More from Bartosz Ciechanowski
The dream of soaring in the sky like a bird has captivated the human mind for ages. Although many failed, some eventually succeeded in achieving that goal. These days we take air transportation for granted, but the physics of flight can still be puzzling. In this article we’ll investigate what makes airplanes fly by looking at the forces generated by the flow of air around the aircraft’s wings. More specifically, we’ll focus on the cross section of those wings to reveal the shape of an airfoil – you can see it presented in yellow below: This article has many interactive demonstrations which are best seen on the website.
There is something delightful about riding a bicycle. Once mastered, the simple action of pedaling to move forward and turning the handlebars to steer makes bike riding an effortless activity. In the demonstration below, you can guide the rider with the slider, and you can also drag the view around to change the camera angle: Compared to internal combustion engines or mechanical watches, bicycles are fairly simple machines – most of their parts operate in plain sight. This article has many interactive demonstrations which are best seen on the website.
Invisible and relentless, sound is seemingly just there, traveling through our surroundings to carry beautiful music or annoying noises. In this article I’ll explain what sound is, how it’s created and propagated. Throughout this presentation you will be hearing different sounds, which you will often play yourself on little keyboards like the one below. You can either click its keys with your mouse or use WER keys on your computer keyboard, but before you do so make sure your system volume is at a reasonable level:You can press its keys with your fingers, but before you do so make sure your system volume is at a reasonable level. This article has many interactive demonstrations which are best seen on the website.
In the world of modern portable devices, it may be hard to believe that merely a few decades ago the most convenient way to keep track of time was a mechanical watch. Unlike their quartz and smart siblings, mechanical watches can run without using any batteries or other electronic components. Over the course of this article I’ll explain the workings of the mechanism seen in the demonstration below. You can drag the device around to change your viewing angle, and you can use the slider to peek at what’s going on inside: This article has many interactive demonstrations which are best seen on the website.
More in science
Close to 900 million people across the Global South live in densely packed urban slums, which often sit in floodplains. A new study finds that one in three slum dwellers is at risk of "disastrous" flooding, a risk that is set to grow as warming spurs more intense rainfall around the world. Read more on E360 →
In theory, quantum physics can bypass the hard mathematical problems at the root of modern encryption. A new proof shows how. The post Quantum Scientists Have Built a New Math of Cryptography first appeared on Quanta Magazine
For centuries, the Native people of North America used controlled burns to manage the continent's forests. In an e360 interview, ecologist Loris Daniels talks about the long history of Indigenous burning and why the practice must be restored to protect against catastrophic fires. Read more on E360 →
The beginning of a RET poster session Research Experience for Teachers (RET) programs are an example of the kind of programs that the National Science Foundation funds which are focused on K12 (and broader) education. This summer I hosted a high school physics teacher in my lab for 6 weeks, where he worked on a brief project, with one of my doctoral students helping out in a mentoring role. Just yesterday was the big poster session for all of the participants in the program, and it was very enjoyable to talk with a whole cadre of high school science teachers from across the greater Houston area about their projects and their experiences. Readers may be more familiar with the sibling Research Experience for Undergraduates (REU) programs, which give undergraduate students the chance to work for 10 weeks or so in a lab that is very likely not at their home institution. REUs are a great way for students interested in research to get broad exposure to new topics, meet people and acquire new skills, and for some, figure out whether they like research (and maybe which topics are exciting to them). The educational goal of REUs is clear: providing direct research experience to interested undergrads, ideally while advancing a research project and for some small fraction of students resulting in an eventual publication. RET programs are different: They are intended as professional development. The teachers are exposed to new topics, hopefully a fun research environment, and they are encouraged to think carefully about how they can take the concepts they learn and translate those for the classroom. I am very much not an expert in education research, but there is evidence (see here, for example) that teachers who participate in these programs get a great deal of satisfaction and have lower attrition from teaching professions. (Note that it's hard to do statistics well on questions like that, since the population of teachers that seek out opportunities like this may be a special subset of the total population of teachers.) An idea that makes sense to me: Enhancing the motivation and job satisfaction of a teacher can have a larger cumulative impact on educating students than an individual research project for a single student. It would be a great shame if RET and REU programs are victims of large-scale cuts at NSF. The NSF is the only science agency with education as part of its mission (at least historically). All the more reason to try to persuade appropriators to not follow the draconian presidential budget request for the agency.