Full Width [alt+shift+f] Shortcuts [alt+shift+k] TRY SIMPLE MODE
Sign Up [alt+shift+s] Log In [alt+shift+l]
22
Children decide early in life to become scientists when they find that topics such as the Pythagorean theorem and the hydrological cycle are more interesting and more important than knowing which state is noted for corn. My childhood was notable for witnessing the launch of the first artificial Earth satellite, Sputnik 1, and the introduction of New Math. It also encompassed the International Geophysical Year (IGY), an international collaboration for Earth science studies from July, 1957 to December, 1958. Fast forward nearly seventy years, and the United Nations proclaimed on June 7, 2024, that the year, 2025, will be the International Year of Quantum Science and Technology (IYQ). Max Planck discovered in 1900 that energy was quantized, a discovery that earned him the 1918 Nobel Prize in Physics. The study of quantum mechanics has lead to many significant applications that include the transistor, semiconductor devices based on quantum tunnelling, sensitive magnetometers, lasers;...
12 months ago

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from Tikalon Blog by Dev Gualtieri

Tikalon Blog Archive

Tikalon Blog is now in archive mode. Here's a directory of links to easily printed and saved articles. If you're willing to wait a while for the download, a zip file of all the blog articles can be found at the link below. Note, however, that these articles are copyrighted and can't be used to train artificial intelligent agents. Individuals are free to republish single articles on their personal websites.

10 months ago 38 votes
Spiderweb Microphone

Microphones convert sound into an electrical signal for subsequent amplification, as in auditorium public address systems; or transmission, as in landline and mobile phones. The most common types of microphones are carbon, used in early telephones, condenser, electret, dynamic, ribbon, crystal and MEMS. All these microphones operate as transducers that convert sound pressure into an electrical signal. This makes them also sensitive to noise caused by air molecules bouncing against their diaphragms. In an effort to solve this thermal noise problem, a team of mechanical engineers has investigated a sound sensing approach that uses viscous air flow rather than sound pressure. Viscous flow is what vibrates spiderwebs in gentle breezes. Air flow passing a thread of a spiderweb drags the thread. They demonstrated sound detection by a simulated spiderweb, an array of thin cantilever beams. The beams were 0.5 micrometer thick silicon nitride placed over a hole in a silicon wafer, and a laser was used to measure the displacement of the microbeams, first in response to thermal noise, and then in response to sound waves from 100 to 1000 Hz. The cantilever velocity matched that of the sound wave, irrespective of the length or width of the beam. The demonstrated cantilever microphone is about 50 dBa less sensitive than the best pressure-based microphones; but, pressure microphones have been perfected over a span of 150 years. As the lead author of the paper comments, "Detecting air flow as a way to sense sound has largely been ignored by researchers, but the principles show that it's worth considering."

11 months ago 39 votes
Adornment

"Form follows function" is a maxim that an object's shape and appearance should be defined only by its purpose or function. A quick perusal of any antique shop will show that this maxim is generally ignored. Humans (Homo sapiens) have been called "naked apes," but we and our close species cousins quickly adopted the concept of wearing the fur skins of animals for protection. Our ancestors were likely much more interested in how they would obtain their next meal than how stylish they appeared in hyena fur. As human culture progressed, people desired to distinguish themselves from others; and, what could be an easier way to do that than through dress. This is accomplished by the simple technique of dyeing drab natural fibers, but the simple sewing needle is a technical innovation that's lead to a means of producing more ornate dress. A recent open access article in Science Advances investigates the use of delicate eyed needles in the Paleolithic as the means for producing refined, ornamented dress. One argument for clothing's becoming a means of decoration is that traditional body decoration, such as body painting with ochre, weren't effective in cold climates, since clothing was needed all the time for survival. Homo sapiens arrived in Europe at around 45,000 BC, and the earliest known eyed needles appeared in Siberia around 40,000 BC, in the Caucasus around 38,000 BC, in West Asia around 30,000 BC, and in Europe around 26,000 BC. Clothing the human body regardless of climate is a social practice that's persisted to this day. The eyed needle combined the processes of hole puncture and threading to allow finer and more efficient sewing.

11 months ago 35 votes
Brain Size

Deep thought is what distinguishes humans from other animals. The brain is the medium for thought; so, there's the idea that brain size is important, with larger brains allowing more profound thought. Larger brains in hominids appears to have an evolutionary advantage, but the largest animals do not have proportionally larger brains. For the last century, conventional wisdom was that body mass in mammals could be described by a power law. A British research team has created a large dataset of brain and body sizes from about 1,500 species to determine the trend in brain size evolution, finding that the trend is brain size and body mass is not log-linear, but rather log-curvilinear, plateauing at high body mass. The research team found that all groups of mammals demonstrated rapid bursts of evolutionary change, not only towards larger brain size, but smaller as well. Bats very rapidly reduced their brain size, suggesting that flight may have imposed an evolutionary constraint. Homo sapiens has evolved more than twenty times faster than all other mammalian species, resulting in the massive brain size of modern man. Primates, rodents, and carnivores show a tendency for increase in relative brain size as they evolved. It appears that there is something preventing brains from getting too big, perhaps because big brains beyond a certain size are simply too costly to maintain. This upper limit of brain size applies to animals with very different biology.

11 months ago 30 votes
Ice Formation

In today's bigger is better world, you don't order a large coffee, you order a 20 fluid ounce Venti coffee. From 1987 through 2004, McDonald's restaurants had a supersize option for larger than large portions of its French fries and soft drinks. The prefix, super, has been used to describe supercooling, the unexpected cooling without a phase change when liquids can be cooled below their freezing points without solidifying. Water has many unusual properties, and these are most probably the result of water molecule being small, and the force holding these molecules together in a liquid or solid arising from hydrogen bonding. Supercooled water is a hazard to aviation, since supercooled water droplets often existing in cumulus and stratus clouds will instantly freeze on aircraft surfaces and plug the Pitot tubes that indicate airspeed. It's easy to create supercooled water in the laboratory. You just need to purify the water to remove contained minerals. The mineral crystals act as nucleation sites. Bacteria and fungi are efficient natural ice nucleators because of the way their proteins act as ice templates. The best such natural ice nucleators the Pseudomonas syringae bacterium, which is used to make artificial snow. Larger protein molecules are usually better at ice nucleation, but small fungal proteins are good at ice nucleation when they clump into larger aggregates. Scientists at the University of Utah have developed a model for prediction of the nucleation temperature of ice on a given surface. Model parameters include the shapes of surface defects, and appropriately sized and shaped surface bumps and depressions can squeeze water molecules into configurations that make it easier or harder for ice to form.

11 months ago 25 votes

More in science

Brief items - Static electricity, quantum geometry, Hubbard model, + news

It's been a busy time that has cut into my blogging, but I wanted to point out some links from the past couple of weeks. Physics Today has a cover article this past issue about what is colloquially known as static electricity, but what is more technically described as triboelectricity, the transfer of charge between materials by rubbing.  I just wrote about this six months ago, and the detailed mechanisms remain poorly understood.  Large surface charge densities (like \(10^{12}\) electronic charges per square cm) can be created this way on insulators, leading to potential differences large enough to jump a spark from your finger to the door handle.  This can also lead to static electric fields near surfaces that are not small and can reveal local variations in material properties. That leads right into this paper (which I learned about from here) about the extreme shapes of the heads of a family of insects called treehoppers.  These little crawlies have head and body shapes that often have cuspy, pointy bits that stick out - spines, horns, etc.  As we learn early on about electrostatics, elongated and pointy shapes tend to lead to large local electric fields and field gradients.  The argument of this paper is that the spiky body and cranial morphology can help these insects better sense electric field distributions, and this makes it easier for them to find their way and avoid predators.  This manuscript on the arXiv this week is a particularly nice, pedagogical review article (formatted for Rev Mod Phys) about quantum geometry and Berry curvature in condensed matter systems.  I haven't had the chance to read it through, but I think this will end up being very impactful and a true resource for students to learn about these topics. Another very pretty recent preprint is this one, which examines the electronic phase diagram of twisted bilayers of WSe2, with a relative twist angle of 4.6°.  Much attention has been paid to the idea that moiré lattices can be in a regime seemingly well described by a Hubbard-like model, with an on-site Coulomb repulsion energy \(U\) and an electronic bandwidth \(W\).  This paper shows an exceptionally clean example of this, where disorder seems to be very weak, electron temperatures are quite cold, and phase diagrams are revealed that look remarkably like the phenomena seen in the cuprate superconductors (superconducting "domes" as a function of charge density adjacent to antiferromagnetic insulating states, and with "strange metal" linear-in-\(T\) resistance in the normal state near the superconducting charge density).  Results like this make me more optimistic about overcoming some of the major challenges in using twisted van der Waals materials as simulators of hard-to-solve hamilitonians. I was all set to post this earlier today, with no awful news for once about science in the US that I felt compelled to discuss, but I got sidetracked by real work.  Then, late this afternoon, this executive order about federal grants was released.   I can't sugar coat it - it's awful.  Ignoring a large volume of inflammatory rhetoric, it contains this gem, for instance:  "The grant review process itself also undermines the interests of American taxpayers."   It essentially tries to bar any new calls for proposals until a new (and problematic) process is put in place at every agency (see Sect. 3(c)).  Also, it says "All else being equal, preference for discretionary awards should be given to institutions with lower indirect cost rates."  Now, indirect cost rates are set by negotiations between institutions and the government.   Places that only do very small volumes of research have low rates, so get ready for MIT to get fewer grants and Slippery Rock University to get more.  The only certainty is that the nation's lawyers are going to have a field day with all the suits that will come out of this.

15 hours ago 4 votes
A 1-Day Virtual Symposium on Future of Astronomy

For those of you with a deeper interest in astronomy and how we learn about the universe, this may be of interest.  There is a good discount if you register before Aug. 10. The Astronomical Society of the Pacific Presents: Eyes on the Cosmos: Cutting Edge Instruments and Ideas in Astronomy On Zoom, August 21, […] The post A 1-Day Virtual Symposium on Future of Astronomy appeared first on Andrew Fraknoi - Astronomy Lectures - Astronomy Education Resources.

10 hours ago 3 votes
As Fire Season Ramps Up, Thousands of U.S. Firefighting Positions Are Vacant

Every spring, Forest Service fire leaders meet to plan for the upcoming fire season. This year, some employees were shocked by the blunt remarks made during a meeting with forest supervisors and fire staff officers from across the Intermountain West. “We were told, ‘Help is not on the way,’” said one employee, who asked to remain anonymous for fear of losing their job. “I’ve never been told that before.”  Read more on E360 →

6 hours ago 2 votes
‘It’s a Mess’: A Brain-Bending Trip to Quantum Theory’s 100th Birthday Party

Hundreds of physicists (and a few journalists) journeyed to Helgoland, the birthplace of quantum mechanics, and grappled with what they have and haven’t learned about reality. The post ‘It’s a Mess’: A Brain-Bending Trip to Quantum Theory’s 100th Birthday Party first appeared on Quanta Magazine

an hour ago 1 votes