More from ./techtipsy
I don’t like laptops with loud cooling fans in them. Quite a controversial position, I know. But really, they do suck. A laptop can be great to use, have a fantastic keyboard, sharp display, lots of storage and a fast CPU, and all of that can be ruined by one component: the cooling fan. Laptop fans are small, meaning that they have to run faster to have any meaningful cooling effect, which means that they are usually very loud and often have a high-pitched whine to them, making them especially obnoxious. Sometimes it feels like a deliberate attack on one of my senses. Fans introduce a maintenance burden. They keep taking in dust, which tends to accumulate at the heat sink. If you skip maintenance, then you’ll see your performance drop and the laptop will get notably hot, which may contribute to a complete hardware failure. We’ve seen tremendous progress in the world of consumer CPU-s over the last decade. Power consumption is much lower while idle, processors can do a lot more work in the same power envelope, and yet most laptops that I see in use are still actively cooled by an annoying-ass cooling fan.1 And yet we keep buying them. But it doesn’t have to be this way. My colleagues that have switched to Apple Silicon laptops are sometimes surprised to hear the fan on their laptop because it’s a genuinely rare occurrence for them. Most of the time it just sits there doing nothing, and when it does come on, it’s whisper-quiet. And to top it off, some models, such as the Macbook Air series, are completely fanless. Meanwhile, those colleagues that run Lenovo ThinkPads with Ryzen 5000 and 7000 series APU-s (that includes me) have audible fans and at the same time the build times for the big Java monolith that we maintain are significantly slower (~15%) compared to the fan-equipped MacBooks.2 We can fix this, if we really wanted to. As a first step, you can change to a power saving mode on your current laptop. This will likely result in your CPU and GPU running more efficiently, which also helps avoid turning the cooling fan on. You will have to sacrifice some performance as a result of this change, which will not be a worthwhile trade-off for everyone. If you are OK with risking damaging your hardware, you can also play around with setting your own fan curve. The CPU and GPU throttling technology is quite advanced nowadays, so you will likely be fine in this area, but other components in the laptop, such as the battery, may not be very happy with higher temperatures. After doing all that, the next step is to avoid buying a laptop that abuses your sense of hearing. That’s the only signal that we can send to manufacturers that they will actually listen to. Money speaks louder than words. What alternative options do we have? Well, there are the Apple Silicon MacBooks, and, uhh, that one ThinkPad with an ARM CPU, and a bunch of Chromebooks, and a few Windows tablets I guess. I’ll be honest, I have not kept a keen eye on recent developments, but a quick search online for fanless laptops pretty much looks as I described. Laptops that you’d actually want to get work done on are completely missing from that list, unless you like Apple.3 In a corporate environment the choice of laptop might not be fully up to you, but you can do your best to influence the decision-makers. There’s one more alternative: ask your software vendor to not write shoddily thrown together software that performs like shit. Making a doctor appointment should not make my cooling fan go crazy. Not only is slow and inefficient software discriminatory towards those that cannot afford decent computer hardware, it’s also directly contributing to the growing e-waste generation problem by continuously raising the minimum hardware requirements for the software that we rely on every day. Written on a Lenovo ThinkPad X395 that just won’t stop heating up and making annoying fan noises. passive vs active cooling? More like passive vs annoying cooling. ↩︎ I dream of a day where Asahi Linux runs perfectly on an Apple Silicon MacBook. It’s not production ready right now, but the developers have done an amazing job so far! ↩︎ I like the hardware that Apple produces, it’s the operating system that I heavily dislike. ↩︎
I moved recently, and so did my home server. You might have noticed it due to the downtime. This time I have built a dedicated shelf for it, which allows for more flexibility and room for additional expensive ideas. The internet connection is a fiber line, which is fantastic for a place that’s generally considered to be in the countryside. I had to hire a guy at the last place in Tallinn (capital of Estonia) to pull a fiber line from the basement to the apartment, with my own money, so I’m very happy that I don’t have to do it here. And yes, the ThinkPad T430 is still a solid home server. I had an issue with my battery calibration script resulting in the machine being turned off, but I fixed it by disabling it, at the cost of the battery probably dying soon. Seems like a tlp and/or Linux kernel issue that has surfaced recently, as it also happened on a different ThinkPad laptop when I last tried it. I can’t really remove the battery, because the “power on with AC attach” setting only works when the battery is connected and charged. The server/wardrobe/closet room is slightly chillier compared to the rest of the environment, meaning that the temperatures are also slightly lower. I also have an option to do some crazy ventilation experiments in the winter, but that will have to wait for a bit, mainly because it’s spring. I’m genuinely surprised that the Wi-Fi 5 signal is coming through the closet quite adequately, with the whole apartment being covered with at least 50 Mbit/s speeds, and over 300 Mbit/s when near the closet, which is about the maximum speed that I can achieve from the access point in ideal conditions.
After looking into an incident involving Kubernetes nodes running out of memory, I took a trip to the office kitchen to take a break and get a cup of the good stuff. My teammate got their drink first, and then it was my turn. Why is there a Windows 98 themed pop-up on the screen? I wanted to get my coffee, so I tapped on the small OK button. That may have forced the poor coffee machine to start swapping, for which I felt a little bit guilty. The UI was catching up with previous animations, and I got to the drink selection. None of the buttons worked. I reckon something critical crashed in the background. After looking into an incident involving a coffee machine running out of memory, I took a trip to the other office kitchen to take a break and get a cup of the good stuff. That one was fine. Guess it ran on something else than Java. laugh_track.mp3
I bought the Fairphone Fairbuds XL with my own money at a recent sale for 186.75 EUR, plus 15 EUR for shipping to Estonia. The normal price for these headphones is 239 EUR. This post is not sponsored. I admire what Fairphone wants to achieve, even going as far as getting the Fairphone 5 as a replacement for my iPhone X. Failing to repair my current headphones, I went ahead and decided to get the Fairphone Fairbuds XL as they also advertise the active noise-cancelling feature, and I like the Fairphone brand. Disclaimer: this review is going to be entirely subjective and based on my opinions and experiences with other audio products in the past. I also have tinnitus.1 I consulted rtings.com review before purchasing the product to get an idea about what to expect as a consumer. The comparison headphones The main point of comparison for this review is going to be the Sony WH-1000XM3, which are premium high-end wireless Bluetooth headphones, with active noise-cancelling (before that feature broke). These headphones retailed at a higher price during 2020 (about 300-400 EUR) so they are technically a tier above the Fairbuds XL, but given that its successsor, the WH-1000XM4, can be bought for 239 EUR new (and often about 200-ish EUR on sale!), then it is a fair comparison in my view. After I replaced the ear cushions on my Sony WH-1000XM3 headset, the active noise-cancelling feature started being flaky (popping and loud noises occurring with NC on). No amount of cleaning or calibrating fixed it, and even the authorized repair shop could not do anything about it. I diagnosed the issue to be with the internal noise-cancelling microphones and found that these failing is a very common issue for these headsets, even for newer versions of it. I am unable to compare the active noise-cancelling performance side-by-side, but I can say that the NC performance on the Sony WH-1000XM3 was simply excellent when it did work, no doubt about it. The Fairphone shop experience The first issue I had with the product was actually buying it. For some reason, the form would not accept my legal name which has letter “Õ” in it, a common vowel in Estonia. Knowing how poorly Javascript-based client-side validation can be built, I pulled a pro gamer move and copy-pasted my name into the form, which bypassed the faulty check altogether. Similar issue occurred with the address field, as we also have the letter “Ä” ( and “Ö”, “Ü”, for that matter). The name I can understand why Fairphone went with the name “Fairbuds XL”, it kind of made sense in their audio product line, and Apple set a precedent with AirPods Max. However, there is such a big missed opportunity here: they could’ve called the product… Fairphones. Yes, it would cause some confusion about their other product line, which is the Fairphone, but at least I would find the name more amusing. Packaging The packaging for the headphones is quite similar to what you’d get with the Fairphone 5: lots of cardboard and seemingly no plastic or otherwise problematic materials. Aside from the headphones themselves, you also get a nice egg bag, meant to protect your headphones when travelling with them. It’s okay, but nothing special, and it won’t protect your headphones from physical damage should they fall or get thrown around in a backpack. The Sony headphones come with a solid hardcase, which have done a fantastic job of protecting the headphones over the last 4 years. Longevity of a device depends both on repairability and durability, which is why a hard case would benefit the Fairbuds XL a lot. Factory defect My experience with the Fairbuds XL were off to a rocky start. I noticed that the USB-C cable that connects both sides of the headphones was inserted incorrectly. The headphones worked fine, but you could feel the flat USB-C cable being twisted inside the headband. The fix to this was to carefully push the headband back, disconnect the USB-C cable from the headphones, flip the cable around and reconnect it. Not a good first impression, but at least the fix was simple enough. Fit and feel The Fairbuds XL are not as comfortable as the reference headphones. The ear cushions and headrest are quite hard and not as soft as on the Sony WH-1000XM3. If you get the fit just right, then you probably won’t have issues with wearing these for a few hours at the time, but I found myself adjusting these often to stop them from hurting my ears and head even during a short test. The ear cups lack any kind of swiveling, which is likely contributing to the comparatively poor fit. Our ears are angled ever-so-slightly forwards, and the Sony WH-1000XM3 feels so much better on the ears as a result of its swiveling aspect. I also noticed that you can hear some components inside the headphones rattling when moving your head. This noise is very noticeable even during music playback and you don’t need to move your head a lot to hear that rattling. In my view, this is a serious defect in the product. When the headphones are folded in, the USB-C cable gets bent in the process and gets forced against one of the ear cushions. I suspect that within months or years of use, either the cable will fail or the ear cushion gets a permanent imprint of the USB-C cable position. The sound I’m not impressed with the sound that the Fairbuds XL produce. They are not in the same class as the Sony WH-1000XM3, with the default equalizer sounding incredibly bland. Most instruments and sounds are bland and not as clear. That’s the best I can describe it as. The Fairbuds app can be used to tune the sound via the equalizer, and out of all the presets I’ve found “Boston” to be the most pleasant one to use. Unfortunately the UI does not show how the presets customize the values in the equalizer, which makes tweaking a preset all that much harder. Compared to the Sony WH-1000XM3, I miss the cripsy sound and the all-encompassing bass, it can really bring all the satisfying details out. Given that I had used the Sony headphones for almost 5 years at this point may also just mean that I had gotten used to how it sounds. Active noise-cancelling The active noise-cancelling performance is nowhere near the Sony WH-1000XM3-s. The effect is very minor, and you’ll be hearing most of the surrounding sounds. Touching the active noise-cancelling microphones on the sides of the headphones will also make a loud sound inside the speaker, and walking around in a room will result in the headphones making wind noises. Because of this, I consider the active noise-cancelling functionality to be functionally broken. Microphone quality I used the Fairbuds XL in a work call, and based on feedback from other attendees, the microphone quality over Bluetooth can be categorized as barely passable, getting a solid 2 points out of 5. To be fair, Bluetooth microphone quality is also not great on the Sony WH-1000XM3-s, but compared to the Fairphone Fairbuds XL, they are still subjectively better. Fairbuds app The Fairbuds app is very simple, and you’d mainly want to use it for setting the equalizer settings and upgrading the firmware. The rest of the functionality seems to be a bunch of links to Fairphone articles and guides. The first time I installed the app, it told me that a firmware upgrade version V90 is available. During the first attempt, the progress bar stopped. Second attempt: it almost reached the end and did not complain about a firmware upgrade being available after that. Third attempt came after I had reinstalled the app. And there it was, the version V90 update, again. This time it got stuck at 1%. I’m probably still on the older version of the firmware, but I honestly can’t tell. Bluetooth multi-device connecting This is a feature that I didn’t know I needed in my life. With the reference Sony WH-1000XM3-s, whenever I wanted to switch where I listen to music from, I had to disconnect from my phone and then reconnect on the desktop, which was an annoying and manual process. With the Fairbuds XL, I can connect the headphones to both my laptop and phone and play media wherever, the headphones will switch to whichever device I’m actually using! This, too, has its quirks, and there might be a small delay when playing media on the other device, but I’ve grown so accustomed to using this feature now and can’t imagine myself going back to using anything else. This feature is not unique to the Fairbuds XL as other modern wireless headphones are also likely to boast this feature, but this is the first time I’ve had the opportunity to try this out myself. It’s a tremendous quality of life improvement for me. However, this, too, is not perfect. If I have the headphones connected to my phone and laptop, and I change to headset mode on the laptop for a meeting, then the playback on the phone will be butchered until I completely disconnect the headphones from the laptop. This seems like a firmware issue to me. The controls The Fairbuds XL has one button and one joystick. The button controls the active noise-cancelling settings (NC on, Ambient sound, NC off), plus the Bluetooth pairing mode. The joystick is used to turn the device on, switch songs and control the volume, and likely some other settings that relate to accepting calls and the like. Coming from the Sony WH-1000XM3, I have to say that I absolutely LOVE having physical buttons again! It’s so much easier to change the volume level, skip songs and start/stop playback with a physical button compared to the asinine touch surface solution that Sony has going on. The joystick is not perfect, skipping a song can be a little bit tricky due to how the joystick is positioned, you can’t always get a good handle due to your fingers hitting the rest of the headphone assembly. That’s the only concern I have with it. If the joystick was a little bit concave and larger, then that may make some of these actions easier for those of us with modest/large thumbs. The audio cue for skipping songs is a bit annoying and cannot seemingly be disabled. The sound effect resembles someone hitting a golf ball with a very poor driver. The ANC settings button is alright, but it’s not possible to quickly cycle between the three modes, you will have to fully listen to the nice lady speaking and then you can move on to the next setting. I wish that clicking the button in rapid succession would skip through the modes faster. USB-C port functionality I was curious to see if the Fairbuds XL worked as normal headphones if I just connected them up to my PC using a USB-C cable. To my surprise, they did! The audio quality was not as good as with Bluetooth, and the volume controls depended on which virtual device you select in your operating system. The Sony WH-1000XM3 do not work like this, the USB-C port is for charging only as far as I’ve tested, but it does have an actual 3.5mm port for wired use. When connected over Bluetooth and you connect a charging cable, the Fairbuds XL will pause momentarily and then continue playback while charging the battery. This is incredibly handy for a wireless device, especially in situations where you have an important meeting coming up and you’re just about to run out of battery. The Sony WH-1000XM3 will simply power off when you connect a charger cable, rendering them unusable while charging. Annoying issues For some reason, whenever I charge my Fairbuds XL, they magically turn on again and I have to shut them off a second time. I’m never quite sure if I’ve managed to shut the headphones off. It does the jingle that indicates that it’s powered off, but then I come back to it later and I find that they’re powered on again. Customer care experience I was so unhappy with the product that I tried out the refunding process for the Fairphone Fairbuds XL. I ordered the Fairbuds XL on 2025-02-10 and I received them on 2025-02-14, shipped to Estonia. According to Fairphone’s own materials, I can return the headphones without any questions asked, assuming that my use of them matches what can be done at a physical store. For Fairphone Products, including gift cards, you purchased on the Fairphone Webshop, you have a legal right to change your mind within 14 days and receive a refund amounting to the purchase price of the products and the costs of delivery and return. You are entitled to cancel your purchase within fourteen (14) days from the day the products were delivered to you, without explanation and without any penalties. In the case of a Cool-off, Fairphone may reduce the refund of the purchase price (including delivery costs) to reflect any reduction in the value of the Products, if this has been caused by your handling them in a way which would not normally be permitted in a shop. This means You are entitled to turn on and inspect Your purchased device to familiarise yourself with its properties and ensure that it is working correctly – comparable to the conditions that are permitted within a shop. I followed their instructions and filed a support ticket on 2025-02-16. On 2025-02-25, I had not yet received any contact from Fairphone and I asked them again under the same ticket. On 2025-03-07, I received an automated message that apologized for the delay and asked me to not make any additional tickets on the matter. I’m still waiting for an update for the support ticket over a month later, while the headphones sit in the original packaging. Based on the experiences by others in the Fairphone community forum, it seems that unacceptably large delays in customer service are the norm for Fairphone. Fairphone, if you want to succeed as a company, you need to make sure that the one part of your company that’s directly interfacing with your actual paying customers needs to be appropriately staffed and resourced. A bad customer support experience can turn off a brand evangelist overnight. Closing thoughts I want Fairphone to succeed in their mission, but products like these do not further the cause. The feature set of the Fairbuds XL seems competent, and I’m willing to give a pass on a few minor issues if the overall experience is good, but the unimpressive sound profile, broken active noise-cancelling mode, multiple quality issues and poor customer service mean that I can’t in good conscience recommend the Fairphone Fairbuds XL, not even on sale. Perhaps less resources should be spent on rebranding and more on engineering good products. Remember dubstep being a thing? Yeah, so do I. That, plus a little bit of mandatory military service can do a lot of damage to hearing. ↩︎
More in technology
There are a handful of instruments that are staples of modern music, like guitars and pianos. And then there are hundreds of other instruments that were invented throughout history and then fell into obscurity without much notice. The Luminaphone, invented by Harry Grindell Matthews and unveiled in 1925, is a particularly bizarre example. Few people […] The post Recreating a bizarre century-old electronic instrument appeared first on Arduino Blog.
Sometimes I think I should pivot my career to home automation critic, because I have many opinions on the state of the home automation industry---and they're pretty much all critical. Virtually every time I bring up home automation, someone says something about the superiority of the light switch. Controlling lights is one of the most obvious applications of home automation, and there is a roughly century long history of developments in light control---yet, paradoxically, it is an area where consumer home automation continues to struggle. An analysis of how and why billion-dollar tech companies fail to master the simple toggling of lights in response to human input will have to wait for a future article, because I will have a hard time writing one without descending into incoherent sobbing about the principles of scene control and the interests of capital. Instead, I want to just dip a toe into the troubled waters of "smart lighting" by looking at one of its earliest precedents: low-voltage lighting control. A source I generally trust, the venerable "old internet" website Inspectapedia, says that low-voltage lighting control systems date back to about 1946. The earliest conclusive evidence I can find of these systems is a newspaper ad from 1948, but let's be honest, it's a holiday and I'm only making a half effort on the research. In any case, the post-war timing is not a coincidence. The late 1940s were a period of both rapid (sub)urban expansion and high copper prices, and the original impetus for relay systems seems to have been the confluence of these two. But let's step back and explain what a relay or low-voltage lighting control system is. First, I am not referring to "low voltage lighting" meaning lights that run on 12 or 24 volts DC or AC, as was common in landscape lighting and is increasingly common today for integrated LED lighting. Low-voltage lighting control systems are used for conventional 120VAC lights. In the most traditional construction, e.g. in the 1940s, lights would be served by a "hot" wire that passed through a wall box containing a switch. In many cases the neutral (likely shared with other fixtures) went directly from the light back to the panel, bypassing the switch... running both the hot and neutral through the switch box did not become conventional until fairly recently, to the chagrin of anyone installing switches that require a neutral for their own power, like timers or "smart" switches. The problem with this is that it lengthens the wiring runs. If you have a ceiling fixture with two different switches in a three-way arrangement, say in a hallway in a larger house, you could be adding nearly 100' in additional wire to get the hot to the switches and the runner between them. The cost of that wiring, in the mid-century, was quite substantial. Considering how difficult it is to find an employee to unlock the Romex cage at Lowes these days, I'm not sure that's changed that much. There are different ways of dealing with this. In the UK, the "ring main" served in part to reduce the gauge (and thus cost) of outlet wiring, but we never picked up that particular eccentricity in the US (for good reason). In commercial buildings, it's not unusual for lighting to run on 240v for similar reasons, but 240v is discouraged in US residential wiring. Besides, the mid-century was an age of optimism and ambition in electrical technology, the days of Total Electric Living. Perhaps the technology of the relay, refined by so many innovations of WWII, could offer a solution. Switch wiring also had to run through wall cavities, an irritating requirement in single-floor houses where much of the lighting wiring could be contained to the attic. The wiring of four-way and other multi-switch arrangements could become complex and require a lot more wall runs, discouraging builders providing switches in the most convenient places. What if relays also made multiple switches significantly easier to install and relocate? You probably get the idea. In a typical low-voltage lighting control system, a transformer provides a low voltage like 24VAC, much the same as used by doorbells. The light switches simply toggle the 24VAC control power to the coils of relays. Some (generally older) systems powered the relay continuously, but most used latching relays. In this case, all light switches are momentary, with an "on" side and an "off" side. This could be a paddle that you push up or down (much like a conventional light switch), a bar that you push the left or right sides of, or a pair of two push buttons. In most installations, all of the relays were installed together in a single enclosure, usually in the attic where the high-voltage wiring to the actual lights would be fairly short. The 24VAC cabling to the switches was much smaller gauge, and depending on the jurisdiction might not require any sort of license to install. Many systems had enclosures with separate high voltage and low voltage components, or mounted the relays on the outside of an enclosure such that the high voltage wiring was inside and low voltage outside. Both arrangements helped to meet code requirements for isolating high and low voltage systems and provided a margin of safety in the low voltage wiring. That provided additional cost savings as well; low voltage wiring was usually installed without any kind of conduit or sheathed cable. By 1950, relay lighting controls were making common appearances in real estate listings. A feature piece on the "Melody House," a builder's model home, in the Tacoma News Tribune reads thus: Newest features in the house are the low voltage touch plate and relay system lighting controls, with wide plates instead of snap buttons---operated like the stops of a pipe organ, with the merest flick of a finger. The comparison to a pipe organ is interesting, first in its assumption that many readers were familiar with typical organ stops. Pipe organs were, increasingly, one of the technological marvels of the era: while the concept of the pipe organ is very old, this same era saw electrical control systems (replete with relays!) significantly reduce the cost and complexity of organ consoles. What's more, the tonewheel electric organ had become well-developed and started to find its way into homes. The comparison is also interesting because of its deficiencies. The Touch-Plate system described used wide bars, which you pressed the left or right side of---you could call them momentary SPDT rocker switches if you wanted. There were organs with similar rocker stops but I do not think they were common in 1950. My experience is that such rocker switch stops usually indicate a fully digital control system, where they make momentary action unobtrusive and avoid state synchronization problems. I am far from an expert on organs, though, which is why I haven't yet written about them. If you have a guess at which type of pipe organ console our journalist was familiar with, do let me know. Touch-Plate seems to have been one of the first manufacturers of these systems, although I can't say for sure that they invented them. Interestingly, Touch-Plate is still around today, but their badly broken WordPress site ("Welcome to the new touch-plate.com" despite it actually being touchplate.com) suggests they may not do much business. After a few pageloads their WordPress plugin WAF blocked me for "exceed[ing] the maximum number of page not found errors per minute for humans." This might be related to my frustration that none of the product images load. It seems that the Touch-Plate company has mostly pivoted to reselling imported LED lighting (touchplateled.com), so I suppose the controls business is withering on the vine. The 1950s saw a proliferation of relay lighting control brands, with GE introducing a particularly popular system with several generations of fixtures. Kyle Switch Plates, who sell replacement switch plates (what else?), list options for Remcon, Sierra, Bryant, Pyramid, Douglas, and Enercon systems in addition to the two brands we have met so far. As someone who pays a little too much attention to light switches, I have personally seen four of these brands, three of them still in use and one apparently abandoned in place. Now, you might be thinking that simply economizing wiring by relocating the switches does not constitute "home automation," but there are other features to consider. For one, low-voltage light control systems made it feasible to install a lot more switches. Houses originally built with them often go a little wild with the n-way switching, every room providing lightswitches at every door. But there is also the possibility of relay logic. From the same article: The necessary switches are found in every room, but in the master bedroom there is a master control panel above the bed, from where the house and yard may be flooded with instant light in case of night emergency. Such "master control panels" were a big attraction for relay lighting, and the finest homes of the 1950s and 1960s often displayed either a grid of buttons near the head of the master bed, or even better, a GE "Master Selector" with a curious system of rotary switches. On later systems, timers often served as auxiliary switches, so you could schedule exterior lights. With a creative installer, "scenes" were even possible by wiring switches to arbitrary sets of relays (this required DC or half-wave rectified control power and diodes to isolate the switches from each other). Many of these relay control systems are still in use today. While they are quite outdated in a certain sense, the design is robust and the simple components mean that it's usually not difficult to find replacement parts when something does fail. The most popular system is the one offered by GE, using their RR series relays (RR3, RR4, etc., to the modern RR9). That said, GE suggests a modernization path to their LightSweep system, which is really a 0-10v analog dimming controller that has the add-on ability to operate relays. The failure modes are mostly what you would expect: low voltage wiring can chafe and short, or the switches can become stuck. This tends to cause the lights to stick on or off, and the continuous current through the relay coil often burns it out. The fix requires finding the stuck switch or short and correcting it, and then replacing the relay. One upside of these systems that persists today is density: the low voltage switches are small, so with most systems you can fit 3 per gang. Another is that they still make N-way switching easier. There is arguably a safety benefit, considering the reduction in mains-voltage wire runs. Yet we rarely see such a thing installed in homes newer than around the '80s. I don't know that I can give a definitive explanation of the decline of relay lighting control, but reduced prices for copper wiring were probably a main factor. The relays added a failure point, which might lead to a perception of unreliability, and the declining familiarity of electricians means that installing a relay system could be expensive and frustrating today. What really interests me about relay systems is that they weren't really replaced... the idea just went away. It's not like modern homes are providing a master control panel in the bedroom using some alternative technology. I mean, some do, those with prices in the eight digits, but you'll hardly ever see it. That gets us to the tension between residential lighting and architectural lighting control systems. In higher-end commercial buildings, and in environments like conference rooms and lecture halls, there's a well established industry building digital lighting control systems. Today, DALI is a common standard for the actual lighting control, but if you look at a range of existing buildings you will find everything from completely proprietary digital distributed dimming to 0-10v analog dimming to central dimmer racks (similar to traditional theatrical lighting). Relay lighting systems were, in a way, a nascent version of residential architectural lighting control. And the architectural lighting control industry continues to evolve. If there is a modern equivalent to relay lighting, it's something like Lutron QSX. That's a proprietary digital lighting (and shade) control system, marketed for both residential and commercial use. QSX offers a wide range of attractive wall controls, tight integration to Lutron's HomeSense home automation platform, and a price tag that'll make your eyes water. Lutron has produced many generations of these systems, and you could make an argument that they trace their heritage back to the relay systems of the 1940s. But they're just priced way beyond the middle-class home. And, well, I suppose that requires an argument based on economics. Prices have gone up. Despite tract construction being a much older idea than people often realize, it seems clear that today's new construction homes have been "value engineered" to significantly lower feature and quality levels than those of the mid-century---but they're a lot bigger. There is a sort of maxim that today's home buyers don't care about anything but square footage, and if you've seen what Pulte or D. R. Horton are putting up... well, I never knew that 3,000 sq ft could come so cheap, and look it too. Modern new-construction homes just don't come with the gizmos that older ones did, especially in the '60s and '70s. Looking at the sales brochure for a new development in my own Albuquerque ("Estates at La Cuentista"), besides 21st century suburbanization (Gated Community! "East Access to Paseo del Norte" as if that's a good thing!) most of the advertised features are "big." I'm serious! If you look at the "More Innovation Built In" section, the "innovations" are a home office (more square footage), storage (more square footage), indoor and outdoor gathering spaces (to be fair, only the indoor ones are square footage), "dedicated learning areas" for kids (more square footage), and a "basement or bigger garage" for a home gym (more square footage). The only thing in the entire innovation section that I would call a "technical" feature is water filtration. You can scroll down for more details, and you get to things like "space for a movie room" and a finished basement described eight different ways. Things were different during the peak of relay lighting in the '60s. A house might only be 1,600 sq ft, but the builder would deck it out with an intercom (including multi-room audio of a primitive sort), burglar alarm, and yes, relay lighting. All of these technologies were a lot newer and people were more excited about them; I bring up Total Electric Living a lot because of an aesthetic obsession but it was a large-scale advertising and partnership campaign by the electrical industry (particularly Westinghouse) that gave builders additional cross-promotion if they included all of these bells and whistles. Remember, that was when people were watching those old videos about the "kitchen of the future." What would a 2025 "Kitchen of the Future" promotional film emphasize? An island bigger than my living room and a nook for every meal, I assume. Features like intercoms and even burglar alarms have become far less common in new construction, and even if they were present I don't think most buyers would use them. But that might seem a little odd, right, given the push towards home automation? Well, built-in home automation options have existed for longer than any of today's consumer solutions, but "built in" is a liability for a technology product. There are practical reasons, in that built-in equipment is harder to replace, but there's also a lamer commercial reason. Consumer technology companies want to sell their products like consumer technology, so they've recontextualized lighting control as "IoT" and "smart" and "AI" rather than something an electrician would hook up. While I was looking into relay lighting control systems, I ran into an interesting example. The Lutron Lu Master Lumi 5. What a name! Lutron loves naming things like this. The Lumi 5 is a 1980s era product with essentially the same features as a relay system, but architected in a much stranger way. It is, essentially, five three way switches in a box with remote controls. That means that each of the actual light switches in the house (which could also be dimmers) need mains-voltage wiring, including runner, back to the Lumi 5 "interface." Pressing a button on one of the Lutron wall panels toggles the state of the relay in the "interface" cabinet, toggling the light. But, since it's all wired as a three-way switch, toggling the physical switch at the light does the same thing. As is typical when combining n-way switches and dimming, the Lumi 5 has no control over dimmers. You can only dim a light up or down at the actual local control, the Lumi 5 can just toggle the dimmer on and off using the 3-way runner. The architecture also means that you have two fundamentally different types of wall panels in your house: local switches or dimmers wired to each light, and the Lu Master panels with their five buttons for the five circuits, along with "all on" and "all off." The Lumi 5 "interface" uses simple relay logic to implement a few more features. Five mains-voltage-level inputs can be wired to time clocks, so that you can schedule any combination(s) of the circuits to turn on and off. The manual recommends models including one with an astronomical clock for sunrise/sunset. An additional input causes all five circuits to turn on; it's suggested for connection to an auxiliary relay on a burglar alarm to turn all of the lights on should the alarm be triggered. The whole thing is strange and fascinating. It is basically a relay lighting control system, like so many before it, but using a distinctly different wiring convention. I think the main reason for the odd wiring was to accommodate dimmers, an increasingly popular option in the 1980s that relay systems could never really contend with. It doesn't have the cost advantages of relay systems at all, it will definitely be more expensive! But it adds some features over the fancy Lutron switches and dimmers you were going to install anyway. The Lu Master is the transitional stage between relay lighting systems and later architectural lighting controls, and it straddled too the end of relay light control in homes. It gives an idea of where relay light control in homes would have evolved, had the whole technology not been doomed to the niche zone of conference centers and universities. If you think about it, the Lu Master fills the most fundamental roles of home automation in lighting: control over multiple lights in a convenient place, scheduling and triggers, and an emergency function. It only lacks scenes, which I think we can excuse considering that the simple technology it uses does not allow it to adjust dimmers. And all of that with no Node-RED in sight! Maybe that conveys what most frustrates me about the "home automation" industry: it is constantly reinventing the wheel, an oligopoly of tech companies trying to drag people's homes into their "ecosystem." They do so by leveraging the buzzword of the moment, IoT to voice assistants to, I guess now AI?, to solve a basic set of problems that were pretty well solved at least as early as 1948. That's not to deny that modern home automation platforms have features that old ones don't. They are capable of incredibly sophisticated things! But realistically, most of their users want only very basic functionality: control in convenient places, basic automation, scenes. It wouldn't sting so much if all these whiz-bang general purpose computers were good at those tasks, but they aren't. For the very most basic tasks, things like turning on and off a group of lights, major tech ecosystems like HomeKit provide a user experience that is significantly worse than the model home of 1950. You could install a Lutron system, and it would solve those fundamental tasks much better... for a much higher price. But it's not like Lutron uses all that money to be an absolute technical powerhouse, a center of innovation at the cutting edge. No, even the latest Lutron products are really very simple, technically. The technical leaders here, Google, Apple, are the companies that can't figure out how to make a damn light switch. The problem with modern home automation platforms is that they are too ambitious. They are trying to apply enormously complex systems to very simple tasks, and thus contaminating the simplest of electrical systems with all the convenience and ease of a Smart TV. Sometimes that's what it feels like this whole industry is doing: adding complexity while the core decays. From automatic programming to AI coding agents, video terminals to Electron, the scope of the possible expands while the fundamentals become more and more irritating. But back to the real point, I hope you learned about some cool light switches. Check out the Kyle Switch Plates reference and you'll start seeing these buildings and homes, at least if you live in an area that built up during the era that they were common (1950s to the 1970s).
Is there anything more irritating than living with a partner who procrastinates on their share of the chores? Even if it isn’t malicious, it sure is annoying. Taking out the trash is YouTuber CircuitCindy’s boyfriend’s responsibility, but he often fails to do the task in a timely manner. That forced Cindy to implement a sinister […] The post YouTuber builds robot to make boyfriend take out the trash appeared first on Arduino Blog.