More from Asterisk
USAID has been slashed, and it is unclear what shape its predecessor will take. How might American foreign assistance be restructured to maintain critical functions? And how should we think about its future?
Every year, AI models get better at thinking. Could they possibly be capable of feeling? And if they are, how would we know?
A conversation about neuroscience, meditation, and the many paths to insight.
A future where life flourishes beyond Earth is closer than you think. How, precisely, will we get there?
More in science
Massive changes in IQ scores over time are much less meaningful than people think
Sydney, Washington DC, Madrid, and more – sign up now
Many things have been happening in and around US science. This is a non-exhaustive list of recent developments and links: There have been very large scale personnel cuts across HHS, FDA, CDC, NIH - see here. This includes groups like the people who monitor lead in drinking water. There is reporting about the upcoming presidential budget requests about NASA and NOAA. The requested cuts are very deep. To quote Eric Berger's article linked above, for the science part of NASA, "Among the proposals were: A two-thirds cut to astrophysics, down to $487 million; a greater than two-thirds cut to heliophysics, down to $455 million; a greater than 50 percent cut to Earth science, down to $1.033 billion; and a 30 percent cut to Planetary science, down to $1.929 billion." The proposed cuts to NOAA are similarly deep, seeking to end climate study in the agency, as Science puts it. The full presidential budget request, including NSF, DOE, NIST, etc. is still to come. Remember, Congress in the past has often essentially ignored presidential budget requests. It is unclear if the will exists to do so now. Speaking of NSF, the graduate research fellowship program award announcements for this year came out this past week. The agency awarded slightly under half as many of these prestigious 3-year fellowships as in each of the last 15 years. I can only presume that this is because the agency is deeply concerned about its budgets for the next couple of fiscal years. Grants are being frozen at several top private universities - these include Columbia (new cancellations), the University of Pennsylvania (here), Harvard (here), Northwestern and Cornell (here), and Princeton (here). There are various law suits filed about all of these. Princeton and Harvard have been borrowing money (issuing bonds) to partly deal with the disruption as litigation continues. The president of Princeton has been more vocal than many about this. There has been a surge in visa revocations and unannounced student status changes in SEVIS for international students in the US. To say that this is unsettling is an enormous understatement. See here for a limited discussion. There seems to be deep reluctance for universities to speak out about this, presumably from the worry that saying the wrong thing will end up placing their international students and scholars at greater exposure. On Friday evening, the US Department of Energy put out a "policy flash", stating that indirect cost rates on its grants would be cut immediately to 15%. This sounds familiar. Legal challenges are undoubtedly beginning. Added bonus: According to the Washington Post, DOGE (whatever they say they are this week) is now in control of grants.gov, the website that posts funding opportunities. As the article says, "Now the responsibility of posting these grant opportunities is poised to rest with DOGE — and if its employees delay those postings or stop them altogether, 'it could effectively shut down federal-grant making,' said one federal official who spoke on the condition of anonymity to describe internal operations." None of this is good news for the future of science and engineering research in the US. If you are a US voter and you think that university-based research is important, I encourage you to contact your legislators and make your opinions heard. (As I have put in my profile, what I write here are my personal opinions; I am not in any way speaking for my employer. That should be obvious, but it never hurts to state it explicitly.)
Last week I wrote about the de-extinction of the dire wolf by a company, Colossal Biosciences. What they did was pretty amazing – sequence ancient dire wolf DNA and use that as a template to make 20 changes to 14 genes in the gray wolf genome via CRISPR. They focused on the genetic changes they […] The post OK – But Are They Dire Wolves first appeared on NeuroLogica Blog.
(A post summarizing recent US science-related events will be coming later. For now, here is my promised post about multiferroics, inspired in part by a recent visit to Rice by Yoshi Tokura.) Electrons carry spins and therefore magnetic moments (that is, they can act in some ways like little bar magnets), and as I was teaching undergrads this past week, under certain conditions some of the electrons in a material can spontaneously develop long-range magnetic order. That is, rather than being, on average, randomly oriented, instead below some critical temperature the spins take on a pattern that repeats throughout the material. In the ordered state, if you know the arrangement of spins in one (magnetic) unit cell of the material, that pattern is repeated over many (perhaps all, if the system is a single domain) the unit cells. In picking out this pattern, the overall symmetry of the material is lowered compared to the non-ordered state. (There can be local moment magnets, when the electrons with the magnetic moments are localized to particular atoms; there can also be itinerant magnets, when the mobile electrons in a metal take on a net spin polarization.) The most famous kind of magnetic order is ferromagnetism, when the magnetic moments spontaneously align along a particular direction, often leading to magnetic fields projected out of the material. Magnetic materials can be metals, semiconductors, or insulators. In insulators, an additional kind of order is possible, based on electric polarization, \(\mathbf{P}\). There is subtlety about defining polarization, but for the purposes of this discussion, the question is whether the atoms within each unit cell bond appropriately and are displaced below some critical temperature to create a net electric dipole moment, leading to ferroelectricity. (Antiferroelectricity is also possible.) Again, the ordered state has lower symmetry than the non-ordered state. Ferroelectric materials have some interesting applications. BiFeO3, a multiferroic antiferromagnet, image from here. Multiferroics are materials that have simultaneous magnetic order and electric polarization order. A good recent review is here. For applications, obviously it would be convenient if both the magnetic and polarization ordering happened well above room temperature. There can be deep connections between the magnetic order and the electric polarization - see this paper, and this commentary. Because of these connections, the low energy excitations of multiferroics can be really complicated, like electromagnons. Similarly, there can be combined "spin textures" and polarization textures in such materials - see here and here. Multiferroics raise the possibility of using applied voltages (and hence electric fields) to flip \(\mathbf{P}\), and thus toggle around \(\mathbf{M}\). This has been proposed as a key enabling capability for information processing devices, as in this approach. These materials are extremely rich, and it feels like their full potential has not yet been realized.