Full Width [alt+shift+f] Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
67
The product we’re building, a rack-scale computer, is specifically designed to be a centralized, integrated product because that’s what our customers need. This requirement and the design choices we’ve made to meet this need create some daily efficiency challenges for our team. As a remote-first company, we’re designing this product with team members (including the hardware team) across most North American time zones and even multiple continents, so a large portion of our team is not going into the office/lab every day for hands-on access to "production" hardware. At first blush, the design of our product and the design of our team appear to conflict at some level: we value remote work, but we can’t ship entire racks to the homes of our teammates for both practical and economic reasons. Our racks are rather inconvenient for a home installation: over 2.3 m (7.7') tall, very heavy, and have 3-phase power inputs that aren’t usable in a typical residential setting. Aside from the...
a year ago

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from Oxide Computer Company Blog

dtrace.conf(24)

Sometime in late 2007, we had the idea of a DTrace conference. Or really, more of a meetup; from the primordial e-mail I sent: The goal here, by the way, is not a DTrace user group, but more of a face-to-face meeting with people actively involved in DTrace — either by porting it to another system, by integrating probes into higher level environments, by building higher-level tools on top of DTrace or by using it heavily and/or in a critical role. That said, we also don’t want to be exclusionary, so our thinking is that the only true requirement for attending is that everyone must be prepared to speak informally for 15 mins or so on what they are doing with DTrace, any limitations that they have encountered, and some ideas for the future. We’re thinking that this is going to be on the order of 15-30 people (though more would be a good problem to have — we’ll track it if necessary), that it will be one full day (breakfast in the morning through drinks into the evening), and that we’re going to host it here at our offices in San Francisco sometime in March 2008. This same note also included some suggested names for the gathering, including what in hindsight seems a clear winner: DTrace Bi-Mon-Sci-Fi-Con. As if knowing that I should leave an explanatory note to my future self as to why this name was not selected, my past self fortunately clarified: "before everyone clamors for the obvious Bi-Mon-Sci-Fi-Con, you should know that most Millennials don’t (sadly) get the reference." (While I disagree with the judgement of my past self, it at least indicates that at some point I cared if anyone got the reference.) We settled on a much more obscure reference, and had the first dtrace.conf in March 2008. Befitting the style of the time, it was an unconference (a term that may well have hit its apogee in 2008) that you signed up to attend by editing a wiki. More surprising given the year (and thanks entirely to attendee Ben Rockwood), it was recorded — though this is so long ago that I referred to it as video taping (and with none of the participants mic’d, I’m afraid the quality isn’t very good). The conference, however, was terrific, viz. the reports of Adam, Keith and Stephen (all somehow still online nearly two decades later). If anything, it was a little too good: we realized that we couldn’t recreate the magic, and we demurred on making it an annual event. Years passed, and memories faded. By 2012, it felt like we wanted to get folks together again, now under a post-lawnmower corporate aegis in Joyent. The resulting dtrace.conf(12) was a success, and the Olympiad cadence felt like the right one; we did it again four years later at dtrace.conf(16). In 2020, we came back together for a new adventure — and the DTrace Olympiad was not lost on Adam. Alas, dtrace.conf(20) — like the Olympics themselves — was cancelled, if implicitly. Unlike the Olympics, however, it was not to be rescheduled. More years passed and DTrace continued to prove its utility at Oxide; last year when Adam and I did our "DTrace at 20" episode of Oxide and Friends, we vowed to hold dtrace.conf(24) — and a few months ago, we set our date to be December 11th. At first we assumed we would do something similar to our earlier conferences: a one-day participant-run conference, at the Oxide office in Emeryville. But times have changed: thanks to the rise of remote work, technologists are much more dispersed — and many more people would need to travel for dtrace.conf(24) than in previous DTrace Olympiads. Travel hasn’t become any cheaper since 2008, and the cost (and inconvenience) was clearly going to limit attendance. The dilemma for our small meetup highlights the changing dynamics in tech conferences in general: with talks all recorded and made publicly available after the conference, how does one justify attending a conference in person? There can be reasonable answers to that question, of course: it may be the hallway track, or the expo hall, or the after-hours socializing, or perhaps some other special conference experience. But it’s also not surprising that some conferences — especially ones really focused on technical content — have decided that they are better off doing as conference giant O’Reilly Media did, and going exclusively online. And without the need to feed and shelter participants, the logistics for running a conference become much more tenable — and the price point can be lowered to the point that even highly produced conferences like P99 CONF can be made freely available. This, in turn, leads to much greater attendance — and a network effect that can get back some of what one might lose going online. In particular, using chat as the hallway track can be more much effective (and is certainly more scalable!) than the actual physical hallways at a conference. For conferences in general, there is a conversation to be had here (and as a teaser, Adam and I are going to talk about it with Stephen O’Grady and Theo Schlossnagle on Oxide and Friends next week, but for our quirky, one-day, Olympiad-cadence dtrace.conf, the decision was pretty easy: there was much more to be gained than lost by going exclusively on-line. So dtrace.conf(24) is coming up next week, and it’s available to everyone. In terms of platform, we’re going to try to keep that pretty simple: we’re going to use Google Meet for the actual presenters, which we will stream in real-time to YouTube — and we’ll use the Oxide Discord for all chat. We’re hoping you’ll join us on December 11th — and if you want to talk about DTrace or a DTrace-adjacent topic, we’d love for you to present! Keeping to the unconference style, if you would like to present, please indicate your topic in the #session-topics Discord channel so we can get the agenda fleshed out. While we’re excited to be online, there are some historical accoutrements of conferences that we didn’t want to give up. First, we have a tradition of t-shirts with dtrace.conf. Thanks to our designer Ben Leonard, we have a banger of a t-shirt, capturing the spirit of our original dtrace.conf(08) shirt but with an Oxide twist. It’s (obviously) harder to make those free but we have tried to price them reasonably. You can get your t-shirt by adding it to your (free) dtrace.conf ticket. (And for those who present at dtrace.conf, your shirt is on us — we’ll send you a coupon code!) Second, for those who can make their way to the East Bay and want some hangout time, we are going to have an après conference social event at the Oxide office starting at 5p. We’re charging something nominal for that too (and like the t-shirt, you pay for that via your dtrace.conf ticket); we’ll have some food and drinks and an Oxide hardware tour for the curious — and (of course?) there will be Fishpong. Much has changed since I sent that e-mail 17 years ago — but the shared values and disposition that brought together our small community continue to endure; we look forward to seeing everyone (virtually) at dtrace.conf(24)!

2 months ago 52 votes
Advancing Cloud and HPC Convergence with Lawrence Livermore National Laboratory

Oxide Computer Company and Lawrence Livermore National Laboratory Work Together to Advance Cloud and HPC Convergence Oxide Computer Company and Lawrence Livermore National Laboratory (LLNL) today announced a plan to bring on-premises cloud computing capabilities to the Livermore Computing (LC) high-performance computing (HPC) center. The rack-scale Oxide Cloud Computer allows LLNL to improve the efficiency of operational workloads and will provide users in the National Nuclear Security Administration (NNSA) with new capabilities for provisioning secure, virtualized services alongside HPC workloads. HPC centers have traditionally run batch workloads for large-scale scientific simulations and other compute-heavy applications. HPC workloads do not exist in isolation—there are a multitude of persistent, operational services that keep the HPC center running. Meanwhile, HPC users also want to deploy cloud-like persistent services—databases, Jupyter notebooks, orchestration tools, Kubernetes clusters. Clouds have developed extensive APIs, security layers, and automation to enable these capabilities, but few options exist to deploy fully virtualized, automated cloud environments on-premises. The Oxide Cloud Computer allows organizations to deliver secure cloud computing capabilities within an on-premises environment. On-premises environments are the next frontier for cloud computing. LLNL is tackling some of the hardest and most important problems in science and technology, requiring advanced hardware, software, and cloud capabilities. We are thrilled to be working with their exceptional team to help advance those efforts, delivering an integrated system that meets their rigorous requirements for performance, efficiency, and security. — Steve TuckCEO at Oxide Computer Company Leveraging the new Oxide Cloud Computer, LLNL will enable staff to provision virtual machines (VMs) and services via self-service APIs, improving operations and modernizing aspects of system management. In addition, LLNL will use the Oxide rack as a proving ground for secure multi-tenancy and for smooth integration with the LLNL-developed Flux resource manager. LLNL plans to bring its users cloud-like Infrastructure-as-a-Service (IaaS) capabilities that work seamlessly with their HPC jobs, while maintaining security and isolation from other users. Beyond LLNL personnel, researchers at the Los Alamos National Laboratory and Sandia National Laboratories will also partner in many of the activities on the Oxide Cloud Computer. We look forward to working with Oxide to integrate this machine within our HPC center. Oxide’s Cloud Computer will allow us to securely support new types of workloads for users, and it will be a proving ground for introducing cloud-like features to operational processes and user workflows. We expect Oxide’s open-source software stack and their transparent and open approach to development to help us work closely together. — Todd GamblinDistinguished Member of Technical Staff at LLNL Sandia is excited to explore the Oxide platform as we work to integrate on-premise cloud technologies into our HPC environment. This advancement has the potential to enable new classes of interactive and on-demand modeling and simulation capabilities. — Kevin PedrettiDistinguished Member of Technical Staff at Sandia National Laboratories LLNL plans to work with Oxide on additional capabilities, including the deployment of additional Cloud Computers in its environment. Of particular interest are scale-out capabilities and disaster recovery. The latest installation underscores Oxide Computer’s momentum in the federal technology ecosystem, providing reliable, state-of-the-art Cloud Computers to support critical IT infrastructure. To learn more about Oxide Computer, visit https://oxide.computer. About Oxide Computer Oxide Computer Company is the creator of the world’s first commercial Cloud Computer, a true rack-scale system with fully unified hardware and software, purpose-built to deliver hyperscale cloud computing to on-premises data centers. With Oxide, organizations can fully realize the economic and operational benefits of cloud ownership, with access to the same self-service development experience of public cloud, without the public cloud cost. Oxide empowers developers to build, run, and operate any application with enhanced security, latency, and control, and frees organizations to elevate IT operations to accelerate strategic initiatives. To learn more about Oxide’s Cloud Computer, visit oxide.computer. About LLNL Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation’s most important national security challenges through innovative science, engineering, and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy’s National Nuclear Security Administration. Media Contact LaunchSquad for Oxide Computer oxide@launchsquad.com

2 months ago 52 votes
Remembering Charles Beeler

We are heartbroken to relay that Charles Beeler, a friend and early investor in Oxide, passed away in September after a battle with cancer. We lost Charles far too soon; he had a tremendous influence on the careers of us both. Our relationship with Charles dates back nearly two decades, to his involvement with the ACM Queue board where he met Bryan. It was unprecedented to have a venture capitalist serve in this capacity with ACM, and Charles brought an entirely different perspective on the practitioner content. A computer science pioneer who also served on the board took Bryan aside at one point: "Charles is one of the good ones, you know." When Bryan joined Joyent a few years later, Charles also got to know Steve well. Seeing the promise in both node.js and cloud computing, Charles became an investor in the company. When companies hit challenging times, some investors will hide — but Charles was the kind of investor to figure out how to fix what was broken. When Joyent needed a change in executive leadership, it was Charles who not only had the tough conversations, but led the search for the leader the company needed, ultimately positioning the company for success. Aside from his investment in Joyent, Charles was an outspoken proponent of node.js, becoming an organizer of the Node Summit conference. In 2017, he asked Bryan to deliver the conference’s keynote, but by then, the relationship between Joyent and node.js had become…​ complicated, and Bryan felt that it probably wouldn’t be a good idea. Any rational person would have dropped it, but Charles persisted, with characteristic zeal: if the Joyent relationship with node.js had become strained, so much more the reason to speak candidly about it! Charles prevailed, and the resulting talk, Platform as Reflection of Values, became one of Bryan’s most personally meaningful talks. Charles’s persistence was emblematic: he worked behind the scenes to encourage people to do their best work, always with an enthusiasm for the innovators and the creators. As we were contemplating Oxide, we told Charles what we wanted to do long before we had a company. Charles laughed with delight: "I hoped that you two would do something big, and I am just so happy for you that you’re doing something so ambitious!" As we raised seed capital, we knew that we were likely a poor fit for Charles and his fund. But we also knew that we deeply appreciated his wisdom and enthusiasm; we couldn’t resist pitching him on Oxide. Charles approached the investment in Oxide as he did with so many other aspects: with curiosity, diligence, empathy, and candor. He was direct with us that despite his enthusiasm for us personally, Oxide would be a challenging investment for his firm. But he also worked with us to address specific objections, and ultimately he won over his partnership. We were thrilled when he not only invested, but pulled together a syndicate of like-minded technologists and entrepreneurs to join him. Ever since, he has been a huge Oxide fan. Befitting his enthusiasm, one of his final posts expressed his enthusiasm and pride in what the Oxide team has built. Charles, thank you. You told us you were proud of us — and it meant the world. We are gutted to no longer have you with us; your influence lives on not just in Oxide, but also in the many people that you have inspired. You were the best of venture capital. Closer to the heart, you were a terrific friend to us both; thank you.

2 months ago 44 votes
How Oxide Cuts Data Center Power Consumption in Half

Here’s a sobering thought: today, data centers already consume 1-2% of the world’s power, and that percentage will likely rise to 3-4% by the end of the decade. According to Goldman Sachs research, that rise will include a doubling in data center carbon dioxide emissions. As the data and AI boom progresses, this thirst for power shows no signs of slowing down anytime soon. Two key challenges quickly become evident for the 85% of IT that currently lives on-premises. How can organizations reduce power consumption and corresponding carbon emissions? How can organizations keep pace with AI innovation as existing data centers run out of available power? Figure 1. Masanet et al. (2020), Cisco, IEA, Goldman Sachs Research Rack-scale design is critical to improved data center efficiency Traditional data center IT consumes so much power because the fundamental unit of compute is an individual server; like a house where rooms were built one at a time, with each room having its own central AC unit, gas furnace, and electrical panel. Individual rackmount servers are stacked together, each with their own AC power supplies, cooling fans, and power management. They are then paired with storage appliances and network switches that communicate at arm’s length, not designed as a cohesive whole. This approach fundamentally limits organizations' ability to maintain sustainable, high-efficiency computing systems. Of course, hyperscale public cloud providers did not design their data center systems this way. Instead, they operate like a carefully planned smart home where everything is designed to work together cohesively and is operated by software that understands the home’s systems end-to-end. High-efficiency, rack-scale computers are deployed at scale and operate as a single unit with integrated storage and networking to support elastic cloud computing services. This modern archietecture is made available to the market as public cloud, but that rental-only model is ill-fit for many business needs. Compared to a popular rackmount server vendor, Oxide is able to fill our specialized racks with 32 AMD Milan sleds and highly-available network switches using less than 15kW per rack, doubling the compute density in a typical data center. With just 16 of the alternative 1U servers and equivalent network switches, over 16kW of power is required per rack, leading to only 1,024 CPU cores vs Oxide’s 2,048. Extracting more useful compute from each kW of power and square foot of data center space is key to the future effectiveness of on-premises computing. At Oxide, we’ve taken this lesson in advancing rack-scale design, improved upon it in several ways, and made it available for every organization to purchase and operate anywhere in the world without a tether back to the public cloud. Our Cloud Computer treats the entire rack as a single, unified computer rather than a collection of independent parts, achieving unprecedented power efficiency. By designing the hardware and software together, we’ve eliminated unnecessary components and optimized every aspect of system operation through a control plane with visibility to end-to-end operations. When we started Oxide, the DC bus bar stood as one of the most glaring differences between the rack-scale machines at the hyperscalers and the rack-and-stack servers that the rest of the market was stuck with. That a relatively simple piece of copper was unavailable to commercial buyers — despite being unequivocally the right way to build it! — represented everything wrong with the legacy approach. The bus bar in the Oxide Cloud Computer is not merely more efficient, it is a concrete embodiment of the tremendous gains from designing at rack-scale, and by integrating hardware with software. — Bryan Cantrill The improvements we’re seeing are rooted in technical innovation Replacing low-efficiency AC power supplies with a high-efficiency DC Bus Bar This eliminates the 70 total AC power supplies found in an equivalent legacy server rack within 32 servers, two top-of-rack switches, and one out-of-band switch, each with two AC power supplies. This power shelf also ensures the load is balanced across phases, something that’s impossible with traditional power distribution units found in legacy server racks. Bigger fans = bigger efficiency gains using 12x less energy than legacy servers, which each contain as many as 7 fans, which must work much harder to move air over system components. Purpose-built for power efficiency less restrictive airflow than legacy servers by eliminating extraneous components like PCIe risers, storage backplanes, and more. Legacy servers need many optional components like these because they could be used for any number of tasks, such as point-of-sale systems, data center servers, or network-attached-storage (NAS) systems. Still, they were never designed optimally for any one of those tasks. The Oxide Cloud Computer was designed from the ground up to be a rack-scale cloud computing powerhouse, and so it’s optimized for exactly that task. Hardware + Software designed together By designing the hardware and software together, we can make hardware choices like more intelligent DC-DC power converters that can provide rich telemetry to our control plane, enabling future feature enhancements such as dynamic power capping and efficiency-based workload placement that are impossible with legacy servers and software systems. Learn more about Oxide’s intelligent Power Shelf Controller The Bottom Line: Customers and the Environment Both Benefit Reducing data center power demands and achieving more useful computing per kilowatt requires fundamentally rethinking traditional data center utilization and compute design. At Oxide, we’ve proven that dramatic efficiency gains are possible when you rethink the computer at rack-scale with hardware and software designed thoughtfully and rigorously together. Ready to learn how your organization can achieve these results? Schedule time with our team here. Together, we can reclaim on-premises computing efficiency to achieve both business and sustainability goals.

3 months ago 51 votes
Reflections on Founder Mode

Paul Graham’s Founder Mode is an important piece, and you should read it if for no other reason that "founder mode" will surely enter the lexicon (and as Graham grimly predicts: "as soon as the concept of founder mode becomes established, people will start misusing it"). When building a company, founders are engaged in several different acts at once: raising capital; building a product; connecting that product to a market; building an organization to do all of these. Founders make lots of mistakes in all of these activities, and Graham’s essay highlights a particular kind of mistake in which founders are overly deferential to expertise or convention. Pejoratively referring to this as "Management Mode", Graham frames this in the Silicon Valley dramaturgical dyad of Steve Jobs and John Scully. While that’s a little too reductive (anyone seeking to understand Jobs needs to read Randall Stross’s superlative Steve Jobs and the NeXT Big Thing, highlighting Jobs’s many post-Scully failures at NeXT), Graham has identified a real issue here, albeit without much specificity. For a treatment of the same themes but with much more supporting detail, one should read the (decade-old) piece from Tim O’Reilly, How I failed. (Speaking personally, O’Reilly’s piece had a profound influence on me, as it encouraged me to stand my ground on an issue on which I had my own beliefs but was being told to defer to convention.) But as terrific as it is, O’Reilly’s piece also doesn’t answer the question that Graham poses: how do founders prevent their companies from losing their way? Graham says that founder mode is a complete mystery ("There are as far as I know no books specifically about founder mode"), and while there is a danger in being too pat or prescriptive, there does seem to be a clear component for keeping companies true to themselves: the written word. That is, a writing- (and reading-!) intensive company culture does, in fact, allow for scaling the kind of responsibility that Graham thinks of as founder mode. At Oxide, our writing-intensive culture has been absolutely essential: our RFD process is the backbone of Oxide, and has given us the structure to formalize, share, and refine our thinking. First among this formalized thinking — and captured in our first real RFD — is RFD 2 Mission, Principles, and Values. Immediately behind that (and frankly, the most important process for any company) is RFD 3 Oxide Hiring Process. These first three RFDs — on the process itself, on what we value, and on how we hire — were written in the earliest days of the company, and they have proven essential to scale the company: they are the foundation upon which we attract people who share our values. While the shared values have proven necessary, they haven’t been sufficient to eliminate the kind of quandaries that Graham and O’Reilly describe. For example, there have been some who have told us that we can’t possibly hire non-engineering roles using our hiring process — or told us that our approach to compensation can’t possibly work. To the degree that we have had a need for Graham’s founder mode, it has been in those moments: to stay true to the course we have set for the company. But because we have written down so much, there is less occasion for this than one might think. And when it does occur — when there is a need for further elucidation or clarification — the artifact is not infrequently a new RFD that formalizes our newly extended thinking. (RFD 68 is an early public and concrete example of this; RFD 508 is a much more recent one that garnered some attention.) Most importantly, because we have used our values as a clear lens for hiring, we are able to assure that everyone at Oxide is able to have the same disposition with respect to responsibility — and this (coupled with the transparency that the written word allows) permits us to trust one another. As I elucidated in Things I Learned The Hard Way, the most important quality in a leader is to bind a team with mutual trust: with it, all things are possible — and without it, even easy things can be debilitatingly difficult. Graham mentions trust, but he doesn’t give it its due. Too often, founders focus on the immediacy of a current challenge without realizing that they are, in fact, undermining trust with their approach. Bluntly, founders are at grave risk of misinterpreting Graham’s "Founders Mode" to be a license to micromanage their teams, descending into the kind of manic seagull management that inhibits a team rather than empowering it. Founders seeking to internalize Graham’s advice should recast it by asking themselves how they can foster mutual trust — and how they can build the systems that allow trust to be strengthened even as the team expands. For us at Oxide, writing is the foundation upon which we build that trust. Others may land on different mechanisms, but the goal of founders should be the same: build the trust that allows a team to kick a Jobsian dent in the universe!

5 months ago 54 votes

More in programming

Software Pliability

Quoting myself from former days on Twitter: Businesses have a mental model of what they do. Businesses build software to help them do it—a concrete manifestation of their mental model. A gap always exists between these two. What makes a great software business is their ability to keep that gap very small. I think this holds up. And I still think about this idea (hence this post). Software is an implementation of human understanding — people need X, so we made Y. But people change. Businesses change. So software must also change. One of your greatest strengths will be your ability to adapt and evolve your understanding of people’s needs and implement it in your software. In a sense, technical debt is the other side of this coin of change: an inability to keep up with your own metamorphosis and understanding. In a way, you could analogize this to the conundrum of rocket science: you need fuel to get to space, but the more fuel you add, the more weight you add, and the more weight you add, the more fuel you need. Ad nauseam. It’s akin to making software. You want to make great software for people’s needs today. It takes people, processes, and tools to make software, but the more people, processes, and tools you add to the machine of making software, the less agile you become. So to gain velocity you add more people, processes, and tools, which…you get the idea. Being able to build and maintain pliable software that can change and evolve at the same speed as your mental model is a superpower. Quality in code means the flexibility to change. Email :: Mastodon :: Bluesky

21 hours ago 2 votes
The Exodus Curve

The concept of Product-Market Fit (PMF) collapse has gained renewed attention with the rise of large language models (LLMs), as highlighted in a recent Reforge article. The article argues we’re witnessing unprecedented market disruption, in this post, I propose we’re experiencing an acceleration of a familiar pattern rather than a fundamentally new phenomenon. Adoption Curves […] The post The Exodus Curve appeared first on Marc Astbury.

8 hours ago 2 votes
Serving the country

In 1940, President Roosevelt tapped William S. Knudsen to run the government's production of military equipment. Knudsen had spent a pivotal decade at Ford during the mass-production revolution, and was president of General Motors, when he was drafted as a civilian into service as a three-star general. Not bad for a Dane, born just ten minutes on bike from where I'm writing this in Copenhagen! Knudsen's leadership raised the productive capacity of the US war machine by a 100x in areas like plane production, where it went from producing 3,000 planes in 1939 to over 300,000 by 1945. He was quoted on his achievement: "We won because we smothered the enemy in an avalanche of production, the like of which he had never seen, nor dreamed possible". Knudsen wasn't an elected politician. He wasn't even a military man. But Roosevelt saw that this remarkable Dane had the skills needed to reform a puny war effort into one capable of winning the Second World War. Do you see where I'm going with this? Elon Musk is a modern day William S. Knudsen. Only even more accomplished in efficiency management, factory optimization, and first-order systems thinking. No, America isn't in a hot war with the Axis powers, but for the sake of the West, it damn well better be prepared for one in the future. Or better still, be so formidable that no other country or alliance would even think to start one. And this requires a strong, confident, and sound state with its affairs in order. If you look at the government budget alone, this is direly not so. The US was knocking on a two-trillion-dollar budget deficit in 2024! Adding to a towering debt that's now north of 36 trillion. A burden that's already consuming $881 billion in yearly interest payments. More than what's spent on the military or Medicare. Second to only Social Security on the list of line items. Clearly, this is not sustainable. This is the context of DOGE. The program, lead by Musk, that's been deputized by Trump to turn the ship around. History doesn't repeat, but it rhymes, and Musk is dropping beats that Knudsen would have surely been tapping his foot to. And just like Knudsen in his time, it's hard to think of any other American entrepreneur more qualified to tackle exactly this two-trillion dollar problem.  It is through The Musk Algorithm that SpaceX lowered the cost of sending a kilo of goods into lower orbit from the US by well over a magnitude. And now America's share of worldwide space transit has risen from less than 30% in 2010 to about 85%. Thanks to reusable rockets and chopstick-catching landing towers. Thanks to Musk. Or to take a more earthly example with Twitter. Before Musk took over, Twitter had revenues of $5 billion and earned $682 million. After the take over, X has managed to earn $1.25 billion on $2.7 billion in revenue. Mostly thank to the fact that Musk cut 80% of the staff out of the operation, and savaged the cloud costs of running the service. This is not what people expected at the time of the take over! Not only did many commentators believe that Twitter was going to collapse from the drastic costs in staff, they also thought that the financing for the deal would implode. Chiefly as a result of advertisers withdrawing from the platform under intense media pressure. But that just didn't happen. Today, the debt used to take over Twitter and turn it into X is trading at 97 cents on the dollar. The business is twice as profitable as it was before, and arguably as influential as ever. All with just a fifth of the staff required to run it. Whatever you think of Musk and his personal tweets, it's impossible to deny what an insane achievement of efficiency this has been! These are just two examples of Musk's incredible ability to defy the odds and deliver the most unbelievable efficiency gains known to modern business records. And we haven't even talked about taking Tesla from producing 35,000 cars in 2014 to making 1.7 million in 2024. Or turning xAI into a major force in AI by assembling a 100,000 H100 cluster at "superhuman" pace.  Who wouldn't want such a capacity involved in finding the waste, sloth, and squander in the US budget? Well, his political enemies, of course! And I get it. Musk's magic is balanced with mania and even a dash of madness. This is usually the case with truly extraordinary humans. The taller they stand, the longer the shadow. Expecting Musk to do what he does and then also be a "normal, chill dude" is delusional. But even so, I think it's completely fair to be put off by his tendency to fire tweets from the hip, opine on world affairs during all hours of the day, and offer his support to fringe characters in politics, business, and technology. I'd be surprised if even the most ardent Musk super fans don't wince a little every now and then at some of the antics. And yet, I don't have any trouble weighing those antics against the contributions he's made to mankind, and finding an easy and overwhelming balance in favor of his positive achievements. Musk is exactly the kind of formidable player you want on your team when you're down two trillion to nothing, needing a Hail Mary pass for the destiny of America, and eager to see the West win the future. He's a modern-day Knudsen on steroids (or Ketamine?). Let him cook.

5 hours ago 2 votes
Unexpected errors in the BagIt area

Last week, James Truitt asked a question on Mastodon: James Truitt (he/him) @linguistory@code4lib.social Mastodon #digipres folks happen to have a handy repo of small invalid bags for testing purposes? I'm trying to automate our ingest process, and want to make sure I'm accounting for as many broken expectations as possible. Jan 31, 2025 at 07:49 PM The “bags” he’s referring to are BagIt bags. BagIt is an open format developed by the Library of Congress for packaging digital files. Bags include manifests and checksums that describe their contents, and they’re often used by libraries and archives to organise files before transfering them to permanent storage. Although I don’t use BagIt any more, I spent a lot of time working with it when I was a software developer at Wellcome Collection. We used BagIt as the packaging format for files saved to our cloud storage service, and we built a microservice very similar to what James is describing. The “bag verifier” would look for broken bags, and reject them before they were copied to long-term storage. I wrote a lot of bag verifier test cases to confirm that it would spot invalid or broken bags, and that it would give a useful error message when it did. All of the code for Wellcome’s storage service is shared on GitHub under an MIT license, including the bag verifier tests. They’re wrapped in a Scala test framework that might not be the easiest thing to read, so I’m going to describe the test cases in a more human-friendly way. Before diving into specific examples, it’s worth remembering: context is king. BagIt is described by RFC 8493, and you could create invalid bags by doing a line-by-line reading and deliberately ignoring every “MUST” or “SHOULD” but I wouldn’t recommend this aproach. You’d get a long list of test cases, but you’d be overwhelmed by examples, and you might miss specific requirements for your system. The BagIt RFC is written for the most general case, but if you’re actually building a storage service, you’ll have more concrete requirements and context. It’s helpful to look at that context, and how it affects the data you want to store. Who’s creating the bags? How will they name files? Where are you going to store bags? How do bags fit into your wider systems? And so on. Understanding your context will allow you to skip verification steps that you don’t need, and to add verification steps that are important to you. I doubt any two systems implement the exact same set of checks, because every system has different context. Here are examples of potential validation issues drawn from the BagIt specification and my real-world experience. You won’t need to check for everything on this list, and this list isn’t exhaustive – but it should help you think about bag validation in your own context. The Bag Declaration bagit.txt This file declares that this is a BagIt bag, and the version of BagIt you’re using (RFC 8493 §2.1.1). It looks the same in almost every bag, for example: BagIt-Version: 1.0 Tag-File-Character-Encoding: UTF-8 This tightly prescribed format means it can only be invalid in a few ways: What if the bag doesn’t have a bag declaration? It’s a required element of every BagIt bag; it has to be there. What if the bag declaration is the wrong format? It should contain exactly two lines: a version number and a character encoding, in that order. What if the bag declaration has an unexpected version number? If you see a BagIt version that you’ve not seen before, the bag might have a different structure than what you expect. The Payload Files and Payload Manifest The payload files are the actual content you want to save and preserve. They get saved in the payload directory data/ (RFC 8493 §2.1.2), and there’s a payload manifest manifest-algorithm.txt that lists them, along with their checksums (RFC 8493 §2.1.3). Here’s an example of a payload manifest with MD5 checksums: 37d0b74d5300cf839f706f70590194c3 data/waterfall.jpg This tells us that the bag contains a single file data/waterfall.jpg, and it has the MD5 checksum 37d0…. These checksums can be used to verify that the files have transferred correctly, and haven’t been corrupted in the process. There are lots of ways a payload manifest could be invalid: What if the bag doesn’t have a payload manifest? Every BagIt bag must have at least one Payload Manifest file. What if the payload manifest is the wrong format? These files have a prescribed format – one file per line, with a checksum and file path. What if the payload manifest refers to a file that isn’t in the bag? Either one of the files in the bag has been deleted, or the manifest has an erroneous entry. What if the bag has a file that isn’t listed in the payload manifest? The manifest should be a complete listing of all the payload files in the bag. If the bag has a file which isn’t in the payload manifest, either that file isn’t meant to be there, or the manifest is missing an entry. Checking for unlisted files is how I spotted unwanted .DS_Store and Thumbs.db files. What if the checksum in the payload manifest doesn’t match the checksum of the file? Either the file has been corrupted, or the checksum is incorrect. What if there are payload files outside the data/ directory? All the payload files should be stored in data/. Anything outside that is an error. What if there are duplicate entries in the payload manifest? Every payload file must be listed exactly once in the manifest. This avoids ambiguity – suppose a file is listed twice, with two different checksums. Is the bag valid if one of those checksums is correct? Requiring unique entries avoids this sort of issue. What if the payload directory is empty? This is perfectly acceptable in the BagIt RFC, but it may not be what you want. If you know that you will always be sending bags that contain files, you should flag empty payload directories as an error. What if the payload manifest contains paths outside data/, or relative paths that try to escape the bag? (e.g. ../file.txt) Now we’re into “malicious bag” territory – a bag uploaded by somebody who’s trying to compromise your ingest pipeline. Any such bags should be treated with suspicion and rejected. If you’re concerned about malicious bags, you need a more thorough test suite to catch other shenanigans. We never went this far at Wellcome Collection, because we didn’t ingest bags from arbitrary sources. The bags only came from internal systems, and our verification was mainly about spotting bugs in those systems, not defending against malicious actors. A bag can contain multiple payload manifests – for example, it might contain both MD5 and SHA1 checksums. Every payload manifest must be valid for the overall bag to be valid. Payload filenames There are lots of gotchas around filenames and paths. It’s a complicated problem, and I definitely don’t understand all of it. It’s worth understanding the filename rules of any filesystem where you will be storing bags. For example, Azure Blob Storage has a number of rules around how you can name files, and Amazon S3 has different rules. We stored files in both at Wellcome Collection, and so the storage service had to enforce the superset of these rules. I’ve listed some edge cases of filenames you might want to consider, but it’s not a comlpete list. There are lots of ways that unexpected filenames could cause you issues, but whether you care depends on the source of your bags. If you control the bags and you know you’re not going to include any weird filenames, you can probably skip most of these. We only checked for one of these conditions at Wellcome Collection, because we had a pre-ingest step that normalised filenames. It converted filenames to ASCII, and saved a mapping between original and normalised filename in the bag. However, the normalisation was only designed for one filesystem, and produced filenames with trailing dots that were still disallowed in Azure Blob. What if a filename is too long? Some systems have a maximum path length, and an excessively deep directory structure or long filename could cause issues. What if a filename contains special characters? Spaces, emoji, or special characters (\, :, *, etc.) can cause problems for some tools. You should also think about characters that need to be URL-encoded. What if a filename has trailing spaces or dots? Some filesystems can’t support filenames ending in a dot or a space. What happens if your bag contains such a file, and you try to save it to the filesystem? This caused us issues at Wellcome Collection. We initially stored bags just in Amazon S3, which is happy to take filenames with a trailing dot – then we added backups to Azure Blob, which doesn’t. One of the bags we’d stored in Amazon S3 had a trailing dot in the filename, and caused us headaches when we tried to copy it to Azure. What if a filename contains a mix of path separators? The payload manifest uses a forward slash (/) as a path separator. If you have a filename with an alternative path separator, it might behave differently on different systems. For example, consider the payload file a\b\c. This would be a single file on macOS or Linux, but it would be nested inside two folders on Windows. What if the filenames are a mix of uppercase and lowercase characters? Some fileystems are case-sensitive, others aren’t. This can cause issues when you move bags between systems. For example, suppose a bag contains two different files Macrodata.txt and macrodata.txt. When you save that bag on a case-insensitive filesystem, only one file will be saved. What if the same filename appears twice with different Unicode normalisations? This is similar to filenames which only differ in upper/lowercase. They might be treated as two files on one filesystem, but collapsed into one file on another. The classic example is the word “café”: this can be encoded as caf\xc3\xa9 (UTF-8 encoded é) or cafe\xcc\x81 (e + combining acute accent). What if a filename contains a directory reference? A directory reference is /./ (current directory) or /../ (parent directory). It’s used on both Unix and Windows-like systems, and it’s another case of two filenames that look different but can resolve to the same path. For example: a/b, a/./b and a/subdir/../b all resolve to the same path under these rules. This can cause particular issues if you’re moving between local filesystems and cloud storage. Local filesystems treat filenames as hierarchical paths, where cloud storage like Amazon S3 often treats them as opaque strings. This can cause issues if you try to copy files from cloud storage to a local system – if you’re not careful, you could lose files in the process. The Tag Manifest tagmanifest-algorithm.txt Similar to the payload manifest, the tag manifest lists the tag files and their checksums. A “tag file” is the BagIt term for any metadata file that isn’t part of the payload (RFC 8493 §2.2.1). Unlike the payload manifest, the tag manifest is optional. A bag without a tag manifest can still be a valid bag. If the tag manifest is present, then many of the ways that a payload manifest can invalidate a bag – malformed contents, unreferenced files, or incorrect checksums – can also apply to tag manifests. There are some additional things to consider: What if a tag manifest lists payload files? The tag manifest lists tag files; the payload manifest lists payload files in the data/ directory. A tag manifest that lists files in the data/ directory is incorrect. What if the bag has a file that isn’t listed in either manifest? Every file in a bag (except the tag manifests) should be listed in either a payload or a tag manifest. A file that appears in neither could mean an unexpected file, or a missing manifest entry. Although the tag manifest is optional in the BagIt spec, at Wellcome Collection we made it a required file. Every bag had to have at least one tag manifest file, or our storage service would refuse to ingest it. The Bag Metadata bag-info.txt This is an optional metadata file that describes the bag and its contents (RFC 8493 §2.2.2). It’s a list of metadata elements, as simple label-value pairs, one per line. Here’s an example of a bag metadata file: Source-Organization: Lumon Industries Organization-Address: 100 Main Street, Kier, PE, 07043 Contact-Name: Harmony Cobel Unlike the manifest files, this is primarily intended for human readers. You can put arbitrary metadata in here, so you can add fields specific to your organisation. Although this file is more flexible, there are still ways it can be invalid: What if the bag metadata is the wrong format? It should have one metadata entry per line, with a label-value pair that’s separated by a colon. What if the Payload-Oxum is incorrect? The Payload-Oxum contains some concise statistics about the payload files: their total size in bytes, and how many there are. For example: Payload-Oxum: 517114.42 This tells us that the bag contains 42 payload files, and their total size is 517,114 bytes. If these stats don’t match the rest of the bag, something is wrong. What if non-repeatable metadata element names are repeated? The BagIt RFC defines a small number of reserved metadata element names which have a standard meaning. Although most metadata element names can be repeated, there are some which can’t, because they can only have one value. In particular: Bagging-Date, Bag-Size, Payload-Oxum and Bag-Group-Identifier. Although the bag metadata file is optional in a general BagIt bag, you may want to add your own rules based on how you use it. For example, at Wellcome Collection, we required all bags to have an External-Identifier value, that matched a specific schema. This allowed us to link bags to records in other databases, and our bag verifier would reject bags that didn’t include it. The Fetch File fetch.txt This is an optional element that allows you to reference files stored elsewhere (RFC 8493 §2.2.3). It tells the person reading the bag that a file hasn’t been included in this copy of the bag; they have to go and fetch it from somewhere else. The file is still recorded in the payload manifest (with a checksum you can verify), but you don’t have a complete bag until you’ve downloaded all the files. Here’s an example of a fetch.txt: https://topekastar.com/~daria/article.txt 1841 data/article.txt This tells us that data/article.txt isn’t included in this copy of the bag, but we we can download it from https://topekastar.com/~daria/article.txt. (The number 1841 is the size of the file in bytes. It’s optional.) Using fetch.txt allows you to send a bag with “holes”, which saves disk space and network bandwidth, but at a cost – we’re now relying on the remote location to remain available. From a preservation standpoint, this is scary! If topekastar.com goes away, this bag will be broken. I know some people don’t use fetch.txt for precisely this reason. If you do use fetch.txt, here are some things to consider: What if the fetch file is the wrong format? There’s a prescribed format – one file per line, with a URL, optional file size, and file path. What if the fetch file lists a file which isn’t in the payload manifest? The fetch.txt should only tell us that a file is stored elsewhere, and shouldn’t be introducing otherwise unreferenced files. If a file appears in fetch.txt but not the payload manifest, then we can’t verify the remote file because we don’t have a checksum for it. There’s either an erroneous fetch file entry or a missing manifest entry. What if the fetch file points to a file at an unusable URL? The URL is only useful if the person who receives the bag can use it to download the file. If they can’t, the bag might technically be valid, but it’s functionally broken. For example, you might reject URLs that don’t start with http:// or https://. What if the fetch file points to a file with the wrong length? The fetch.txt can optionally specify the size of a file, so you know how much storage you need to download it. If you download the file, the actual size should match the stated size. What if the fetch files points to a file that’s already included in the bag? Now you have two ways to get this file: you can read it from the bag, or from the remote URL. If a file is listed in both fetch.txt and included in the bag, either that file isn’t meant to be in the bag, or the fetch file has an erroneous entry. We used fetch files at Wellcome Collection to implement versioning, and we added extra rules about what remote URLs were allowed. In particular, we didn’t allow fetching a file from just anywhere – you could fetch from our S3 buckets, but not the general Internet. The bag verifier would reject a fetch file entry that pointed elsewhere. These examples illustrate just how many ways a BagIt bag can be invalid, from simple structural issues to complex edge cases. Remember: the key is to understand your specific needs and requirements. By considering your context – who creates your bags, where they’ll be stored, and how they fit into your wider systems – you can build a validation process to catch the issues that matter to you, while avoiding unnecessary complexity. I can give you my ideas, but only you can build your system. [If the formatting of this post looks odd in your feed reader, visit the original article]

6 hours ago 1 votes
Servers can last a long time

We bought sixty-one servers for the launch of Basecamp 3 back in 2015. Dell R430s and R630s, packing thousands of cores and terabytes of RAM. Enough to fill all the app, job, cache, and database duties we needed. The entire outlay for this fleet was about half a million dollars, and it's only now, almost a decade later, that we're finally retiring the bulk of them for a full hardware refresh. What a bargain! That's over 3,500 days of service from this fleet, at a fully amortized cost of just $142/day. For everything needed to run Basecamp. A software service that has grossed hundreds of millions of dollars in that decade. We've of course had other expenses beyond hardware from operating Basecamp over the past decade. The ops team, the bandwidth, the power, and the cabinet rental across both our data centers. But none the less, owning our own iron has been a fantastically profitable proposition. Millions of dollars saved over renting in the cloud. And we aren't even done deriving value from this venerable fleet! The database servers, Dell R630s w/ Xeon E5-2699 CPUs and 768G of RAM, are getting handed down to some of our heritage apps. They will keep on trucking until they give up the ghost. When we did the public accounting for our cloud exit, it was based on five years of useful life from the hardware. But as this example shows, that's pretty conservative. Most servers can easily power your applications much longer than that. Owning your own servers has easily been one of our most effective cost advantages. Together with running a lean team. And managing our costs remains key to reaping the profitable fruit from the business. The dollar you keep at the end of the year is just as real whether you earn it or save it. So you just might want to run those cloud-exit numbers once more with a longer server lifetime value. It might just tip the equation, and motivate you to become a server owner rather than a renter.

yesterday 4 votes