Full Width [alt+shift+f] Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
9
I saw a couple of interesting talks this morning before heading out: Alessandro Chiesa of Parma spoke about using spin-containing molecules potentially as qubits, and about chiral-induced spin selectivity (CISS) in electron transfer.  Regarding the former, here is a review.  Spin-containing molecules can have interesting properties as single qubits, or, for spins higher than 1/2, qudits, with unpaired electrons often confined to a transition metal or rare earth ion somewhat protected from the rest of the universe by the rest of the molecule.  The result can be very long coherence times for their spins.  Doing multi-qubit operations is very challenging with such building blocks, however.  There are some theory proposals and attempts to couple molecular qubits to superconducting resonators, but it's tough!   Regarding chiral induced spin selectivity, he discused recent work trying to use molecules where a donor region is linked to an acceptor region via a chiral bridge, and trying to...
a week ago

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from nanoscale views

Science updates - brief items

Here are a couple of neat papers that I came across in the last week.  (Planning to write something about multiferroics as well, once I have a bit of time.) The idea of directly extracting useful energy from the rotation of the earth sounds like something out of an H. G. Wells novel.  At a rough estimate (and it's impressive to me that AI tools are now able to provide a convincing step-by-step calculation of this; I tried w/ gemini.google.com) the rotational kinetic energy of the earth is about \(2.6 \times 10^{29}\) J.  The tricky bit is, how do you get at it?  You might imagine constructing some kind of big space-based pick-up coil and getting some inductive voltage generation as the earth rotates its magnetic field past the coil.  Intuitively, though, it seems like while sitting on the (rotating) earth, you should in some sense be comoving with respect to the local magnetic field, so it shouldn't be possible to do anything clever that way.  It turns out, though, that Lorentz forces still apply when moving a wire through the axially symmetric parts of the earth's field.  This has some conceptual contact with Faraday's dc electric generator.   With the right choice of geometry and materials, it is possible to use such an approach to extract some (tiny at the moment) power.  For the theory proposal, see here.  For an experimental demonstration, using thermoelectric effects as a way to measure this (and confirm that the orientation of the cylindrical shell has the expected effect), see here.  I need to read this more closely to decide if I really understand the nuances of how it works. On a completely different note, this paper came out on Friday.  (Full disclosure:  The PI is my former postdoc and the second author was one of my students.)  It's an impressive technical achievement.  We are used to the fact that usually macroscopic objects don't show signatures of quantum interference.  Inelastic interactions of the object with its environment effectively suppress quantum interference effects on some time scale (and therefore some distance scale).  Small molecules are expected to still show electronic quantum effects at room temperature, since they are tiny and their electronic levels are widely spaced, and here is a review of what this could do in electronic measurements.  Quantum interference effects should also be possible in molecular vibrations at room temperature, and they could manifest themselves through the vibrational thermal conduction through single molecules, as considered theoretically here.  This experimental paper does a bridge measurement to compare the thermal transport between a single-molecule-containing junction between a tip and a surface, and an empty (farther spaced) twin tip-surface geometry.  They argue that they see differences between two kinds of molecules that originate from such quantum interference effects. As for more global issues about the US research climate, there will be more announcements soon about reductions in force and the forthcoming presidential budget request.  (Here is an online petition regarding the plan to shutter the NIST atomic spectroscopy group.)  Please pay attention to these issues, and if you're a US citizen, I urge you to contact your legislators and make your voice heard.

an hour ago 2 votes
March Meeting 2025, Day 3

Another busy day at the APS Global Physics Summit.  Here are a few highlights: Shahal Ilani of the Weizmann gave an absolutely fantastic talk about his group's latest results from their quantum twisting microscope.  In a scanning tunneling microscope, because tunneling happens at an atomic-scale location between the tip and the sample, the momentum in the transverse direction is not conserved - that is, the tunneling averages over a huge range of \(\mathbf{k}\) vectors for the tunneling electron.  In the quantum twisting microscope, electrons tunnel from a flat (graphite) patch something like \(d \sim\) 100 nm across, coherently, through a couple of layers of some insulator (like WSe2) and into a van der Waals sample.  In this case, \(\mathbf{k}\) in the plane is comparatively conserved, and by rotating the sample relative to the tip, it is possible to build up a picture of the sample's electronic energy vs. \(\mathbf{k}\) dispersion, rather like in angle-resolved photoemission.  This has allowed, e.g., mapping of phonons via inelastic tunneling.  His group has applied this to magic angle twisted bilayer graphene, a system that has a peculiar combination of properties, where in some ways the electrons act like very local objects, and in other ways they act like delocalized objects.  The answer seems to be that this system at the magic angle is a bit of an analog of a heavy fermion system, where there are sort of local moments (living in very flat bands) interacting and hybridizing with "conduction" electrons (bands crossing the Fermi level at the Brillouin zone center).  The experimental data (movies of the bands as a function of energy and \(\mathbf{k}\) in the plane as the filling is tuned via gate) are gorgeous and look very much like theoretical models. I saw a talk by Roger Melko about applying large language models to try to get efficient knowledge of many-body quantum states, or at least the possible outputs of evolution of a quantum system like a quantum computer based on Rydberg atoms.  It started fairly pedagogically, but I confess that I got lost in the AI/ML jargon about halfway through. Francis M. Ross, recipient of this year's Keithley Award, gave a great talk about using transmission electron microscopy to watch the growth of materials in real time.  She had some fantastic videos - here is a review article about some of the techniques used.  She also showed some very new work using a focused electron beam to make arrays of point defects in 2D materials that looks very promising. Steve Kivelson, recipient of this year's Buckley Prize, presented a very nice talk about his personal views on the theory of high temperature superconductivity in the cuprates.  One basic point:  these materials are balancing between multiple different kinds of emergent order (spin density waves, charge density waves, electronic nematics, perhaps pair density waves).   This magnifies the effects of quenched disorder, which can locally tip the balance one way or another.  Recent investigations of the famous 2D square lattice Hubbard model show this as well.  He argues that the ground state of the Hubbard model for a broad range \(1/2 < U/t < 8\), where \(U\) is the on-site repulsion and \(t\) is the hopping term, the ground state is in fact a charge density wave, not a superconductor.  However, if there is some amount of disorder in the form of \(\delta t/t \sim 0.1-0.2\), the result is a robust, unavoidable superconducting state.  He further argues that increasing the superconducting transition temperature requires striking a balance between the underdoped case (strong pairing, weak superfluid phase stiffness) and the overdoped case (weak pairing, strong superfluid stiffness), and that one way to achieve this would be in a bilayer with broken mirror symmetry (say different charge reservoir layers above and below, and/or a big displacement field perpendicular to the plane).  (Apologies for how technical that sounded - hard to reduce that one to something super accessible without writing much more.) A bit more tomorrow before I depart back to Houston.

a week ago 7 votes
March Meeting 2025, Day 2

I spent a portion of today catching up with old friends and colleagues, so fewer highlights, but here are a couple: Like a few hundred other people, I went to the invited talk by Chetan Nayak, leader of Microsoft's quantum computing effort. It was sufficiently crowded that the session chair warned everyone about fire code regulations and that people should not sit on the floor blocking the aisles.  To set the landscape:  Microsoft's approach to quantum computing is to develop topological qubits based on interesting physics that is predicted to happen (see here and here) if one induces superconductivity (via the proximity effect) in a semiconductor nanowire with spin-orbit coupling.  When the right combination of gate voltage and external magnetic field is applied, the nanowire should cross into a topologically nontrivial state with majorana fermions localized to each end of the nanowire, leading to "zero energy states" seen as peaks in the conductance \(dI/dV\) centered at zero bias (\(V=0\)).  A major challenge is that disorder in these devices can lead to other sources of zero-bias peaks (Andreev bound states).  A 2023 paper outlines a protocol that is supposed to give good statistical feedback on whether a given device is in the topologically interesting or trivial regime.  I don't want to rehash the history of all of this.  In a paper published last month, a single proximitized, gate-defined InAs quantum wire is connected to a long quantum dot to form an interferometer, and the capacitance of that dot is sensed via RF techniques as a function of the magnetic flux threading the interferometer, showing oscillations with period \(h/2e\), interpreted as charge parity oscillations of the proximitized nanowire.  In new data, not yet reported in a paper, Nayak presented measurements on a system comprising two such wires and associated other structures.  The argument is that each wire can be individually tuned simultaneously into the topologically nontrivial regime via the protocol above.  Then interferometer measurements can be performed in one wire (the Z channel) and in a configuration involving two ends of different wires (the X channel), and they interpret their data as early evidence that they have achieved the desired majorana modes and their parity measurements.  I look forward to when a paper is out on this, as it is hard to make informed statements about this based just on what I saw quickly on slides from a distance.   In a completely different session, Garnet Chan gave a very nice talk about applying advanced quantum chemistry and embedding techniques to look at some serious correlated materials physics.  Embedding methods are somewhat reminiscent of mean field theories:  Instead of trying to solve the Schrödinger equation for a whole solid, for example, you can treat the solid as a self-consistent theory of a unit cell or set of unit cells embedded in a more coarse-grained bath (made up of other unit cells appropriately averaged).  See here, for example. He presented recent results on computing the Kondo effect of magnetic impurities in metals, understanding the trends of antiferromagnetic properties of the parent cuprates, and trying to describe superconductivity in the doped cuprates.  Neat stuff. In the same session, my collaborator Silke Buehler-Paschen gave a nice discussion of ways to use heavy fermion materials to examine strange metals, looking beyond just resistivity measurements.  Particularly interesting is the idea of trying to figure out quantum Fisher information, which in principle can tell you how entangled your many-body system is (that is, estimating how many other degrees of freedom are entangled with one particular degree of freedom).  See here for an intro to the idea, and here for an implementation in a strange metal, Ce3Pd20Si6.   More tomorrow.... (On a separate note, holy cow, the trade show this year is enormous - seems like it's 50% bigger than last year.  I never would have dreamed when I was a grad student that you could go to this and have your pick of maybe 10 different dilution refrigerator vendors.  One minor mystery:  Who did World Scientific tick off?  Their table is located on the completely opposite side of the very large hall from every other publisher.)

a week ago 7 votes
March Meeting 2025, Day 1

The APS Global Physics Summit is an intimate affair, with a mere 14,000 attendees, all apparently vying for lunch capacity for about 2,000 people.   The first day of the meeting was the usual controlled chaos of people trying to learn the layout of the convention center while looking for talks and hanging out having conversations.  On the plus side, the APS wifi seems to function well, and the projectors and slide upload system are finally technologically mature (though the pointers/clickers seem to have some issues).  Some brief highlights of sessions I attended: I spent the first block of time at this invited session about progress in understanding quantum spin liquids and quantum spin ice.  Spin ices are generally based on the pyrochlore structure, where atoms hosting local magnetic moments sit at the vertices of corner-sharing tetrahedra, as I had discussed here.  The idea is that the crystal environment and interactions between spins are such that the moments are favored to satisfy the ice rules, where in each tetrahedron two moments point inward toward the center and two point outward.  Classically there are a huge number of spin arrangements that all have about the same ground state energy.  In a quantum spin ice, the idea is that quantum fluctuations are large, so that the true ground state would be some enormous superposition of all possible ice-rule-satistfying configurations.  One consequence of this is that there are low energy excitations that look like an emergent form of electromagnetism, including a gapless phonon-like mode.  Bruce Gaulin spoke about one strong candidate quantum spin ice, Ce2Zr2O7, in a very pedagogical talk that covered all this.  A relevant recent review is this one.   There were two other talks in the session also about pyrochlores, an experimentally focused one by Sylvain Petit discussing Tb2Ti2O7 (see here), and a theory talk by Yong-Baek Kim focused again on the cerium zirconate.    Also in the session was an interesting talk by Jeff Rau about K2IrCl6, a material with a completely different structure that (above its ordering temperature of 3 K) acts like a "nodal line spin liquid". In part because I had students speaking there, I also attended a contributed session about nanomaterials (wires, tubes, dots, particles, liquids).  There were some neat talks.  The one that I found most surprising was from the Cha group at Cornell, where they were using a method developed by the Schroer group at Yale (see here and here) to fabricate nanowires of two difficult to grow, topologically interesting metals, CoIn3 and RhIn3.  The idea is to create a template with an array of tubular holes, and squeeze that template against a bulk crystal of the desired material at around 350C, so that the crystal is extruded into the holes to form wires.  Then the template can be etched away and the wires recovered for study.  I'm amazed that this works. In the afternoon, I went back and forth between the very crowded session on fractional quantum anomalous Hall physics in stacked van der Waals materials, and a contributed session about strange metals.  Interesting stuff for sure. I'm still trying to figure out what to see tomorrow, but there will be another update in the evening.

a week ago 7 votes

More in science

Science updates - brief items

Here are a couple of neat papers that I came across in the last week.  (Planning to write something about multiferroics as well, once I have a bit of time.) The idea of directly extracting useful energy from the rotation of the earth sounds like something out of an H. G. Wells novel.  At a rough estimate (and it's impressive to me that AI tools are now able to provide a convincing step-by-step calculation of this; I tried w/ gemini.google.com) the rotational kinetic energy of the earth is about \(2.6 \times 10^{29}\) J.  The tricky bit is, how do you get at it?  You might imagine constructing some kind of big space-based pick-up coil and getting some inductive voltage generation as the earth rotates its magnetic field past the coil.  Intuitively, though, it seems like while sitting on the (rotating) earth, you should in some sense be comoving with respect to the local magnetic field, so it shouldn't be possible to do anything clever that way.  It turns out, though, that Lorentz forces still apply when moving a wire through the axially symmetric parts of the earth's field.  This has some conceptual contact with Faraday's dc electric generator.   With the right choice of geometry and materials, it is possible to use such an approach to extract some (tiny at the moment) power.  For the theory proposal, see here.  For an experimental demonstration, using thermoelectric effects as a way to measure this (and confirm that the orientation of the cylindrical shell has the expected effect), see here.  I need to read this more closely to decide if I really understand the nuances of how it works. On a completely different note, this paper came out on Friday.  (Full disclosure:  The PI is my former postdoc and the second author was one of my students.)  It's an impressive technical achievement.  We are used to the fact that usually macroscopic objects don't show signatures of quantum interference.  Inelastic interactions of the object with its environment effectively suppress quantum interference effects on some time scale (and therefore some distance scale).  Small molecules are expected to still show electronic quantum effects at room temperature, since they are tiny and their electronic levels are widely spaced, and here is a review of what this could do in electronic measurements.  Quantum interference effects should also be possible in molecular vibrations at room temperature, and they could manifest themselves through the vibrational thermal conduction through single molecules, as considered theoretically here.  This experimental paper does a bridge measurement to compare the thermal transport between a single-molecule-containing junction between a tip and a surface, and an empty (farther spaced) twin tip-surface geometry.  They argue that they see differences between two kinds of molecules that originate from such quantum interference effects. As for more global issues about the US research climate, there will be more announcements soon about reductions in force and the forthcoming presidential budget request.  (Here is an online petition regarding the plan to shutter the NIST atomic spectroscopy group.)  Please pay attention to these issues, and if you're a US citizen, I urge you to contact your legislators and make your voice heard.

an hour ago 2 votes
Some Doodles I'm Proud of -- The Capping Algorithm for Embedded Graphs

This will be a really quick one! Over the last two weeks I’ve been finishing up a big project to make DOIs for all the papers published in TAC, and my code takes a while to run. So while testing I would hit “go” and have like 10 minutes to kill… which means it’s time to start answering questions on mse again! I haven’t been very active recently because I’ve been spending a lot of time on research and music, but it’s been nice to get back into it. I’m especially proud of a few recent answers, so I think I might quickly turn them into blog posts like I did in the old days! In this post, we’ll try to understand the Capping Algorithm which turns a graph embedded in a surface into a particularly nice embedding where the graph cuts the surface into disks. I drew some pretty pictures to explain what’s going on, and I’m really pleased with how they turned out! So, to start, what’s this “capping algorithm” all about? Say you have a (finite) graph $G$ and you want to know what surfaces it embeds into. For instance planar graphs are those which embed in $\mathbb{R}^2$ (equivalently $S^2$), and owners of this novelty mug know that even the famously nonplanar $K_{3,3}$ embeds in a torus1: Obviously every graph embeds into some high genus surface – just add an extra handle for every edge of the graph, and the edges can’t possibly cross each other! Also once you can embed in some surface you can obviously embed in higher genus surfaces by just adding handles you don’t use. This leads to two obvious “extremal” questions: What is the smallest genus surface which $G$ embeds into? What is the largest genus surface which $G$ embeds into where all the handles are necessary? Note we can check if a handle is “necessary” or not by cutting our surface along the edges of our graph. If the handle doesn’t get cut apart then our graph $G$ must not have used it! This leads to the precise definition: Defn: A $2$-Cell Embedding of $G$ in a surface $S$ is an embedding so that all the conected components of $S \setminus G$ are 2-cells (read: homeomorphic to disks). Then the “largest genus surface where all the handles are necessary” amounts to looking for the largest genus surface where $G$ admits a 2-cell embedding! But in fact, we can restrict attention to 2-cell embeddings in the smallest genus case too, since if we randomly embed $G$ into a surface, there’s an algorithm which only ever decreases the genus and outputs a 2-cell embedding! So if $S$ is the minimal genus surface that $G$ embeds in, we can run this algorithm to get a 2-cell embedding of $G$ in $S$. And what is that algorithm? It’s called Capping, see for instance Minimal Embeddings and the Genus of a Graph by J.W.T. Youngs. The idea is to cut your surface along $G$, look for anything that isn’t a disk, and “cap it off” to make it a disk. Then you repeat until everything in a disk, and you stop. The other day somebody on mse asked about this algorithm, and I had a lot of fun drawing some pictures to show what’s going on2! This post basically exists because I was really proud of how these drawings turned out, and wanted to share them somewhere more permanent, haha. Anyways, on with the show! We’ll start with an embedding of a graph 𝐺 (shown in purple) in a genus 2 surface: we’ll cut it into pieces along $G$, and choose one of our non-disk pieces (call it $S$) to futz with: Now we choose3 a big submanifold $T \subseteq S$ which leaves behind cylinders when we remove it. Pay attention to the boundary components of $T$, called $J_1$ and $J_2$ below, since that’s where we’ll attach a disk to “cap off” where $T$ used to be We glue all our pieces back together, but remove the interior of $T$ and then, as promised “cap off” the boundary components $J_1$ and $J_2$ with disks. Note that the genus decreased when we did this! It used to be genus 2, and now we’re genus 1! Note also that $G$ still embeds into our new surface: Let’s squish it around to a homeomorphic picture, then do the same process a second time! But faster now that we know what’s going on: At this point, we can try to do it again, but we’ll find that removing $G$ cuts our surface into disks: This tells us the algorithm is done, since we’ve successfully produced a 2-cell embedding of $G$ ^_^. Wow that was a really quick one today! Start to finish in under an hour, but it makes sense since I’d already drawn the pictures and spent some time doing research for my answer the other day. Maybe I’ll go play flute for a bit. Thanks for hanging out, all! Stay safe, and see you soon ^_^ This photo of a solution was taken from games4life.co.uk ↩ You know it’s funny, even over the course of drawing just these pictures the other day I feel like I improved a lot… I have half a mind to redraw all these pictures even better, but that would defeat the point of a quick post, so I’ll stay strong! ↩ It’s possible there’s a unique “best” choice of $T$ and I’m just inexperienced with this algorithm. I hadn’t heard of it until I wrote this answer, so there’s a lot of details that I’m fuzzy on. If you happen to know a lot about this stuff, definitely let me know more! ↩

23 hours ago 2 votes
The High Cost of Quantum Randomness Is Dropping

Randomness is essential to some research, but it’s always been prohibitively complicated. Now, we can use “pseudorandomness” instead. The post The High Cost of Quantum Randomness Is Dropping first appeared on Quanta Magazine

2 days ago 3 votes
H&M Will Use Digital Twins

The fashion retailer, H&M, has announced that they will start using AI generated digital twins of models in some of their advertising. This has sparked another round of discussion about the use of AI to replace artists of various kinds. Regarding the H&M announcement specifically, they said they will use digital twins of models that […] The post H&M Will Use Digital Twins first appeared on NeuroLogica Blog.

2 days ago 2 votes
A walk down Victoria Street

London’s mid-rise architecture

2 days ago 2 votes