More from Casey Handmer's blog
[Originally posted on the Terraform blog April 3, 2025.] Three years ago we set out to make cheap synthetic natural gas from sunlight and air. At the time I didn’t fully appreciate that we had kicked off the process of recompiling the foundation layer of our entire industrial stack. Last year, we made cheap pipeline grade natural gas from sunlight and air and expanded our hydrocarbon fuel road map to include methanol, a versatile liquid fuel and chemical precursor for practically every other kind of oil-derived chemical on the market. Unlimited synthetic methane and methanol underpinning global energy supply is a good start, but …
California is by far the richest and most powerful polity led by Progressive ideals, and it has taken a beating of late. In this post, I discuss a practical roadmap by which California must reclaim its mantle as the shining city on the hill, an embodiment of the positive attributes of Progressive ideals and material optimism, and once again become a target of aspirational upward mobility. This will not be an easy road. Decades of complacency have squandered enviable resources and potential. But I believe a strength of America is syncretism, with the marketplace of ideas providing robust competition for …
As of today, it is 601 days until October 17, 2026, when the mass-optimal launch window to Mars opens next. While I don’t have any privileged information, it’s fun to speculate about what SpaceX could choose to send on its first Starship flights to Mars. (Spoiler alert: Rods from the gods…) Over the next 600 days, SpaceX has a number of key technologies to demonstrate; orbit, reuse, refill, and chill. It’s hard to make predictions, particularly about the future. I’m optimistic that SpaceX will have multiple fully fueled Starships ready to go in October next year, to be followed by …
This post is a follow on from Powering the Mars Base. It’s an extended riff on the following thought experiment: What is the most electrical power you could extract from an integrated Starship-delivered nuclear reactor on Mars? The usual caveats apply. I have taught nuclear physics but I am not a reactor designer – which will shortly become obvious to those of you who Know. No liability is accepted for attempts to install open Brayton cycle nuclear turbines in Starships, with or without SpaceX permission. At the outset, let’s rehearse the underlying assumptions. A Starship has a 9 m diameter, …
More in science
For more than a century, women and racial minorities have fought for access to education and employment opportunities once reserved exclusively for white men. The life of Yvonne Young “Y.Y.” Clark is a testament to the power of perseverance in that fight. As a smart Black woman who shattered the barriers imposed by race and gender, she made history multiple times during her career in academia and industry. She probably is best known as the first woman to serve as a faculty member in the engineering college at Tennessee State University, in Nashville. Her pioneering spirit extended far beyond the classroom, however, as she continuously staked out new territory for women and Black professionals in engineering. She accomplished a lot before she died on 27 January 2019 at her home in Nashville at the age of 89. Clark is the subject of the latest biography in IEEE-USA’s Famous Women Engineers in History series. “Don’t Give Up” was her mantra. An early passion for technology Born on 13 April 1929 in Houston, Clark moved with her family to Louisville, Ky., as a baby. She was raised in an academically driven household. Her father, Dr. Coleman M. Young Jr., was a surgeon. Her mother, Hortense H. Young, was a library scientist and journalist. Her mother’s “Tense Topics” column, published by the Louisville Defender newspaper, tackled segregation, housing discrimination, and civil rights issues, instilling awareness of social justice in Y.Y. Clark’s passion for technology became evident at a young age. As a child, she secretly repaired her family’s malfunctioning toaster, surprising her parents. It was a defining moment, signaling to her family that she was destined for a career in engineering—not in education like her older sister, a high school math teacher. “Y.Y.’s family didn’t create her passion or her talents. Those were her own,” said Carol Sutton Lewis, co-host and producer for the third season of the “Lost Women of Science” podcast, on which Clark was profiled. “What her family did do, and what they would continue to do, was make her interests viable in a world that wasn’t fair.” Clark’s interest in studying engineering was precipitated by her passion for aeronautics. She said all the pilots she spoke with had studied engineering, so she was determined to do so. She joined the Civil Air Patrol and took simulated flying lessons. She then learned to fly an airplane with the help of a family friend. Despite her academic excellence, though, racial barriers stood in her way. She graduated at age 16 from Louisville’s Central High School in 1945. Her parents, concerned that she was too young to attend college, sent her to Boston for two additional years at the Girls’ Latin School and Roxbury Memorial High School. She then applied to the University of Louisville, where she was initially accepted and offered a full scholarship. When university administrators realized she was Black, however, they rescinded the scholarship and the admission, Clark said on the “Lost Women of Science” podcast, which included clips from when her daughter interviewed her in 2007. As Clark explained in the interview, the state of Kentucky offered to pay her tuition to attend Howard University, a historically Black college in Washington, D.C., rather than integrate its publicly funded university. Breaking barriers in higher education Although Howard provided an opportunity, it was not free of discrimination. Clark faced gender-based barriers, according to the IEEE-USA biography. She was the only woman among 300 mechanical engineering students, many of whom were World War II veterans. “Y.Y.’s family didn’t create her passion or her talents. Those were her own. What her family did do, and what they would continue to do, was make her interests viable in a world that wasn’t fair.” —Carol Sutton Lewis Despite the challenges, she persevered and in 1951 became the first woman to earn a bachelor’s degree in mechanical engineering from the university. The school downplayed her historic achievement, however. In fact, she was not allowed to march with her classmates at graduation. Instead, she received her diploma during a private ceremony in the university president’s office. A career defined by firsts Determined to forge a career in engineering, Clark repeatedly encountered racial and gender discrimination. In a 2007 Society of Women Engineers (SWE) StoryCorps interview, she recalled that when she applied for an engineering position with the U.S. Navy, the interviewer bluntly told her, “I don’t think I can hire you.” When she asked why not, he replied, “You’re female, and all engineers go out on a shakedown cruise,” the trip during which the performance of a ship is tested before it enters service or after it undergoes major changes such as an overhaul. She said the interviewer told her, “The omen is: ‘No females on the shakedown cruise.’” Clark eventually landed a job with the U.S. Army’s Frankford Arsenal gauge laboratories in Philadelphia, becoming the first Black woman hired there. She designed gauges and finalized product drawings for the small-arms ammunition and range-finding instruments manufactured there. Tensions arose, however, when some of her colleagues resented that she earned more money due to overtime pay, according to the IEEE-USA biography. To ease workplace tensions, the Army reduced her hours, prompting her to seek other opportunities. Her future husband, Bill Clark, saw the difficulty she was having securing interviews, and suggested she use the gender-neutral name Y.Y. on her résumé. The tactic worked. She became the first Black woman hired by RCA in 1955. She worked for the company’s electronic tube division in Camden, N.J. Although she excelled at designing factory equipment, she encountered more workplace hostility. “Sadly,” the IEEE-USA biography says, she “felt animosity from her colleagues and resentment for her success.” When Bill, who had taken a faculty position as a biochemistry instructor at Meharry Medical College in Nashville, proposed marriage, she eagerly accepted. They married in December 1955, and she moved to Nashville. In 1956 Clark applied for a full-time position at Ford Motor Co.’s Nashville glass plant, where she had interned during the summers while she was a Howard student. Despite her qualifications, she was denied the job due to her race and gender, she said. She decided to pursue a career in academia, becoming in 1956 the first woman to teach mechanical engineering at Tennessee State University. In 1965 she became the first woman to chair TSU’s mechanical engineering department. While teaching at TSU, she pursued further education, earning a master’s degree in engineering management from Nashville’s Vanderbilt University in 1972—another step in her lifelong commitment to professional growth. After 55 years with the university, where she was also a freshman student advisor for much of that time, Clark retired in 2011 and was named professor emeritus. A legacy of leadership and advocacy Clark’s influence extended far beyond TSU. She was active in the Society of Women Engineers after becoming its first Black member in 1951. Racism, however, followed her even within professional circles. At the 1957 SWE conference in Houston, the event’s hotel initially refused her entry due to segregation policies, according to a 2022 profile of Clark. Under pressure from the society’s leadership, the hotel compromised; Clark could attend sessions but had to be escorted by a white woman at all times and was not allowed to stay in the hotel despite having paid for a room. She was reimbursed and instead stayed with relatives. As a result of that incident, the SWE vowed never again to hold a conference in a segregated city. Over the decades, Clark remained a champion for women in STEM. In one SWE interview, she advised future generations: “Prepare yourself. Do your work. Don’t be afraid to ask questions, and benefit by meeting with other women. Whatever you like, learn about it and pursue it. “The environment is what you make it. Sometimes the environment is hostile, but don’t worry about it. Be aware of it so you aren’t blindsided.” Her contributions earned her numerous accolades including the 1998 SWE Distinguished Engineering Educator Award and the 2001 Tennessee Society of Professional Engineers Distinguished Service Award. A lasting impression Clark’s legacy was not confined to engineering; she was deeply involved in Nashville community service. She served on the board of the 18th Avenue Family Enrichment Center and participated in the Nashville Area Chamber of Commerce. She was active in the Hendersonville Area chapter of The Links, a volunteer service organization for Black women, and the Nashville alumnae chapter of the Delta Sigma Theta sorority. She also mentored members of the Boy Scouts, many of whom went on to pursue engineering careers. Clark spent her life knocking down barriers that tried to impede her. She didn’t just break the glass ceiling—she engineered a way through it for people who came after her.
Apply to come to our premier event for students
[Note that this article is a transcript of the video embedded above.] Late in the night of Valentine’s Day 2014, air monitors at an underground nuclear waste repository outside Carlsbad, New Mexico, detected the release of radioactive elements, including americium and plutonium, into the environment. Ventilation fans automatically switched on to exhaust contaminated air up through a shaft, through filters, and out to the environment above ground. When filters were checked the following morning, technicians found that they contained transuranic materials, highly radioactive particles that are not naturally found on Earth. In other words, a container of nuclear waste in the repository had been breached. The site was shut down and employees sent home, but it would be more than a year before the bizarre cause of the incident was released. I’m Grady, and this is Practical Engineering. The dangers of the development of nuclear weapons aren’t limited to mushroom clouds and doomsday scenarios. The process of creating the exotic, transuranic materials necessary to build thermonuclear weapons creates a lot of waste, which itself is uniquely hazardous. Clothes, tools, and materials used in the process may stay dangerously radioactive for thousands of years. So, a huge part of working with nuclear materials is planning how to manage waste. I try not to make predictions about the future, but I think it’s safe to say that the world will probably be a bit different in 10,000 years. More likely, it will be unimaginably different. So, ethical disposal of nuclear waste means not only protecting ourselves but also protecting whoever is here long after we are ancient memories or even forgotten altogether. It’s an engineering challenge pretty much unlike any other, and it demands some creative solutions. The Waste Isolation Pilot Plant, or WIPP, was built in the 1980s in the desert outside Carlsbad, New Mexico, a site selected for a very specific reason: salt. One of the most critical jobs for long-term permanent storage is to keep radioactive waste from entering groundwater and dispersing into the environment. So, WIPP was built inside an enormous and geologically stable formation of salt, roughly 2000 feet or 600 meters below the surface. The presence of ancient salt is an indication that groundwater doesn’t reach this area since the water would dissolve it. And the salt has another beneficial behavior: it’s mobile. Over time, the walls and ceilings of mined-out salt tend to act in a plastic manner, slowly creeping inwards to fill the void. This is ideal in the long term because it will ultimately entomb the waste at WIPP in a permanent manner. It does make things more complicated in the meantime, though, since they have to constantly work to keep the underground open during operation. This process, called “ground control,” involves techniques like drilling and installing roof bolts in epoxy to hold up the ceilings. I have an older video on that process if you want to learn more after this. The challenge in this case is that, eventually, we want the roof bolts to fail, allowing a gentle collapse of salt to fill the void because it does an important job. The salt, and just being deep underground in general, acts to shield the environment from radiation. In fact, a deep salt mine is such a well-shielded area that there’s an experimental laboratory located in WIPP across on the other side of the underground from the waste panels where various universities do cutting-edge physics experiments precisely because of the low radiation levels. The thousands of feet of material above the lab shield it from cosmic and solar radiation, and the salt has much lower levels of inherent radioactivity than other kinds of rock. Imagine that: a low-radiation lab inside a nuclear waste dump. Four shafts extend from the surface into the underground repository for moving people, waste, and air into and out of the facility. Room-and-pillar mining is used to excavate horizontal drifts or panels where waste is stored. Investigators were eventually able to re-enter the repository and search for the cause of the breach. They found the source in Panel 7, Room 7, the area of active disposal at the time. Pressure and heat had burst a drum, starting a fire, damaging nearby containers, and ultimately releasing radioactive materials into the air. On activation of the radiation alarm, the underground ventilation system automatically switched to filtration mode, sending air through massive HEPA filters. Interestingly, although they’re a pretty common consumer good now, High Efficiency Particulate Air, or HEPA, filters actually got their start during the Manhattan Project specifically to filter radionuclides from the air. The ventilation system at WIPP performed well, although there was some leakage past the filters, allowing a small percentage of radioactive material to bypass the filters and release directly into the atmosphere at the surface. 21 workers tested positive for low-level exposure to radioactive contamination but, thankfully, were unharmed. Both WIPP and independent testing organizations confirmed that detected levels were very low, the particles did not spread far, and were extremely unlikely to result in radiation-related health effects to workers or the public. Thankfully, the safety features at the facility worked, but it would take investigators much longer to understand what went wrong in the first place, and that involved tracing that waste barrel back to its source. It all started at the Los Alamos National Laboratory, one of the labs created as part of the 1940s Manhattan Project that first developed atomic bombs in the desert of New Mexico. The 1970s brought a renewed interest in cleaning up various Department of Energy sites. Los Alamos was tasked with recovering plutonium from residue materials left over from previous wartime and research efforts. That process involved using nitric acid to separate plutonium from uranium. Once plutonium is extracted, you’re left with nitrate solutions that get neutralized or evaporated, creating a solid waste stream that contains residual radioactive isotopes. In 1985, a volume of this waste was placed in a lead-lined 55-gallon drum along with an absorbent to soak up any moisture and put into temporary storage at Los Alamos, where it sat for years. But in the summer of 2011, the Las Conchas wildfire threatened the Los Alamos facility, coming within just a few miles of the storage area. This actual fire lit a metaphorical fire under various officials, and wheels were set into motion to get the transuranic waste safely into a long-term storage facility. In other words, ship it down the road to WIPP. Transporting transuranic wastes on the road from one facility to another is quite an ordeal, even when they’re only going through the New Mexican desert. There are rules preventing the transportation of ignitable, corrosive, or reactive waste, and special casks are required to minimize the risk of radiological release in the unlikely event of a crash. WIPP also had rules about how waste can be packaged in order to be placed for long-term disposal called the Waste Acceptance Criteria, which included limits on free liquids. Los Alamos concluded that barrel didn’t meet the requirements and needed to be repackaged before shipping to WIPP. But, there were concerns about which absorbent to use. Los Alamos used various absorbent materials within waste barrels over the years to minimize the amount of moisture and free liquid inside. Any time you’re mixing nuclear waste with another material, you have to be sure there won’t be any unexpected reactions. The procedure for repackaging nitrate salts required that a superabsorbent polymer be used, similar to the beads I’ve used in some of my demos, but concerns about reactivity led to meetings and investigations about whether it was the right material for the job. Ultimately, Los Alamos and their contractors concluded that the materials were incompatible and decided to make a switch. In May 2012, Los Alamos published a white paper titled “Amount of Zeolite Required to Meet the Constraints Established by the EMRTC Report RF 10-13: Application of LANL Evaporator Nitrate Salts.” In other words, “How much kitty litter should be added to radioactive waste?” The answer was about 1.2 to 1, inorganic zeolite clay to nitrate salt waste, by volume. That guidance was then translated into the actual procedures that technicians would use to repackage the waste in gloveboxes at Los Alamos. But something got lost in translation. As far as investigators could determine, here’s what happened: In a meeting in May 2012, the manager responsible for glovebox operations took personal notes about this switch in materials. Those notes were sent in an email and eventually incorporated into the written procedures: “Ensure an organic absorbent is added to the waste material at a minimum of 1.5 absorbent to 1 part waste ratio.” Did you hear that? The white paper’s requirement to use an inorganic absorbent became “...an organic absorbent” in the procedures. We’ll never know where the confusion came from, but it could have been as simple as mishearing the word in the meeting. Nonetheless, that’s what the procedure became. Contractors at Los Alamos procured a large quantity of Swheat Scoop, an organic, wheat-based cat litter, and started using it to repackage the nitrate salt wastes. Our barrel first packaged in 1985 was repackaged in December 2013 with the new kitty litter. It was tested and certified in January 2014, shipped to WIPP later that month, and placed underground. And then it blew up. The unthinkable had happened; the wrong kind of kitty litter had caused a nuclear disaster. While the nitrates are relatively unreactive with inorganic, mineral-based zeolite kitty litter that should have been used, the organic, carbon-based wheat material could undergo oxidation reactions with nitrate wastes. I think it’s also interesting to note here that the issue is a reaction that was totally unrelated to the presence of transuranic waste. It was a chemical reaction - not a nuclear reaction - that caused the problem. Ultimately, the direct cause of the incident was determined to be “an exothermic reaction of incompatible materials in LANL waste drum 68660 that led to thermal runaway, which resulted in over-pressurization of the drum, breach of the drum, and release of a portion of the drum’s contents (combustible gases, waste, and wheat-based absorbent) into the WIPP underground.” Of course, the root cause is deeper than that and has to do with systemic issues at Los Alamos and how they handled the repackaging of the material. The investigation report identified 12 contributing causes that, while individually did not cause the accident, increased the likelihood or severity of it. These are written in a way that is pretty difficult for a non-DOE expert to parse: take a stab at digesting contributing cause number 5: “Failure of Los Alamos Field Office (NA-LA) and the National Transuranic (TRU) Program/Carlsbad Field Office (CBFO) to ensure that the CCP [that is, the Central Characterization Program] and LANS [that is, that is the contractor, Los Alamos National Security] complied with Resource Conservation and Recovery Act (RCRA) requirements in the WIPP Hazardous Waste Facility Permit (HWFP) and the LANL HWFP, as well as the WIPP Waste Acceptance Criteria (WAC).” Still, as bad as it all seems, it really could have been a lot worse. In a sense, WIPP performed precisely how you’d want it to in such an event, and it’s a really good thing the barrel was in the underground when it burst. Had the same happened at Los Alamos or on the way to WIPP, things could have been much worse. Thankfully, none of the other barrels packaged in the same way experienced a thermal runaway, and they were later collected and sealed in larger containers. Regardless, the consequences of the “cat-astrophe” were severe and very expensive. The cleanup involved shutting down the WIPP facility for several years and entirely replacing the ventilation system. WIPP itself didn’t formally reopen until January of 2017, nearly three full years after the incident, with the cleanup costing about half a billion dollars. Today, WIPP remains controversial, not least because of shifting timelines and public communication. Early estimates once projected closure by 2024. Now, that date is sometime between 2050 and 2085. And events like this only add fuel to the fire. Setting aside broader debates on nuclear weapons themselves, the wastes these weapons generate are dangerous now, and they will remain dangerous for generations. WIPP has even explored ideas on how to mark the site post-closure, making sure that future generations clearly understand the enduring danger. Radioactive hazards persist long after languages and societies may have changed beyond recognition, making it essential but challenging to communicate clearly about risks. Sometimes, it’s easy to forget - amidst all the technical complexity and bureaucratic red tape that surrounds anything nuclear - that it’s just people doing the work. It’s almost unbelievable that we entrust ourselves - squishy, sometimes hapless bags of water, meat, and bones - to navigate protocols of such profound complexity needed to safely take advantage of radioactive materials. I don’t tell this story because I think we should be paralyzed by the idea of using nuclear materials - there are enormous benefits to be had in many areas of science, engineering, and medicine. But there are enormous costs as well, many of which we might not be aware of if we don’t make it a habit to read obscure government investigation reports. This event is a reminder that the extent of our vigilance has to match the permanence of the hazards we create.
The Scientia Institute at Rice sponsors series of public lectures annually, centered around a theme. The intent is to get a wide variety of perspectives spanning across the humanities, social sciences, arts, sciences, and engineering, presented in an accessible way. The youtube channel with recordings of recent talks is here. This past year, the theme was "democracy" in its broadest sense. I was honored to be invited last year to contribute a talk, which I gave this past Tuesday, following a presentation by my CS colleague Rodrigo Ferreira about whether AI has politics. Below I've embedded the video, with the start time set where I begin (27:00, so you can rewind to see Rodrigo). Which (macroscopic) states of matter to we see? The ones that "win the popular vote" of the microscopic configurations.
As I research the country, these are the most interesting and surprising facts I gathered—and some beautiful images along the way.