Full Width [alt+shift+f] Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
13
The most popular SQLite and PostgreSQL database drivers in Go are (roughly) 20-76% slower than alternative Go drivers on insert-heavy benchmarks of mine. So if you are bulk-inserting data with Go (and potentially also bulk-retrieving data with Go), you may want to consider the driver carefully. And you may want to consider avoiding database/sql. Some driver authors have noted and benchmarked issues with database/sql. So it may be the case that database/sql is responsible for some of this overhead. And indeed the variations between drivers in this post will be demonstrated by using database/sql and avoiding it. This post won't specifically prove that the variation is due to the database/sql interface. But that doesn't change the premise. has suggested that other frontends like sqlc, sqlx, and GORM do worse than database/sql. This post is built on the workload, environment, libraries, and methodology in my databases-intuition repo on GitHub. See the repo for details that will help...
a year ago

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from Notes on software development

Transactions are a protocol

Transactions are not an intrinsic part of a storage system. Any storage system can be made transactional: Redis, S3, the filesystem, etc. Delta Lake and Orleans demonstrated techniques to make S3 (or cloud storage in general) transactional. Epoxy demonstrated techniques to make Redis (and any other system) transactional. And of course there's always good old Two-Phase Commit. If you don't want to read those papers, I wrote about a simplified implementation of Delta Lake and also wrote about a simplified MVCC implementation over a generic key-value storage layer. It is both the beauty and the burden of transactions that they are not intrinsic to a storage system. Postgres and MySQL and SQLite have transactions. But you don't need to use them. It isn't possible to require you to use transactions. Many developers, myself a few years ago included, do not know why you should use them. (Hint: read Designing Data Intensive Applications.) And you can take it even further by ignoring the transaction layer of an existing transactional database and implement your own transaction layer as Convex has done (the Epoxy paper above also does this). It isn't entirely clear that you have a lot to lose by implementing your own transaction layer since the indexes you'd want on the version field of a value would only be as expensive or slow as any other secondary index in a transactional database. Though why you'd do this isn't entirely clear (I will like to read about this from Convex some time). It's useful to see transaction protocols as another tool in your system design tool chest when you care about consistency, atomicity, and isolation. Especially as you build systems that span data systems. Maybe, as Ben Hindman hinted at the last NYC Systems, even proprietary APIs will eventually provide something like two-phase commit so physical systems outside our control can become transactional too. Transactions are a protocol short new post pic.twitter.com/nTj5LZUpUr — Phil Eaton (@eatonphil) April 20, 2025

21 hours ago 2 votes
Things that go wrong with disk IO

There are a few interesting scenarios to keep in mind when writing applications (not just databases!) that interact with read and writes files, particularly in transactional contexts where you actually care about the integrity of the data and when you are editing data in place (versus copy-on-write for example). If I don't say otherwise I'm talking about behavior on Linux. The research version of this blog post is Parity Lost and Parity Regained and Characteristics, Impact, and Tolerance of Partial Disk Failures. These two papers also go into the frequency of some of the issues discussed here. These behaviors actually happen in real life! Thank you to Alex Miller and George Xanthakis for reviewing a draft of this post. Terminology Some of these terms are reused in different contexts, and sometimes they are reused because they effectively mean the same thing in a certain configuration. But I'll try to be explicit to avoid confusion. Sector The smallest amount of data that can be read and written atomically by hardware. It used to be 512 bytes, but on modern disks it is often 4KiB. There doesn't seem to be any safe assumption you can make about sector size, despite file system defaults (see below). You must check your disks to know. Block (filesystem/kernel view) Typically set to the sector size since only this block size is atomic. The default in ext4 is 4KiB. Page (kernel view) A disk block that is in memory. Any reads/writes less than the size of a block will read the entire block into kernel memory even if less than that amount is sent back to userland. Page (database/application view) The smallest amount of data the system (database, application, etc.) chooses to act on, when it's read or written or held in memory. The page size is some multiple of the filesystem/kernel block size (including the multiple being 1). SQLite's default page size is 4KiB. MySQL's default page size is 16KiB. Postgres's default page size is 8KiB. Things that go wrong The data didn't reach disk By default, file writes succeed when the data is copied into kernel memory (buffered IO). The man page for write(2) says: A successful return from write() does not make any guarantee that data has been committed to disk. On some filesystems, including NFS, it does not even guarantee that space has successfully been reserved for the data. In this case, some errors might be delayed until a future write(), fsync(2), or even close(2). The only way to be sure is to call fsync(2) after you are done writing all your data. If you don't call fsync on Linux the data isn't necessarily durably on disk, and if the system crashes or restarts before the disk writes the data to non-volatile storage, you may lose data. With O_DIRECT, file writes succeed when the data is copied to at least the disk cache. Alternatively you could open the file with O_DIRECT|O_SYNC (or O_DIRECT|O_DSYNC) and forgo fsync calls. fsync on macOS is a no-op. If you're confused, read Userland Disk I/O. Postgres, SQLite, MongoDB, MySQL fsync data before considering a transaction successful by default. RocksDB does not. The data was fsynced but fsync failed fsync isn't guaranteed to succeed. And when it fails you can't tell which write failed. It may not even be a failure of a write to a file that your process opened: Ideally, the kernel would report errors only on file descriptions on which writes were done that subsequently failed to be written back. The generic pagecache infrastructure does not track the file descriptions that have dirtied each individual page however, so determining which file descriptors should get back an error is not possible. Instead, the generic writeback error tracking infrastructure in the kernel settles for reporting errors to fsync on all file descriptions that were open at the time that the error occurred. In a situation with multiple writers, all of them will get back an error on a subsequent fsync, even if all of the writes done through that particular file descriptor succeeded (or even if there were no writes on that file descriptor at all). Don't be 2018-era Postgres. The only way to have known which exact write failed would be to open the file with O_DIRECT|O_SYNC (or O_DIRECT|O_DSYNC), though this is not the only way to handle fsync failures. The data was corrupted If you don't checksum your data on write and check the checksum on read (as well as periodic scrubbing a la ZFS) you will never be aware if and when the data gets corrupted and you will have to restore (who knows how far back in time) from backups if and when you notice. ZFS, MongoDB (WiredTiger), MySQL (InnoDB), and RocksDB checksum data by default. Postgres and SQLite do not (though databases created from Postgres 18+ will). You should probably turn on checksums on any system that supports it, regardless of the default. The data was partially written Only when the page size you write = block size of your filesystem = sector size of your disk is a write guaranteed to be atomic. If you need to write multiple sectors of data atomically there is the risk that some sectors are written and then the system crashes or restarts. This is called torn writes or torn pages. Postgres, SQLite, and MySQL (InnoDB) handle torn writes. Torn writes are by definition not relevant to immutable storage systems like RocksDB (and other LSM Tree or Copy-on-Write systems like MongoDB (WiredTiger)) unless writes (that update metadata) span sectors. If your file system duplicates all writes like MySQL (InnoDB) does (like you can with data=journal in ext4) you may also not have to worry about torn writes. On the other hand, this amplifies writes 2x. The data didn't reach disk, part 2 Sometimes fsync succeeds but the data isn't actually on disk because the disk is lying. These are called lost writes or phantom writes. You can be resilient to phantom writes by always reading back what you wrote (expensive) or versioning what you wrote. Databases and file systems generally do not seem to handle this situation. The data was written to the wrong place, read from the wrong place If you aren't including where data is supposed to be on disk as part of the checksum or page itself, you risk being unaware that you wrote data to the wrong place or that you read from the wrong place. This is called misdirected writes/reads. Databases and file systems generally do not seem to handle this situation. Further reading In increasing levels of paranoia (laudatory) follow ZFS, Andrea and Remzi Arpaci-Dusseau, and TigerBeetle.

3 weeks ago 12 votes
Phil Eaton on Technical Blogging

This is an external post of mine. Click here if you are not redirected.

3 weeks ago 15 votes
Minimal downtime Postgres major version upgrades with EDB Postgres Distributed

This is an external post of mine. Click here if you are not redirected.

a month ago 18 votes
From web developer to database developer in 10 years

Last month I completed my first year at EnterpriseDB. I'm on the team that built and maintains pglogical and who, over the years, contributed a good chunk of the logical replication functionality that exists in community Postgres. Most of my work, our work, is in C and Rust with tests in Perl and Python. Our focus these days is a descendant of pglogical called Postgres Distributed which supports replicating DDL, tunable consistency across the cluster, etc. This post is about how I got here. Black boxes I was a web developer from 2014-2021†. I wrote JavaScript and HTML and CSS and whatever server-side language: Python or Go or PHP. I was a hands-on engineering manager from 2017-2021. I was pretty clueless about databases and indeed database knowledge was not a serious part of any interview I did. Throughout that time (2014-2021) I wanted to move my career forward as quickly as possible so I spent much of my free time doing educational projects and writing about them on this blog (or previous incarnations of it). I learned how to write primitive HTTP servers, how to write little parsers and interpreters and compilers. It was a virtuous cycle because the internet (Hacker News anyway) liked reading these posts and I wanted to learn how the black boxes worked. But I shied away from data structures and algorithms (DSA) because they seemed complicated and useless to the work that I did. That is, until 2020 when an inbox page I built started loading more and more slowly as the inbox grew. My coworker pointed me at Use The Index, Luke and the DSA scales fell from my eyes. I wanted to understand this new black box so I built a little in-memory SQL database with support for indexes. I'm a college dropout so even while I was interested in compilers and interpreters earlier in my career I never dreamed I could get a job working on them. Only geniuses and PhDs did that work and I was neither. The idea of working on a database felt the same. However, I could work on little database side projects like I had done before on other topics, so I did. Or a series of explorations of Raft implementations, others' and my own. Startups From 2021-2023 I tried to start a company and when that didn't pan out I joined TigerBeetle as a cofounder to work on marketing and community. It was during this time I started the Software Internals Discord and /r/databasedevelopment which have since kind of exploded in popularity among professionals and academics in database and distributed systems. TigerBeetle was my first job at a database company, and while I contributed bits of code I was not a developer there. It was a way into the space. And indeed it was an incredible learning experience both on the cofounder side and on the database side. I wrote articles with King and Joran that helped teach and affirm for myself the basics of databases and consensus-based distributed systems. Holding out When I left TigerBeetle in 2023 I was still not sure if I could get a job as an actual database developer. My network had exploded since 2021 (when I started my own company that didn't pan out) so I had no trouble getting referrals at database companies. But my background kept leading hiring managers to suggest putting me on cloud teams doing orchestration in Go around a database rather than working on the database itself. I was unhappy with this type-casting so I held out while unemployed and continued to write posts and host virtual hackweeks messing with Postgres and MySQL. I started the first incarnation of the Software Internals Book Club during this time, reading Designing Data Intensive Applications with 5-10 other developers in Bryant Park. During this time I also started the NYC Systems Coffee Club. Postgres After about four months of searching I ended up with three good offers, all to do C and Rust development on Postgres (extensions) as an individual contributor. Working on extensions might sound like the definition of not-sexy, but Postgres APIs are so loosely abstracted it's really as if you're working on Postgres itself. You can mess with almost anything in Postgres so you have to be very aware of what you're doing. And when you can't mess with something in Postgres because an API doesn't yet exist, companies have the tendency to just fork Postgres so they can. (This tendency isn't specific to Postgres, almost every open-source database company seems to have a long-running internal fork or two of the database.) EnterpriseDB Two of the three offers were from early-stage startups and after more than 3 years being part of the earliest stages of startups I was happy for a break. But the third offer was from one of the biggest contributors to Postgres, a 20-year old company called EnterpriseDB. (You can probably come up with different rankings of companies using different metrics so I'm only saying EnterpriseDB is one of the biggest contributors.) It seemed like the best place to be to learn a lot and contribute something meaningful. My coworkers are a mix of Postgres veterans (people who contributed the WAL to Postgres, who contributed MVCC to Postgres, who contributed logical decoding and logical replication, who contributed parallel queries; the list goes on and on) but also my developer-coworkers are people who started at EnterpriseDB on technical support, or who were previously Postgres administrators. It's quite a mix. Relatively few geniuses or PhDs, despite what I used to think, but they certainly work hard and have hard-earned experience. Anyway, I've now been working at EnterpriseDB for over a year so I wanted to share this retrospective. I also wanted to cover what it's like coming from engineering management and founding companies to going back to being an individual contributor. (Spoiler: incredibly enjoyable.) But it has been hard enough to make myself write this much so I'm calling it a day. :) I wrote a post about the winding path I took from web developer to database developer over 10 years. pic.twitter.com/tf8bUDRzjV — Phil Eaton (@eatonphil) February 15, 2025 † From 2011-2014 I also did contract web development but this was part-time while I was in school.

2 months ago 23 votes

More in technology

Greatest Hits

I’ve been blogging now for approximately 8,465 days since my first post on Movable Type. My colleague Dan Luu helped me compile some of the “greatest hits” from the archives of ma.tt, perhaps some posts will stir some memories for you as well: Where Did WordCamps Come From? (2023) A look back at how Foo … Continue reading Greatest Hits →

21 hours ago 2 votes
Let's give PRO/VENIX a barely adequate, pre-C89 TCP/IP stack (featuring Slirp-CK)

TCP/IP Illustrated (what would now be called the first edition prior to the 2011 update) for a hundred-odd bucks on sale which has now sat on my bookshelf, encased in its original shrinkwrap, for at least twenty years. It would be fun to put up the 4.4BSD data structures poster it came with but that would require opening it. Fortunately, today we have AI we have many more excellent and comprehensive documents on the subject, and more importantly, we've recently brought back up an oddball platform that doesn't have networking either: our DEC Professional 380 running the System V-based PRO/VENIX V2.0, which you met a couple articles back. The DEC Professionals are a notoriously incompatible member of the PDP-11 family and, short of DECnet (DECNA) support in its unique Professional Operating System, there's officially no other way you can get one on a network — let alone the modern Internet. Are we going to let that stop us? Crypto Ancienne proxy for TLS 1.3. And, as we'll discuss, if you can get this thing on the network, you can get almost anything on the network! Easily portable and painfully verbose source code is included. Recall from our lengthy history of DEC's early misadventures with personal computers that, in Digital's ill-advised plan to avoid the DEC Pros cannibalizing low-end sales from their categorical PDP-11 minicomputers, Digital's Small Systems Group deliberately made the DEC Professional series nearly totally incompatible despite the fact they used the same CPUs. In their initial roll-out strategy in 1982, the Pros (as well as their sibling systems, the Rainbow and the DECmate II) were only supposed to be mere desktop office computers — the fact the Pros were PDP-11s internally was mostly treated as an implementation detail. The idea backfired spectacularly against the IBM PC when the Pros and their promised office software failed to arrive on time and in 1984 DEC retooled around a new concept of explicitly selling the Pros as desktop PDP-11s. This required porting operating systems that PDP-11 minis typically ran: RSX-11M Plus was already there as the low-level layer of the Professional Operating System (P/OS), and DEC internally ported RT-11 (as PRO/RT-11) and COS. PDP-11s were also famous for running Unix and so DEC needed a Unix for the Pro as well, though eventually only one official option was ever available: a port of VenturCom's Venix based on V7 Unix and later System V Release 2.0 called PRO/VENIX. After the last article, I had the distinct pleasure of being contacted by Paul Kleppner, the company's first paid employee in 1981, who was part of the group at VenturCom that did the Pro port and stayed at the company until 1988. Venix was originally developed from V6 Unix on the PDP-11/23 incorporating Myron Zimmerman's real-time extensions to the kernel (such as semaphores and asynchronous I/O), then a postdoc in physics at MIT; Kleppner's father was the professor of the lab Zimmerman worked in. Zimmerman founded VenturCom in 1981 to capitalize on the emerging Unix market, becoming one of the earliest commercial Unix licensees. Venix-11 was subsequently based on the later V7 Unix, as was Venix/86, which was the first Unix on the IBM PC in January 1983 and was ported to the DEC Rainbow as Venix/86R. In addition to its real-time extensions and enhanced segmentation capability, critical for memory management in smaller 16-bit address spaces, it also included a full desktop graphics package. Notably, DEC themselves were also a Unix licensee through their Unix Engineering Group and already had an enhanced V7 Unix of their own running on the PDP-11, branded initially as V7M. Subsequently the UEG developed a port of 4.2BSD with some System V components for the VAX and planned to release it as Ultrix-32, simultaneously retconning V7M as Ultrix-11 even though it had little in common with the VAX release. Paul recalls that DEC did attempt a port of Ultrix-11 to the Pro 350 themselves but ran into intractable performance problems. By then the clock was ticking on the Pro relaunch and the issues with Ultrix-11 likely prompted DEC to look for alternatives. Crucially, Zimmerman had managed to upgrade Venix-11's kernel while still keeping it small, a vital aspect on his 11/23 which lacked split instruction and data addressing and would have had to page in and out a larger kernel otherwise. Moreover, the 11/23 used an F-11 CPU — the same CPU as the original Professional 350 and 325. DEC quickly commissioned VenturCom to port their own system over to the Pro, which Paul says was a real win for VenturCom, and the first release came out in July 1984 complete with its real-time features intact and graphics support for the Pro's bitmapped screen. It was upgraded ("PRO/VENIX Rev 2.0") in October 1984, adding support for the new top-of-the-line DEC Professional 380, and then switched to System V (SVR2) in July 1985 with PRO/VENIX V2.0. (For its part Ultrix-11 was released as such in 1984 as well, but never for the Pro series.) Keep that kernel version history in mind for when we get to oddiments of the C compiler. As for networking, though, with the exception of UUCP over serial, none of these early versions of Venix on either the PDP-11 or 8086 supported any kind of network connectivity out of the box — officially the only Pro operating system to support its Ethernet upgrade option was P/OS 2.0. Although all Pros have a 15-pin AUI network port, it isn't activated until an Ethernet CTI card is installed. (While Stan P. found mention of a third-party networking product called Fusion by Network Research Corporation which could run on PRO/VENIX, Paul's recollection is that this package ran into technical problems with kernel size during development. No examples of the PRO/VENIX version have so far been located and it may never have actually been released. You'll hear about it if a copy is found. The unofficial Pro 2.9BSD port also supports the network card, but that was always an under-the-table thing.) Since we run Venix on our Pro, that means currently our only realistic option to get this on the 'Nets is also over a serial port. lower speed port for our serial IP implementation. PRO/VENIX supports using only the RS-423 port as a remote terminal, and because it's twice as fast, it's more convenient for logins and file exchange over Kermit (which also has no TCP/IP overhead). Using the printer port also provides us with a nice challenge: if our stack works acceptably well at 4800bps, it should do even better at higher speeds if we port it elsewhere. On the Pro, we connect to our upstream host using a BCC05 cable (in the middle of this photograph), which terminates in a regular 25-pin RS-232 on the other end. Now for the software part. There are other small TCP/IP stacks, notably things like Adam Dunkel's lwIP and so on. But even SVR2 Venix is by present standards a old Unix with a much less extensive libc and more primitive C compiler — in a short while you'll see just how primitive — and relatively modern code like lwIP's would require a lot of porting. Ideally we'd like a very minimal, indeed barely adequate, stack that can do simple tasks and can be expressed in a fashion acceptable to a now antiquated compiler. Once we've written it, it would be nice if it were also easily portable to other very limited systems, even by directly translating it to assembly language if necessary. What we want this barebones stack to accomplish will inform its design: and the hardware 24-7 to make such a use case meaningful. The Ethernet option was reportedly competent at server tasks, but Ethernet has more bandwidth, and that card also has additional on-board hardware. Let's face the cold reality: as a server, we'd find interacting with it over the serial port unsatisfactory at best and we'd use up a lot of power and MTBF keeping it on more than we'd like to. Therefore, we really should optimize for the client case, which means we also only need to run the client when we're performing a network task. no remote login capacity, like, I dunno, a C64, the person on the console gets it all. Therefore, we really should optimize for the single user case, which means we can simplify our code substantially by merely dealing with sockets sequentially, one at a time, without having to worry about routing packets we get on the serial port to other tasks or multiplexing them. Doing so would require extra work for dual-socket protocols like FTP, but we're already going to use directly-attached Kermit for that, and if we really want file transfer over TCP/IP there are other choices. (On a larger antique system with multiple serial ports, we could consider a setup where each user uses a separate outgoing serial port as their own link, which would also work under this scheme.) Some of you may find this conflicts hard with your notion of what a "stack" should provide, but I also argue that the breadth of a full-service driver would be wasted on a limited configuration like this and be unnecessarily more complex to write and test. Worse, in many cases, is better, and I assert this particular case is one of them. Keeping the above in mind, what are appropriate client tasks for a microcomputer from 1984, now over 40 years old — even a fairly powerful one by the standards of the time — to do over a slow TCP/IP link? Crypto Ancienne's carl can serve as an HTTP-to-HTTPS proxy to handle the TLS part, if necessary.) We could use protocols like these to download and/or view files from systems that aren't directly connected, or to send and receive status information. One task that is also likely common is an interactive terminal connection (e.g., Telnet, rlogin) to another host. However, as a client this particular deployment is still likely to hit the same sorts of latency problems for the same reasons we would experience connecting to it as a server. These other tasks here are not highly sensitive to latency, require only a single "connection" and no multiplexing, and are simple protocols which are easy to implement. Let's call this feature set our minimum viable product. Because we're writing only for a couple of specific use cases, and to make them even more explicit and easy to translate, we're going to take the unusual approach of having each of these clients handle their own raw packets in a bytewise manner. For the actual serial link we're going to go even more barebones and use old-school RFC 1055 SLIP instead of PPP (uncompressed, too, not even Van Jacobson CSLIP). This is trivial to debug and straightforward to write, and if we do so in a relatively encapsulated fashion, we could consider swapping in CSLIP or PPP later on. A couple of utility functions will do the IP checksum algorithm and reading and writing the serial port, and DNS and some aspects of TCP also get their own utility subroutines, but otherwise all of the programs we will create will read and write their own network datagrams, using the SLIP code to send and receive over the wire. The C we will write will also be intentionally very constrained, using bytewise operations assuming nothing about endianness and using as little of the C standard library as possible. For types, you only need some sort of 32-bit long, which need not be native, an int of at least 16 bits, and a char type — which can be signed, and in fact has to be to run on earlier Venices (read on). You can run the entirety of the code with just malloc/free, read/write/open/close, strlen/strcat, sleep, rand/srand and time for the srand seed (and fprintf for printing debugging information, if desired). On a system with little or no operating system support, almost all of these primitive library functions are easy to write or simulate, and we won't even assume we're capable of non-blocking reads despite the fact Venix can do so. After all, from that which little is demanded, even less is expected. slattach which effectively makes a serial port directly into a network interface. Such an arrangement would be the most flexible approach from the user's perspective because you necessarily have a fixed, bindable external address, but obviously such a scheme didn't scale over time. With the proliferation of dialup Unix shell accounts in the late 1980s and early 1990s, closed-source tools like 1993's The Internet Adapter ("TIA") could provide the SLIP and later PPP link just by running them from a shell prompt. Because they synthesize artificial local IP addresses, sort of NAT before the concept explicitly existed, the architecture of such tools prevented directly creating listening sockets — though for some situations this could be considered a more of a feature than a bug. Any needed external ports could be proxied by the software anyway and later network clients tended not to require it, so for most tasks it was more than sufficient. Closed-source and proprietary SLIP/PPP-over-shell solutions like TIA were eventually displaced by open source alternatives, most notably SLiRP. SLiRP (hereafter Slirp so I don't gouge my eyes out) emerged in 1995 and used a similar architecture to TIA, handing out virtual addresses on an synthetic network and bridging that network to the Internet through the host system. It rapidly became the SLIP/PPP shell solution of choice, leading to its outright ban by some shell ISPs who claimed it violated their terms of service. As direct SLIP/PPP dialup became more common than shell accounts, during which time yours truly upgraded to a 56K Mac modem I still have around here somewhere, Slirp eventually became most useful for connecting small devices via their serial ports (PDAs and mobile phones especially, but really anything — subsets of Slirp are still used in emulators today like QEMU for a similar purpose) to a LAN. By a shocking and completely contrived coincidence, that's exactly what we'll be doing! Slirp has not been officially maintained since 2006. There is no package in Fedora, which is my usual desktop Linux, and the one in Debian reportedly has issues. A stack of patch sets circulated thereafter, but the planned 1.1 release never happened and other crippling bugs remain, some of which were addressed in other patches that don't seem to have made it into any release, source or otherwise. If you tried to build Slirp from source on a modern system and it just immediately exits, you got bit. I have incorporated those patches and a couple of my own to port naming and the configure script, plus some additional fixes, into an unofficial "Slirp-CK" which is on Github. It builds the same way as prior versions and is tested on Fedora Linux. I'm working on getting it functional on current macOS also. Next, I wrote up our four basic functional clients: ping, DNS lookup, NTP client (it doesn't set the clock, just shows you the stratum, refid and time which you can use for your own purposes), and TCP client. The TCP client accepts strings up to a defined maximum length, opens the connection, sends those strings (optionally separated by CRLF), and then reads the reply until the connection closes. This all seemed to work great on the Linux box, which you yourself can play with as a toy stack (directions at the end). Unfortunately, I then pushed it over to the Pro with Kermit and the compiler immediately started complaining. SLIP is a very thin layer on IP packets. There are exactly four metabytes, which I created preprocessor defines for: A SLIP packet ends with SLIP_END, or hex $c0. Where this must occur within a packet, it is replaced by a two byte sequence for unambiguity, SLIP_ESC SLIP_ESC_END, or hex $db $dc, and where the escape byte must occur within a packet, it gets a different two byte sequence, SLIP_ESC SLIP_ESC_ESC, or hex $db $dd. Although I initially set out to use defines and symbols everywhere instead of naked bytes, and wrote slip.c on that basis, I eventually settled on raw bytes afterwards using copious comments so it was clear what was intended to be sent. That probably saved me a lot of work renaming everything, because: Dimly I recalled that early C compilers, including System V, limit their identifiers to eight characters (the so-called "Ritchie limit"). At this point I probably should have simply removed them entirely for consistency with their absence elsewhere, but I went ahead and trimmed them down to more opaque, pithy identifiers. That wasn't the only problem, though. I originally had two functions in slip.c, slip_start and slip_stop, and it didn't like that either despite each appearing to have a unique eight-character prefix: That's because their symbols in the object file are actually prepended with various metacharacters like _ and ~, so effectively you only get seven characters in function identifiers, an issue this error message fails to explain clearly. The next problem: there's no unsigned char, at least not in PRO/VENIX Rev. 2.0 which I want to support because it's more common, and presumably the original versions of PRO/VENIX and Venix-11. (This type does exist in PRO/VENIX V2.0, but that's because it's System V and has a later C compiler.) In fact, the unsigned keyword didn't exist at all in the earliest C compilers, and even when it did, it couldn't be applied to every basic type. Although unsigned char was introduced in V7 Unix and is documented as legal in the PRO/VENIX manual, and it does exist in Venix/86 2.1 which is also a V7 Unix derivative, the PDP-11 and 8086 C compilers have different lineages and Venix's V7 PDP-11 compiler definitely doesn't support it: I suspect this may not have been intended because unsigned int works (unsigned long would be pointless on this architecture, and indeed correctly generates Misplaced 'long' on both versions of PRO/VENIX). Regardless of why, however, the plain char type on the PDP-11 is signed, and for compatibility reasons here we'll have no choice but to use it. Recall that when C89 was being codified, plain char was left as an ambiguous type since some platforms (notably PDP-11 and VAX) made it signed by default and others made it unsigned, and C89 was more about codifying existing practice than establishing new ones. That's why you see this on a modern 64-bit platform, e.g., my POWER9 workstation, where plain char is unsigned: If we change the original type explicitly to signed char on our POWER9 Linux machine, that's different: and, accounting for different sizes of int, seems similar on PRO/VENIX V2.0 (again, which is System V): but the exact same program on PRO/VENIX Rev. 2.0 behaves a bit differently: The differences in int size we expect, but there's other kinds of weird stuff going on here. The PRO/VENIX manual lists all the various permutations about type conversions and what gets turned into what where, but since the manual is already wrong about unsigned char I don't think we can trust the documentation for this part either. Our best bet is to move values into int and mask off any propagated sign bits before doing comparisons or math, which is agonizing, but reliable. That means throwing around a lot of seemingly superfluous & 0xff to make sure we don't get negative numbers where we don't want them. Once I got it built, however, there were lots of bugs. Many were because it turns out the compiler isn't too good with 32-bit long, which is not a native type on the 16-bit PDP-11. This (part of the NTP client) worked on my regular Linux desktop, but didn't work in Venix: The first problem is that the intermediate shifts are too large and overshoot, even though they should be in range for a long. Consider this example: On the POWER9, accounting for the different semantics of %lx, But on Venix, the second shift blows out the value. We can get an idea of why from the generated assembly in the adb debugger (here from PRO/VENIX V2.0, since I could cut and paste from the Kermit session): (Parenthetical notes: csav is a small subroutine that pushes volatiles r2 through r4 on the stack and turns r5 into the frame pointer; the corresponding cret unwinds this. The initial branch in this main is used to reserve additional stack space, but is often practically a no-op.) The first shift is here at ~main+024. Remember the values are octal, so 010 == 8. r0 is 16 bits wide — no 32-bit registers — so an eight-bit shift is fine. When we get to the second shift, however, it's the same instruction on just one register (030 == 24) and the overflow is never checked. In fact, the compiler never shifts the second part of the long at all. The result is thus zero. The second problem in this example is that the compiler never treats the constant as a long even though statically there's no way it can fit in a 16-bit int. To get around those two gotchas on both Venices here, I rewrote it this way: An alternative to a second variable is to explicitly mark the epoch constant itself as long, e.g., by casting it, which also works. Here's another example for your entertainment. At least some sort of pseudo-random number generator is crucial, especially for TCP when selecting the pseudo-source port and initial sequence numbers, or otherwise Slirp seemed to get very confused because we would "reuse" things a lot. Unfortunately, the obvious typical idiom to seed it like srand(time(NULL)) doesn't work: srand() expects a 16-bit int but time(NULL) returns a 32-bit long, and it turns out the compiler only passes the 16 most significant bits of the time — i.e., the ones least likely to change — to srand(). Here's the disassembly as proof (contents trimmed for display here; since this is a static binary, we can see everything we're calling): At the time we call the glue code for time from main, the value under the stack pointer (i.e., r6) is cleared immediately beforehand since we're passing NULL (at ~main+06). We then invoke the system call, which per the Venix manual for time(2) uses two registers for the 32-bit result, namely r0 (high bits) and r1 (low bits). We passed a null pointer, so the values remain in those registers and aren't written anywhere (branch at _time+014). When we return to ~main+014, however, we only put r0 on the stack for srand (remember that r5 is being used as the frame pointer; see the disassembly I provided for csav) and r1 is completely ignored. Why would this happen? It's because time(2) isn't declared anywhere in /usr/include or /usr/include/sys (the two C include directories), nor for that matter rand(3) or srand(3). This is true of both Rev. 2.0 and V2.0. Since the symbols are statically present in the standard library, linking will still work, but since the compiler doesn't know what it's supposed to be working with, it assumes int and fails to handle both halves of the long. One option is to manually declare everything ourselves. However, from the assembly at _time+016 we do know that if we pass a pointer, the entire long value will get placed there. That means we can also do this: Now this gets the lower bits and there is sufficient entropy for our purpose (though obviously not a cryptographically-secure PRNG). Interestingly, the Venix manual recommends using the time as the seed, but doesn't include any sample code. At any rate this was enough to make the pieces work for IP, ICMP and UDP, but TCP would bug out after just a handful of packets. As it happens, Venix has rather small serial buffers by modern standards: tty(7), based on the TIOCQCNT ioctl(2), appears to have just a 256-byte read buffer (sg_ispeed is only char-sized). If we don't make adjustments for this, we'll start losing framing when the buffer gets overrun, as in this extract from a test build with debugging dumps on and a maximum segment size/window of 512 bytes. Here, the bytes marked by dashes are the remote end and the bytes separated by dots are what the SLIP driver is scanning for framing and/or throwing away; you'll note there is obvious ASCII data in them. If we make the TCP MSS and window on our client side 256 bytes, there is still retransmission, but the connection is more reliable since overrun occurs less often and seems to work better than a hard cap on the maximum transmission unit (e.g., "mtu 256") from SLiRP's side. Our only consequence to dropping the TCP MSS and window size is that the TCP client is currently hard-coded to just send one packet at the beginning (this aligns with how you'd do finger, HTTP/1.x, gopher, etc.), and that datagram uses the same size which necessarily limits how much can be sent. If I did the extra work to split this over several datagrams, it obviously wouldn't be a problem anymore, but I'm lazy and worse is better! The connection can be made somewhat more reliable still by improving the SLIP driver's notion of framing. RFC 1055 only specifies that the SLIP end byte (i.e., $c0) occur at the end of a SLIP datagram, though it also notes that it was proposed very early on that it could also start datagrams — i.e., if two occur back to back, then it just looks like a zero length or otherwise obviously invalid entity which can be trivially discarded. However, since there's no guarantee or requirement that the remote link will do this, we can't assume it either. We also can't just look for a $45 byte (i.e., IPv4 and a 20 byte length) because that's an ASCII character and appears frequently in text payloads. However, $45 followed by a valid DSCP/ECN byte is much less frequent, and most of the time this byte will be either $00, $08 or $10; we don't currently support ECN (maybe we should) and we wouldn't find other DSCP values meaningful anyway. The SLIP driver uses these sequences to find the start of a datagram and $c0 to end it. While that doesn't solve the overflow issue, it means the SLIP driver will be less likely to go out of framing when the buffer does overrun and thus can better recover when the remote side retransmits. And, well, that's it. There are still glitches to bang out but it's good enough to grab Hacker News: src/ directory, run configure and then run make (parallel make is fine, I use -j24 on my POWER9). Connect your two serial ports together with a null modem, which I assume will be /dev/ttyUSB0 and /dev/ttyUSB1. Start Slirp-CK with a command line like ./slirp -b 4800 "tty /dev/ttyUSB1" but adjusting the baud and path to your serial port. Take note of the specified virtual and nameserver addresses: Unlike the given directions, you can just kill it with Control-C when you're done; the five zeroes are only if you're running your connection over standard output such as direct shell dial-in (this is a retrocomputing blog so some of you might). To see the debug version in action, next go to the BASS directory and just do a make. You'll get a billion warnings but it should still work with current gcc and clang because I specifically request -std=c89. If you use a different path for your serial port (i.e., not /dev/ttyUSB0), edit slip.c before you compile. You don't do anything like ifconfig with these tools; you always provide the tools the client IP address they'll use (or create an alias or script to do so). Try this initial example, with slirp already running: Because I'm super-lazy, you separate the components of the IPv4 address with spaces, not dots. In Slirp-land, 10.0.2.2 is always the host you are connected to. You can see the ICMP packet being sent, the bytes being scanned by the SLIP driver for framing (the ones with dots), and then the reply (with dashes). These datagram dumps have already been pre-processed for SLIP metabytes. Unfortunately, you may not be able to ping other hosts through Slirp because there's no backroute but you could try this with a direct SLIP connection, an exercise left for the reader. If Slirp doesn't want to respond and you're sure your serial port works (try testing both ends with Kermit?), you can recompile it with -DDEBUG (change this in the generated Makefile) and pass your intended debug level like -d 1 or -d 3. You'll get a file called slirp_debug with some agonizingly detailed information so you can see if it's actually getting the datagrams and/or liking the datagrams it gets. For nslookup, ntp and minisock, the second address becomes your accessible recursive nameserver (or use -i to provide an IP). The DNS dump is also given in the debug mode with slashes for the DNS answer section. nslookup and ntp are otherwise self-explanatory: minisock takes a server name (or IP) and port, followed by optional strings. The strings, up to 255 characters total (in this version), are immediately sent with CR-LFs between them except if you specify -n. If you specify no strings, none are sent. It then waits on that port for data and exits when the socket closes. This is how we did the HTTP/1.0 requests in the screenshots. On the DEC Pro, this has been tested on my trusty DEC Professional 380 running PRO/VENIX V2.0. It should compile and run on a 325 or 350, and on at least PRO/VENIX Rev. V2.0, though I don't have any hardware for this and Xhomer's serial port emulation is not good enough for this purpose (so unfortunately you'll need a real DEC Pro until I or Tarek get around to fixing it). The easiest way to get it over there is Kermit. Assuming you have this already, connect your host and the Pro on the "real" serial port at 9600bps. Make sure both sides are set to binary and just push all the files over (except the Markdown documentation unless you really want), and then do a make -f Makefile.venix (it may have been renamed to makefile.venix; adjust accordingly). Establishing the link is as simple as connecting your server's serial port to the other end of the BCC05 or equivalent from the Pro and starting Slirp to talk to that port (on my system, it's even the same port, so the same command line suffices). If you experience issues with the connection, the easiest fix is to just bounce Slirp — because there are no timeouts, there are also no retransmits. I don't know if this is hitting bugs in Slirp or in my code, though it's probably the latter. Nevertheless, I've been able to run stuff most of the day without issue. It's nice to have a simple network option and the personal satisfaction of having written it myself. There are many acknowledged deficiencies, mostly because I assume little about the system itself and tried to keep everything very simplistic. There are no timeouts and thus no retransmits, and if you break the TCP connection in the middle there will be no proper teardown. Also, because I used Slirp for the other side (as many others will), and because my internal network is full of machines that have no idea what IPv6 is, there is no IPv6 support. I agree there should be and SLIP doesn't care whether it gets IPv4 or IPv6, but for now that would require patching Slirp which is a job I just don't feel up to at the moment. I'd also like to support at least CSLIP in the future. In the meantime, if you want to try this on other operating systems, the system-dependent portions are in compat.h and slip.c with a small amount in ntp.c for handling time values. You will likely want to make changes to where your serial ports are and the speed they run at and how to make that port "raw" in slip.c. You should also add any extra #includes to compat.h that your system requires. I'd love to hear about it running other places. Slirp-CK remains under the original modified Slirp license and BASS is under the BSD 2-clause license. You can get Slirp-CK and BASS at Github.

15 hours ago 2 votes
Transactions are a protocol

Transactions are not an intrinsic part of a storage system. Any storage system can be made transactional: Redis, S3, the filesystem, etc. Delta Lake and Orleans demonstrated techniques to make S3 (or cloud storage in general) transactional. Epoxy demonstrated techniques to make Redis (and any other system) transactional. And of course there's always good old Two-Phase Commit. If you don't want to read those papers, I wrote about a simplified implementation of Delta Lake and also wrote about a simplified MVCC implementation over a generic key-value storage layer. It is both the beauty and the burden of transactions that they are not intrinsic to a storage system. Postgres and MySQL and SQLite have transactions. But you don't need to use them. It isn't possible to require you to use transactions. Many developers, myself a few years ago included, do not know why you should use them. (Hint: read Designing Data Intensive Applications.) And you can take it even further by ignoring the transaction layer of an existing transactional database and implement your own transaction layer as Convex has done (the Epoxy paper above also does this). It isn't entirely clear that you have a lot to lose by implementing your own transaction layer since the indexes you'd want on the version field of a value would only be as expensive or slow as any other secondary index in a transactional database. Though why you'd do this isn't entirely clear (I will like to read about this from Convex some time). It's useful to see transaction protocols as another tool in your system design tool chest when you care about consistency, atomicity, and isolation. Especially as you build systems that span data systems. Maybe, as Ben Hindman hinted at the last NYC Systems, even proprietary APIs will eventually provide something like two-phase commit so physical systems outside our control can become transactional too. Transactions are a protocol short new post pic.twitter.com/nTj5LZUpUr — Phil Eaton (@eatonphil) April 20, 2025

21 hours ago 2 votes
Humanities Crash Course Week 16: The Art of War

In week 16 of the humanities crash course, I revisited the Tao Te Ching and The Art of War. I just re-read the Tao Te Ching last year, so I only revisited my notes now. I’ve also read The Art of War a few times, but decided to re-visit it now anyway. Readings Both books are related. The Art of War is older; Sun Tzu wrote it around 500 BCE, at a time when war was becoming more “professionalized” in China. The book aims convey what had (or hadn’t) worked in the battlefield. The starting point is conflict. There’s an enemy we’re looking to defeat. The best victory is achieved without engagement. That’s not always possible, so the book offers pragmatic suggestions on tactical maneuvers and such. It gives good advice for situations involving conflict, which is why they’ve influenced leaders (including businesspeople) throughout centuries: It’s better to win before any shots are fired (i.e., through cunning and calculation.) Use deception. Don’t let conflicts drag on. Understand the context to use it to your advantage. Keep your forces unified and disciplined. Adapt to changing conditions on the ground. Consider economics and logistics. Gather intelligence on the opposition. The goal is winning through foresight rather than brute force — good advice! The Tao Te Ching, written by Lao Tzu around the late 4th century BCE, is the central text in Taoism, a philosophy that aims for skillful action by aligning with the natural order of the universe — i.e., doing through “non-doing” and transcending distinctions (which aren’t present in reality but layered onto experiences by humans.) Tao means Way, as in the Way to achieve such alignment. The book is a guide to living the Tao. (Living in Tao?) But as it makes clear from its very first lines, you can’t really talk about it: the Tao precedes language. It’s a practice — and the practice entails non-striving. Audiovisual Music: Gioia recommended the Beatles (The White Album, Sgt. Pepper’s, and Abbey Road) and Rolling Stones (Let it Bleed, Beggars Banquet, and Exile on Main Street.) I’d heard all three Rolling Stones albums before, but don’t know them by heart (like I do with the Beatles.) So I revisited all three. Some songs sounded a bit cringe-y, especially after having heard “real” blues a few weeks ago. Of the three albums, Exile on Main Street sounds more authentic. (Perhaps because of the band member’s altered states?) In any case, it sounded most “in the Tao” to me — that is, as though the musicians surrendered to the experience of making this music. It’s about as rock ‘n roll as it gets. Arts: Gioia recommended looking at Chinese architecture. As usual, my first thought was to look for short documentaries or lectures in YouTube. I was surprised by how little there was. Instead, I read the webpage Gioia suggested. Cinema: Since we headed again to China, I took in another classic Chinese film that had long been on my to-watch list: Wong Kar-wai’s IN THE MOOD FOR LOVE. I found it more Confucian than Taoist, although its slow pacing, gentleness, focus on details, and passivity strike something of a Taoist mood. Reflections When reading the Tao Te Ching, I’m often reminded of this passage from the Gospel of Matthew: No man can serve two masters: for either he will hate the one, and love the other; or else he will hold to the one, and despise the other. Ye cannot serve God and mammon. Therefore I say unto you, Take no thought for your life, what ye shall eat, or what ye shall drink; nor yet for your body, what ye shall put on. Is not the life more than meat, and the body than raiment? Behold the fowls of the air: for they sow not, neither do they reap, nor gather into barns; yet your heavenly Father feedeth them. Are ye not much better than they? Which of you by taking thought can add one cubit unto his stature? And why take ye thought for raiment? Consider the lilies of the field, how they grow; they toil not, neither do they spin: And yet I say unto you, That even Solomon in all his glory was not arrayed like one of these. Wherefore, if God so clothe the grass of the field, which to day is, and to morrow is cast into the oven, shall he not much more clothe you, O ye of little faith? Therefore take no thought, saying, What shall we eat? or, What shall we drink? or, Wherewithal shall we be clothed? (For after all these things do the Gentiles seek:) for your heavenly Father knoweth that ye have need of all these things. But seek ye first the kingdom of God, and his righteousness; and all these things shall be added unto you. Take therefore no thought for the morrow: for the morrow shall take thought for the things of itself. Sufficient unto the day is the evil thereof. The Tao Te Ching is older and from a different culture, but “Consider the lilies of the field, how they grow; they toil not, neither do they spin” has always struck me as very Taoistic: both texts emphasize non-striving and putting your trust on a higher order. Even though it’s even older, that spirit is also evident in The Art of War. It’s not merely letting things happen, but aligning mindfully with the needs of the time. Sometimes we must fight. Best to do it quickly and efficiently. And best yet if the conflict can be settled before it begins. Notes on Note-taking This week, I started using ChatGPT’s new o3 model. Its answers are a bit better than what I got with previous models, but there are downsides. For one thing, o3 tends to format answers in tables rather than lists. This works well if you use ChatGPT in a wide window, but is less useful on a mobile device or (as in my case) on a narrow window to the side. This is how I usually use ChatGPT on my Mac: in a narrow window. o3’s responses often include tables that get cut off in this window. For another, replies take much longer as the AI does more “research” in the background. As a result, it feels less conversational than 4o — which changes how I interact with it. I’ll play more with o3 for work, but for this use case, I’ll revert to 4o. Up Next Gioia recommends Apulelius’s The Golden Ass. I’ve never read this, and frankly feel weary about returning to the period of Roman decline. (Too close to home?) But I’ll approach it with an open mind. Again, there’s a YouTube playlist for the videos I’m sharing here. I’m also sharing these posts via Substack if you’d like to subscribe and comment. See you next week!

14 hours ago 1 votes
My approach to teaching electronics

Explaining the reasoning behind my series of articles on electronics -- and asking for your thoughts.

yesterday 2 votes