More from ntietz.com blog - technically a blog
I've been publishing at least one blog post every week on this blog for about 2.5 years. I kept it up even when I was very sick last year with Lyme disease. It's time for me to take a break and reset. This is the right time, because the world is very difficult for me to move through right now and I'm just burnt out. I need to focus my energy on things that give me energy and right now, that's not writing and that's not tech. I'll come back to this, and it might look a little different. This is my last post for at least a month. It might be longer, if I still need more time, but I won't return before the end of May. I know I need at least that long to heal, and I also need that time to focus on music. I plan to play a set at West Philly Porchfest, so this whole month I'll be prepping that set. If you want to follow along with my music, you can find it on my bandcamp (only one track, but I'll post demos of the others that I prepare for Porchfest as they come together). And if you want to reach out, my inbox is open. Be kind to yourself. Stay well, drink some water. See you in a while.
A few months ago, I was talking with a friend about my ergonomic setup and they asked if being vertical helps it with cooling. I wasn't sure, because it seems like it could help but it was probably such a small difference that it wouldn't matter. So, I did what any self-respecting nerd would do: I procrastinated. The question didn't leave me, though, so after those months passed, I did the second thing any self-respecting nerd would do: benchmarks. The question and the setup What we want to find out is whether or not the position of the laptop would affect its CPU performance. I wanted to measure it in three positions: normal: using it the way any normal person uses their laptop, with the screen and keyboard at something like a 90-degree angle closed: using it like a tech nerd, closed but plugged into a monitor and peripherals vertical: using it like a weird blogger who has sunk a lot of time into her ergonomic setup and wants to justify it even further My hypothesis was that using it closed would slightly reduce CPU performance, and that using it normal or vertical would be roughly the same. For this experiment, I'm using my personal laptop. It's one of the early Framework laptops (2nd batch of shipments) which is about four years old. It has an 11th gen Intel CPU in it, the i7-1165G7. My laptop will be sitting on a laptop riser for the closed and normal positions, and it will be sitting in my ergonomic tray for the vertical one. For all three, it will be connected to the same set of peripherals through a single USB-C cable, and the internal display is disabled for all three. Running the tests I'm not too interested in the initial boost clock. I'm more interested in what clock speeds we can sustain. What happens under a sustained, heavy load, when we hit a saturation point and can't shed any more heat? To test that, I'm doing a test using heavy CPU load. The load is generated by stress-ng, which also reports some statistics. Most notably, it reports CPU temperatures and clock speeds during the tests. Here's the script I wrote to make these consistent. To skip the boost clock period, I warm it up first with a 3-minute load Then I do a 5-minute load and measure the CPU clock frequency and CPU temps every second along the way. #!/bin/bash # load the CPU for 3 minutes to warm it up sudo stress-ng --matrix $2 -t 3m --tz --raplstat 1 --thermalstat 1 -Y warmup-$1.yaml --log-file warmup-$1.log --timestamp --ignite-cpu # run for 5 minutes to gather our averages sudo stress-ng --matrix $2 -t 5m --tz --raplstat 1 --thermalstat 1 -Y cputhermal-$1.yaml --log-file cputhermal-$1.log --timestamp --ignite-cpu We need sudo since we're using an option (--ignite-cpu) which needs root privileges[1] and attempts to make the CPU run harder/hotter. Then we specify the stressor we're using with --matrix $2, which does some matrix calculations over a number of cores we specify. The remaining options are about reporting and logging. I let the computer cool for a minute or two between each test, but not for a scientific reason. Just because I was doing other things. Since my goal was to saturate the temperatures, and they got stable within each warmup period, cooldowh time wasn't necessary—we'd warm it back up anyway. So, I ran this with the three positions, and with two core count options: 8, one per thread on my CPU; and 4, one per physical core on my CPU. The results Once it was done, I analyzed the results. I took the average clock speed across the 5 minute test for each of the configurations. My hypothesis was partially right and partially wrong. When doing 8 threads, each position had different results: Our baseline normal open position had an average clock speed of 3.44 GHz and an average CPU temp of 91.75 F. With the laptop closed, the average clock speed was 3.37 GHz and the average CPU temp was 91.75 F. With the laptop open vertical, the average clock speed was 3.48 GHz and the average CPU temp was 88.75 F. With 4 threads, the results were: For the baseline normal open position, the average clock speed was 3.80 GHz with average CPU temps of 91.11 F. With the laptop closed, the average clock speed was 3.64 GHz with average CPU temps of 90.70 F. With the laptop open vertical, the average clock speed was 3.80 GHz with average CPU temps of 86.07 F. So, I was wrong in one big aspect: it does make a clearly measurable difference. Having it open and vertical reduces temps by 3 degrees in one test and 5 in the other, and it had a higher clock speed (by 0.05 GHz, which isn't a lot but isn't nothing). We can infer that, since clock speeds improved in the heavier load test but not in the lighter load test, that the lighter load isn't hitting our thermal limits—and when we do, the extra cooling from the vertical position really helps. One thing is clear: in all cases, the CPU ran slower when the laptop was closed. It's sorta weird that the CPU temps went down when closed in the second test. I wonder if that's from being able to cool down more when it throttled down a lot, or if there was a hotspot that throttled the CPU but which wasn't reflected in the temp data, maybe a different sensor. I'm not sure if having my laptop vertical like I do will ever make a perceptible performance difference. At any rate, that's not why I do it. But it does have lower temps, and that should let my fans run less often and be quieter when they do. That's a win in my book. It also means that when I run CPU-intensive things (say hi to every single Rust compile!) I should not close the laptop. And hey, if I decide to work from my armchair using my ergonomic tray, I can argue it's for efficiency: boss, I just gotta eke out those extra clock cycles. I'm not sure that this made any difference on my system. I didn't want to rerun the whole set without it, though, and it doesn't invalidate the tests if it simply wasn't doing anything. ↩
The scene: you're on call for a web app, and your pager goes off. Denial. No no no, the app can't be down. There's no way it's down. Why would it be down? It isn't down. Sure, my pager went off. And sure, the metrics all say it's down and the customer is complaining that it's down. But it isn't, I'm sure this is all a misunderstanding. Anger. Okay so it's fucking down. Why did this have to happen on my on-call shift? This is so unfair. I had my dinner ready to eat, and *boom* I'm paged. It's the PM's fault for not prioritizing my tech debt, ugh. Bargaining. Okay okay okay. Maybe... I can trade my on-call shift with Sam. They really know this service, so they could take it on. Or maybe I can eat my dinner while we respond to this... Depression. This is bad, this is so bad. Our app is down, and the customer knows. We're totally screwed here, why even bother putting it back up? They're all going to be mad, leave, the company is dead... There's not even any point. Acceptance. You know, it's going to be okay. This happens to everyone, apps go down. We'll get it back up, and everything will be fine.
After I put up a post about a Python gotcha, someone remarked that "there are very few interpreted languages in common usage," and that they "wish Python was more widely recognized as a compiled language." This got me thinking: what is the distinction between a compiled or interpreted language? I was pretty sure that I do think Python is interpreted[1], but how would I draw that distinction cleanly? On the surface level, it seems like the distinction between compiled and interpreted languages is obvious: compiled languages have a compiler, and interpreted languages have an interpreter. We typically call Java a compiled language and Python an interpreted language. But on the inside, Java has an interpreter and Python has a compiler. What's going on? What's an interpreter? What's a compiler? A compiler takes code written in one programming language and turns it into a runnable thing. It's common for this to be machine code in an executable program, but it can also by bytecode for VM or assembly language. On the other hand, an interpreter directly takes a program and runs it. It doesn't require any pre-compilation to do so, and can apply a variety of techniques to achieve this (even a compiler). That's where the distinction really lies: what you end up running. An interpeter runs your program, while a compiler produces something that can run later[2] (or right now, if it's in an interpreter). Compiled or interpreted languages A compiled language is one that uses a compiler, and an interpreted language uses an interpreter. Except... many languages[3] use both. Let's look at Java. It has a compiler, which you feed Java source code into and you get out an artifact that you can't run directly. No, you have to feed that into the Java virtual machine, which then interprets the bytecode and runs it. So the entire Java stack seems to have both a compiler and an interpreter. But it's the usage, that you have to pre-compile it, that makes it a compiled language. And similarly is Python[4]. It has an interpreter, which you feed Python source code into and it runs the program. But on the inside, it has a compiler. That compiler takes the source code, turns it into Python bytecode, and then feeds that into the Python virtual machine. So, just like Java, it goes from code to bytecode (which is even written to the disk, usually) and bytecode to VM, which then runs it. And here again we see the usage, where you don't pre-compile anything, you just run it. That's the difference. And that's why Python is an interpreted language with a compiler! And... so what? Ultimately, why does it matter? If I can do cargo run and get my Rust program running the same as if I did python main.py, don't they feel the same? On the surface level, they do, and that's because it's a really nice interface so we've adopted it for many interactions! But underneath it, you see the differences peeping out from the compiled or interpreted nature. When you run a Python program, it will run until it encounters an error, even if there's malformed syntax! As long as it doesn't need to load that malformed syntax, you're able to start running. But if you cargo run a Rust program, it won't run at all if it encounters an error in the compilation step! It has to run the entire compilation process before the program will start at all. The difference in approaches runs pretty deep into the feel of an entire toolchain. That's where it matters, because it is one of the fundamental choices that everything else is built around. The words here are ultimately arbitrary. But they tell us a lot about the language and tools we're using. * * * Thank you to Adam for feedback on a draft of this post. It is worth occasionally challenging your own beliefs and assumptions! It's how you grow, and how you figure out when you are actually wrong. ↩ This feels like it rhymes with async functions in Python. Invoking a regular function runs it immediately, while invoking an async function creates something which can run later. ↩ And it doesn't even apply at the language level, because you could write an interpreter for C++ or a compiler for Hurl, not that you'd want to, but we're going to gloss over that distinction here and just keep calling them "compiled/interpreted languages." It's how we talk about it already, and it's not that confusing. ↩ Here, I'm talking about the standard CPython implementation. Others will differ in their details. ↩
I got a new-to-me keyboard recently. It was my brother's in school, but he doesn't use it anymore, so I set it up in my office. It's got 61 keys and you can hook up a pedal to it, too! But when you hook it up to the computer, you can't type with it. I mean, that's expected—it makes piano and synth noises mostly. But what if you could type with it? Wouldn't that be grand? (Ha, grand, like a pian—you know, nevermind.) How do you type on a keyboard? Or more generally, how do you type with any MIDI device? I also have a couple of wind synths and a MIDI drum pad, can I type with those? The first and most obvious idea is to map each key to a letter. The lowest key on the keyboard could be 'a'[1], etc. This kind of works for a piano-style keyboard. If you have a full size keyboard, you get 88 keys. You can use 52 of those for the letters you need for English[2] and 10 for digits. Then you have 26 left. That's more than enough for a few punctuation marks and other niceties. It only kind of works, though, because it sounds pretty terrible. You end up making melodies that don't make a lot of sense, and do not stay confined to a given key signature. Plus, this assumes you have an 88 key keyboard. I have a 61 key keyboard, so I can't even type every letter and digit! And if I want to write some messages using my other instruments, I'll need something that works on those as well. Although, only being able to type 5 letters using my drums would be pretty funny... Melodic typing The typing scheme I settled on was melodic typing. When you write your message, it should correspond to a similarly beautiful[3] melody. Or, conversely, when you play a beautiful melody it turns into some text on your computer. The way we do this is we keep track of sequences of notes. We start with our key, which will be the key of C, the Times New Roman of key signatures. Then, each note in the scale is has its scale degree: C is 1, D is 2, etc. until B is 7. We want to use scale degree, so that if we jam out with others, we can switch to the appropriate key and type in harmony with them. Obviously. We assign different computer keys to different sequences of these scale degrees. The first question is, how long should our sequences be? If we have 1-note sequences, then we can type 7 keys. Great for some very specific messages, but not for general purpose typing. 2-note sequences would give us 49 keys, and 3-note sequences give us 343. So 3 notes is probably enough, since it's way more than a standard keyboard. But could we get away with the 49? (Yes.) This is where it becomes clear why full Unicode support would be a challenge. Unicode has 155,063 characters (according to wikipedia). To represent the full space, we'd need at least 7 notes, since 7^7 is 823,543. You could also use a highly variable encoding, which would make some letters easy to type and others very long-winded. It could be done, but then the key mapping would be even harder to learn... My first implementation used 3-note sequences, but the resulting tunes were... uninspiring, to say the least. There was a lot of repetition of particular notes, which wasn't my vibe. So I went back to 2-note sequences, with a pared down set of keys. Instead of trying to represent both lowercase and uppercase letters, we can just do what keyboards do, and represent them using a shift key[4]. My final mapping includes the English alphabet, numerals 0 to 9, comma, period, exclamation marks, spaces, newlines, shift, backspace, and caps lock—I mean, obviously we're going to allow constant shouting. This lets us type just about any message we'd want with just our instrument. And we only used 44 of the available sequences, so we could add even more keys. Maybe one of those would shift us into a 3-note sequence. The key mapping The note mapping I ended up with is available in a text file in the repo. This mapping lets you type anything you'd like, as long as it's English and doesn't use too complicated of punctuation. No contractions for you, and—to my chagrin—no em dashes either. The key is pretty helpful, but even better is a dynamic key. When I was trying this for the first time, I had two major problems: I didn't know which notes would give me the letter I wanted I didn't know what I had entered so far (sometimes you miss a note!) But we can solve this with code! The UI will show you which notes are entered so far (which is only ever 1 note, for the current typing scheme), as well as which notes to play to reach certain keys. It's basically a peek into the state machine behind what you're typing! An example: "hello world" Let's see this in action. As all programmers, we're obligated by law to start with "hello, world." We can use our handy-dandy cheat sheet above to figure out how to do this. "Hello, world!" uses a pesky capital letter, so we start with a shift. C C Then an 'h'. D F Then we continue on for the rest of it and get: D C E C E C E F A A B C F G E F E B E C C B A B Okay, of course this will catch on! Here's my honest first take of dooting out those notes from the translation above. Hello, world! I... am a bit disappointed, because it would have been much better comedy if it came out like "HelLoo wrolb," but them's the breaks. Moving on, though, let's make this something musical. We can take the notes and put a basic rhythm on them. Something like this, with a little swing to it. By the magic of MIDI and computers, we can hear what this sounds like. maddie marie · Hello, world! (melody) Okay, not bad. But it's missing something... Maybe a drum groove... maddie marie · Hello, world! (w/ drums) Oh yeah, there we go. Just in time to be the song of the summer, too. And if you play the melody, it enters "Hello, world!" Now we can compose music by typing! We have found a way to annoy our office mates even more than with mechanical keyboards[5]! Other rejected neglected typing schemes As with all great scientific advancements, other great ideas were passed by in the process. Here are a few of those great ideas we tried but had to abandon, since we were not enough to handle their greatness. A chorded keyboard. This would function by having the left hand control layers of the keyboard by playing a chord, and then the right hand would press keys within that layer. I think this one is a good idea! I didn't implement it because I don't play piano very well. I'm primarily a woodwind player, and I wanted to be able to use my wind synth for this. Shift via volume! There's something very cathartic about playing loudly to type capital letters and playing quietly to print lowercase letters. But... it was pretty difficult to get working for all instruments. Wind synths don't have uniform velocity (the MIDI term for how hard the key was pressed, or how strong breath was on a wind instrument), and if you average it then you don't press the key until after it's over, which is an odd typing experience. Imagine your keyboard only entering a character when you release it! So, this one is tenable, but more for keyboards than for wind synths. It complicated the code quite a bit so I tossed it, but it should come back someday. Each key is a key. You have 88 keys on a keyboard, which definitely would cover the same space as our chosen scheme. It doesn't end up sounding very good, though... Rhythmic typing. This is the one I'm perhaps most likely to implement in the future, because as we saw above, drums really add something. I have a drum multipad, which has four zones on it and two pedals attached (kick drum and hi-hat pedal). That could definitely be used to type, too! I am not sure the exact way it would work, but it might be good to quantize the notes (eighths or quarters) and then interpret the combination of feet/pads as different letters. I might take a swing at this one sometime. Please do try this at home I've written previously about how I was writing the GUI for this. The GUI is now available for you to use for all your typing needs! Except the ones that need, you know, punctuation or anything outside of the English alphabet. You can try it out by getting it from the sourcehut repo (https://git.sr.ht/~ntietz/midi-keys). It's a Rust program, so you run it with cargo run. The program is free-as-in-mattress: it's probably full of bugs, but it's yours if you want it. Well, you have to comply with the license: either AGPL or the Gay Agenda License (be gay, do crime[6]). If you try it out, let me know how it goes! Let me know what your favorite pieces of music spell when you play them on your instrument. Coincidentally, this is the letter 'a' and the note is A! We don't remain so fortunate; the letter 'b' is the note A#. ↩ I'm sorry this is English only! But, you could to the equivalent thing for most other languages. Full Unicode support would be tricky, I'll show you why later in the post. ↩ My messages do not come out as beautiful melodies. Oops. Perhaps they're not beautiful messages. ↩ This is where it would be fun to use an organ and have the lower keyboard be lowercase and the upper keyboard be uppercase. ↩ I promise you, I will do this if you ever make me go back to working in an open office. ↩ For any feds reading this: it's a joke, I'm not advocating people actually commit crimes. What kind of lady do you think I am? Obviously I'd never think that civil disobedience is something we should do, disobeying unjust laws, nooooo... I'm also never sarcastic. ↩
More in programming
<![CDATA[DandeGUI now does graphics and this is what it looks like. Some text and graphics output windows created with DandeGUI on Medley Interlisp. In addition to the square root table text output demo, I created the other graphics windows with the newly implemented functionality. For example, this code draws the random circles of the top window: (DEFUN RANDOM-CIRCLES (&KEY (N 200) (MAX-R 50) (WIDTH 640) (HEIGHT 480)) (LET ((RANGE-X (- WIDTH ( 2 MAX-R))) (RANGE-Y (- HEIGHT ( 2 MAX-R))) (SHADES (LIST IL:BLACKSHADE IL:GRAYSHADE (RANDOM 65536)))) (DANDEGUI:WITH-GRAPHICS-WINDOW (STREAM :TITLE "Random Circles") (DOTIMES (I N) (DECLARE (IGNORE I)) (IL:FILLCIRCLE (+ MAX-R (RANDOM RANGE-X)) (+ MAX-R (RANDOM RANGE-Y)) (RANDOM MAX-R) (ELT SHADES (RANDOM 3)) STREAM))))) GUI:WITH-GRAPHICS-WINDOW, GUI:OPEN-GRAPHICS-STREAM, and GUI:WITH-GRAPHICS-STREAM are the main additions. These functions and macros are the equivalent for graphics of what GUI:WITH-OUTPUT-TO-WINDOW, GUI:OPEN-WINDOW-STREAM, and GUI:WITH-WINDOW-STREAM, respectively, do for text. The difference is the text facilities send output to TEXTSTREAM streams whereas the graphics facilities to IMAGESTREAM, a type of device-independent graphics streams. Under the hood DandeGUI text windows are customized TEdit windows with an associated TEXTSTREAM. TEdit is the rich text editor of Medley Interlisp. Similarly, the graphics windows of DandeGUI run the Sketch line drawing editor under the hood. Sketch windows have an IMAGESTREAM which Interlisp graphics primitives like IL:DRAWLINE and IL:DRAWPOINT accept as an output destination. DandeGUI creates and manages Sketch windows with the type of stream the graphics primitives require. In other words, IMAGESTREAM is to Sketch what TEXTSTREAM is to TEdit. The benefits of programmatically using Sketch for graphics are the same as TEdit windows for text: automatic window repainting, scrolling, and resizing. The downside is overhead. Scrolling more than a few thousand graphics elements is slow and adding even more may crash the system. However, this is an acceptable tradeoff. The new graphics functions and macros work similarly to the text ones, with a few differences. First, DandeGUI now depends on the SKETCH and SKETCH-STREAM library modules which it automatically loads. Since Sketch has no notion of a read-only drawing area GUI:OPEN-GRAPHICS-STREAM achieves the same effect by other means: (DEFUN OPEN-GRAPHICS-STREAM (&KEY (TITLE "Untitled")) "Open a new window and return the associated IMAGESTREAM to send graphics output to. Sets the window title to TITLE if supplied." (LET ((STREAM (IL:OPENIMAGESTREAM '|Untitled| 'IL:SKETCH '(IL:FONTS ,DEFAULT-FONT*))) (WINDOW (IL:\\SKSTRM.WINDOW.FROM.STREAM STREAM))) (IL:WINDOWPROP WINDOW 'IL:TITLE TITLE) ;; Disable left and middle-click title bar menu (IL:WINDOWPROP WINDOW 'IL:BUTTONEVENTFN NIL) ;; Disable sketch editing via right-click actions (IL:WINDOWPROP WINDOW 'IL:RIGHTBUTTONFN NIL) ;; Disable querying the user whether to save changes (IL:WINDOWPROP WINDOW 'IL:DONTQUERYCHANGES T) STREAM)) Only the mouse gestures and commands of the middle-click title bar menu and the right-click menu change the drawing area interactively. To disable these actions GUI:OPEN-GRAPHICS-STREAM removes their menu handlers by setting to NIL the window properties IL:BUTTONEVENTFN and IL:RIGHTBUTTONFN. This way only programmatic output can change the drawing area. The function also sets IL:DONTQUERYCHANGES to T to prevent querying whether to save the changes at window close. By design output to DandeGUI windows is not permanent, so saving isn't necessary. GUI:WITH-GRAPHICS-STREAM and GUI:WITH-GRAPHICS-WINDOW are straightforward: (DEFMACRO WITH-GRAPHICS-STREAM ((VAR STREAM) &BODY BODY) "Perform the operations in BODY with VAR bound to the graphics window STREAM. Evaluates the forms in BODY in a context in which VAR is bound to STREAM which must already exist, then returns the value of the last form of BODY." `(LET ((,VAR ,STREAM)) ,@BODY)) (DEFMACRO WITH-GRAPHICS-WINDOW ((VAR &KEY TITLE) &BODY BODY) "Perform the operations in BODY with VAR bound to a new graphics window stream. Creates a new window titled TITLE if supplied, binds VAR to the IMAGESTREAM associated with the window, and executes BODY in this context. Returns the value of the last form of BODY." `(WITH-GRAPHICS-STREAM (,VAR (OPEN-GRAPHICS-STREAM :TITLE (OR ,TITLE "Untitled"))) ,@BODY)) Unlike GUI:WITH-TEXT-STREAM and GUI:WITH-TEXT-WINDOW, which need to call GUI::WITH-WRITE-ENABLED to establish a read-only environment after every output operation, GUI:OPEN-GRAPHICS-STREAM can do this only once at window creation. GUI:CLEAR-WINDOW, GUI:WINDOW-TITLE, and GUI:PRINT-MESSAGE now work with graphics streams in addition to text streams. For IMAGESTREAM arguments GUI:PRINT-MESSAGE prints to the system prompt window as Sketch stream windows have no prompt area. The random circles and fractal triangles graphics demos round up the latest additions. #DandeGUI #CommonLisp #Interlisp #Lisp a href="https://remark.as/p/journal.paoloamoroso.com/adding-graphics-support-to-dandegui"Discuss.../a Email | Reply @amoroso@oldbytes.space !--emailsub--]]>
By the end of 1995, the web moved outward and into the hands of everyone. The post Exploring the web in 1995 appeared first on The History of the Web.
The Copenhagen International School is a wonderful private school located in the North Harbor of the city. It's home to over 900 students from around the world. This is where ambassadors, international executives, and other expats send their kids to get a great education in English while stationed in Denmark. As a result, it's perhaps the most diverse, inclusive school in all of Copenhagen. Lovely. What's less lovely is the fact that CIS seems to have caught some of the same gender-ideology obsession that has ravaged many schools in America. We thought Copenhagen would offer a respite from the woke nonsense that's been plaguing California — where some schools in our social circle ended up with a quarter or more of the student body identifying as trans or gender nonconformative — but it seems ideological contagions travel as fast as airplanes these days. It started last week, when the primary school, which includes kindergarten, declared its intention to spend every morning meeting for the entire week focused on gender dysphoria, transgenderism, they/them pronoun protocols, and coloring pride flags. That just sounded a bit odd and a bit much at first, but after reviewing the associated material, it actually looked downright devious. Just look at this example: Draw yourself in the mirror, then adorn it with trans colors? And the guiding example is a boy who sees himself as a girl? As you can imagine, many parents at the school were mortified by the idea of their children participating in this kind of overt indoctrination activities, and some of them let the school know. That's when the revisions started rolling out. First, the program was revised to no longer apply to kindergarten and first grade, just second through fifth. Then the "draw yourself in the mirror and use trans colors to decorate it" activity was pulled from the program. Then the schedule was reduced from all week to just a single session this Monday while the rest of the material is being "reconsidered". And that's where it stands today. But that's not all. After talking to a number of other parents, I learned that CIS has other highly objectionable programs in this sphere. Like "Gender and Sexuality Alliances" where primary school students in G3-5, meaning kids as young as eight, are invited to join in lunch and recess meetings to talk more about gender, sexuality, and how to become a good ally to the 2SLGBTQIA+ community. According to one parent I spoke to (who's considering pulling their kids out over this), CIS hasn't wanted to disclose all specifics about the staff conducting these lunch and recess meetings with the children. Because while it's billed as "student led" on their website, the sessions are actually facilitated by CIS staff on campus. I've asked the same question of the school administration, including what qualifications these individuals might have, and have not received an answer either. But ultimately, it shouldn't even matter, because this shouldn't even be happening! There's simply no responsible explanation for having kids as young as eight, or even as old as 11, in lunch and recess meetings with CIS staff to discuss gender and sexuality on school campus. It's preposterous, if not outright creepy. The school's mission is no cover either. The commitment to an inclusive school does not offer a license to indulge in this kind of overt indoctrination or inappropriate lunch meetings where minors discuss gender and sexuality with school staff. And it has to stop. CIS, like any other school, should not be a subsidiary of any specific interest organization. We don't want our kids to get their information about climate change from either Extinction Rebellion or fossil-fuel lobbyists. We expect our school to stay politically neutral on the international conflicts, like the one in Gaza. In higher grades where these topics are appropriate, they should be discussed in a context that also includes things like the Cass Review and the recent UK Supreme Court ruling. It's the same reason Copenhagen Pride Week saw a massive loss of sponsorship after trying to cajole major companies into a position on Gaza last year. Novo, Maersk, Google, and many others rejected this organization (and they're not returning this year either) for their partisan politics. It's bizarre that those same companies now have the children of their employees programmed by this organization's agenda at school. CIS needs to return to its high-level mission of focusing on giving kids an excellent education, teaching them objectively about the world, and upholding general standards for kindness and caring. Not coloring partisan flags during school programs, not facilitating inappropriate meeting forums about gender and sexuality between staff and children.
OH: It’s just JavaScript, right? I know JavaScript. My coworker who will inevitably spend the rest of the day debugging an electron issue — @jonkuperman.com on BlueSky “It’s Just JavaScript!” is probably a phrase you’ve heard before. I’ve used it myself a number of times. It gets thrown around a lot, often to imply that a particular project is approachable because it can be achieved writing the same, ubiquitous, standardized scripting language we all know and love: JavaScript. Take what you learned moving pixels around in a browser and apply that same language to running a server and querying a database. You can do both with the same language, It’s Just JavaScript! But wait, what is JavaScript? Is any code in a .js file “Just JavaScript”? Let’s play a little game I shall call: “Is It JavaScript?” Browser JavaScript let el = document.querySelector("#root"); window.location = "https://jim-nielsen.com"; That’s DOM stuff, i.e. browser APIs. Is it JavaScript? “If it runs in the browser, it’s JavaScript” seems like a pretty good rule of thumb. But can you say “It’s Just JavaScript” if it only runs in the browser? What about the inverse: code that won’t run in the browser but will run elsewhere? Server JavaScript const fs = require('fs'); const content = fs.readFileSync('./data.txt', 'utf8'); That will run in Node — or something with Node compatibility, like Deno — but not in the browser. Is it “Just JavaScript”? Environment Variables It’s very possible you’ve seen this in a .js file: const apiUrl = process.env.API_URL; But that’s following a Node convention which means that particular .js file probably won’t work as expected in a browser but will on a server. Is it “Just JavaScript” if executes but will only work as expected with special knowledge of runtime conventions? JSX What about this file MyComponent.js function MyComponent() { const handleClick = () => {/* do stuff */} return ( <Button onClick={handleClick}>Click me</Button> ) } That won’t run in a browser. It requires a compilation step to turn it into React.createElement(...) (or maybe even something else) which will run in a browser. Or wait, that can also run on the server. So it can run on a server or in the browser, but now requires a compilation step. Is it “Just JavaScript”? Pragmas What about this little nugget? /** @jsx h */ import { h } from "preact"; const HelloWorld = () => <div>Hello</div>; These are magic comments which affect the interpretation and compilation of JavaScript code (Tom MacWright has an excellent article on the subject). If code has magic comments that direct how it is compiled and subsequently executed, is it “Just JavaScript”? TypeScript What about: const name: string = "Hello world"; You see it everywhere and it seems almost synonymous with JavaScript, would you consider it “Just JavaScript”? Imports It’s very possible you’ve come across a .js file that looks like this at the top. import icon from './icon.svg'; import data from './data.json'; import styles from './styles.css'; import foo from '~/foo.js'; import foo from 'bar:foo'; But a lot of that syntax is non-standard (I’ve written about this topic previously in more detail) and requires some kind of compilation — is this “Just JavaScript”? Vanilla Here’s a .js file: var foo = 'bar'; I can run it here (in the browser). I can run it there (on the server). I can run it anywhere. It requires no compiler, no magic syntax, no bundler, no transpiler, no runtime-specific syntax. It’ll run the same everywhere. That seems like it is, in fact, Just JavaScript. As Always, Context Is Everything A lot of JavaScript you see every day is non-standard. Even though it might be rather ubiquitous — such as seeing processn.env.* — lots of JS code requires you to be “in the know” to understand how it’s actually working because it’s not following any part of the ECMAScript standard. There are a few vital pieces of context you need in order to understand a .js file, such as: Which runtime will this execute in? The browser? Something server-side like Node, Deno, or Bun? Or perhaps something else like Cloudflare Workers? What tools are required to compile this code before it can be executed in the runtime? (vite, esbuild, webpack, rollup typescript, etc.) What frameworks are implicit in the code? e.g. are there non-standard globals like Deno.* or special keyword exports like export function getServerSideProps(){...}? When somebody says, “It’s Just JavaScript” what would be more clear is to say “It’s Just JavaScript for…”, e.g. It’s just JavaScript for the browser It’s just JavaScript for Node It’s just JavaScript for Next.js So what would you call JavaScript that can run in any of the above contexts? Well, I suppose you would call that “Just JavaScript”. Email · Mastodon · Bluesky
Over the years, I've learned not to question inspiration. To simply let it drive when it shows up with a full tank. Quite often, I don't exactly know where we're going or even why we're going, but it's repeatedly taken me to just the right place at just the right time, so now I just hop in and say: Let's go! Case in point: Arch + Hyprland. It's been over a year since I created Omakub to smooth out my own exit path from macOS to Linux, and in the process, helped thousands of others enjoy a beautiful, preconfigured, and relatively familiar desktop experience with Ubuntu. And I continue to think this is an excellent choice for Linux, especially for first-time Mac and Windows defectors. But this weekend, I just happened to be home alone, and the hype around Arch + Hyprland got the better of me. While Ubuntu is all about being a friendly place for newcomers to Linux, Arch + Hyprland is the exact opposite: It's Linux on hard mode! At least that's the reputation, and there's certainly something to that. The Arch ISO literally just dumps you into a terminal with scarcely any direction. Just getting on the Wi-Fi requires learning the arcane command-line options for the iwctl terminal configurator. But besides iwctl, it's actually not that bad anymore. We now have a cheat code for installing Arch in the form of archinstall. It's a terminal interface for getting all the bits like picking a disk and creating the first user done in the correct order, without having to set aside an entire evening just to get the OS installed. So it didn't take long to get Arch up and running. That doesn't get you much further, though! By default, Arch is about as minimal as it gets. There's no default graphical interface. There are no niceties. Not even wget or curl by default! It really is just a bare-bones installation of Linux. But on the other hand, Arch is blessed with the AUR — a Wikipedia-style, community-maintained package management system that seems to have literally every piece of software ever released on Linux, and always in the latest version. A quarter of Omakub is trying to work around the fact that helpful tools like Alacritty or LazyGit or whatever rarely have official packages for Ubuntu, so you're left doing a lot of manual scripting to get everything a developer would want from a modern Linux setup. Not so with the AUR! So that's Arch. But Hyprland is even more hilarious. It's a tiling window manager with something as rare in the Linux world as a keen focus on aesthetics! It looks like it was written by visual artists rather than neckbeards. And it's at the core of the modern r/unixporn Linux ricing subculture. That's not the funny part, though. The funny part is how ridiculously atomized the entire thing is. Hyprland comes with absolutely nothing out of the box. No login screen, no menu bar, no notification system, no file manager, no visual settings application. Just a text-based configuration file, a wiki, and an outline on a map for how to design your own adventure. This means that if you're interested in running Hyprland, and you intend to set it all up from scratch, you're probably signing up for at least a good 10+ hours — just to install and configure everything! Now, there are some precompiled setup scripts out there already, but most of them still require you to do a ton of manual legwork before you reach that beautiful summit of a complete system. So while the downside of Arch + Hyprland is that literally every last detail requires you to make a choice and a config file to move on, it's also its upside: you can change EVERYTHING! And the core window tiling magic of Hyprland is one of the most intoxicating ways of using a computer that I've ever experienced. It looks amazing; it feels amazing (if you prefer using a keyboard instead of a mouse!). I've poured hours and hours into this quest over the weekend, and yet I'm still not even done with my first Arch + Hyprland build! My login screen looks like shit. I haven't decided on a final menu bar configuration. But what is working — the basic tiling flow and look — is so nice that the inspiration keeps driving the project forward. Which, of course, I've already decided to codify. I'm not going through all this work to set up a beautiful, preconfigured, fully-functional, out-of-the-box Arch + Hyprland combo and then not share it with anyone who's curious (and might not have 10–20 hours for this kind of side quest available in their schedule). So of course I registered a domain and found a way to draw some ASCII art: Omarchy is on the way!