: Kane’s Wrath, moving on to StarCraft 2 trilogy and witnessing the downfall of Command&Conquer 4. I never had the disks for any other RTS games during my teenage years. Yes, the disks, the ones you go to the store to buy! I didn’t know Steam existed back then, so this was my only source of games. There is something magical in owning a physical copy of the game. I always liked the art on the front (a mandatory huge face for all RTS!), game description and screenshots on the back, even the smell of the plastic disk case.

2 days ago 4 votes