Full Width [alt+shift+f] Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
89
Yet Another Ruliological Surprise Integers. Addition. Subtraction. Maybe multiplication. Surely that’s not enough to be able to generate any serious complexity. In the early 1980s I had made the very surprising discovery that very simple programs based on cellular automata could generate great complexity. But how widespread was this phenomenon? At the beginning of the […]
8 months ago

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from Stephen Wolfram Writings

What Can We Learn about Engineering and Innovation from Half a Century of the Game of Life Cellular Automaton?

Metaengineering and Laws of Innovation Things are invented. Things are discovered. And somehow there’s an arc of progress that’s formed. But are there what amount to “laws of innovation” that govern that arc of progress? There are some exponential and other laws that purport to at least measure overall quantitative aspects of progress (number of […]

2 months ago 38 votes
Towards a Computational Formalization for Foundations of Medicine

A Theory of Medicine? As it’s practiced today, medicine is almost always about particulars: “this has gone wrong; this is how to fix it”. But might it also be possible to talk about medicine in a more general, more abstract way—and perhaps to create a framework in which one can study its essential features without […]

3 months ago 50 votes
Launching Version 14.2 of Wolfram Language & Mathematica: Big Data Meets Computation & AI

The Drumbeat of Releases Continues… Notebook Assistant Chat inside Any Notebook Bring Us Your Gigabytes! Introducing Tabular Manipulating Data in Tabular Getting Data into Tabular Cleaning Data for Tabular The Structure of Tabular Tabular Everywhere Algebra with Symbolic Arrays Language Tune-Ups Brightening Our Colors; Spiffing Up for 2025 LLM Streamlining & Streaming Streamlining Parallel Computation: […]

4 months ago 64 votes
Who Can Understand the Proof? A Window on Formalized Mathematics

Related writings: “Logic, Explainability and the Future of Understanding” (2018) » “The Physicalization of Metamathematics and Its Implications for the Foundations of Mathematics” (2022) » “Computational Knowledge and the Future of Pure Mathematics” (2014) » The Simplest Axiom for Logic Theorem (Wolfram with Mathematica, 2000): The single axiom ((a•b)•c)•(a•((a•c)•a))c is a complete axiom system for Boolean algebra (and […]

4 months ago 109 votes
Useful to the Point of Being Revolutionary: Introducing Wolfram Notebook Assistant

Note: As of today, copies of Wolfram Version 14.1 are being auto-updated to allow subscription access to the capabilities described here. [For additional installation information see here.] Just Say What You Want! Turning Words into Computation Nearly a year and a half ago—just a few months after ChatGPT burst on the scene—we introduced the first […]

5 months ago 112 votes

More in science

Two of My Science-Fiction Stories Published in May

View this email in your browser A Change of Pace from Astronomy News  As you may know, I have been writing science-fiction stories based on good astronomy as my retirement project.  After a good number of rejections from the finest sci-fi magazines the world over, I am now finding some success. My ninth and tenth stories […] The post Two of My Science-Fiction Stories Published in May appeared first on Andrew Fraknoi - Astronomy Lectures - Astronomy Education Resources.

18 hours ago 2 votes
Telepathy Tapes Promotes Pseudoscience

I was away on vacation the last week, hence no posts, but am now back to my usual schedule. In fact, I hope to be a little more consistent starting this summer because (if you follow me on the SGU you already know this) I am retiring from my day job at Yale at the […] The post Telepathy Tapes Promotes Pseudoscience first appeared on NeuroLogica Blog.

7 hours ago 1 votes
The world of tomorrow

When the future arrived, it felt… ordinary. What happened to the glamour of tomorrow?

5 hours ago 1 votes
The Core of Fermat’s Last Theorem Just Got Superpowered

By extending the scope of the key insight behind Fermat’s Last Theorem, four mathematicians have made great strides toward building a “grand unified theory” of math. The post The Core of Fermat’s Last Theorem Just Got Superpowered first appeared on Quanta Magazine

5 hours ago 1 votes
Pushing back on US science cuts: Now is a critical time

Every week has brought more news about actions that, either as a collateral effect or a deliberate goal, will deeply damage science and engineering research in the US.  Put aside for a moment the tremendously important issue of student visas (where there seems to be a policy of strategic vagueness, to maximize the implicit threat that there may be selective actions).  Put aside the statement from a Justice Department official that there is a general plan is to "bring these universities to their knees", on the pretext that this is somehow about civil rights.   The detailed version of the presidential budget request for FY26 is now out (pdf here for the NSF portion).  If enacted, it would be deeply damaging to science and engineering research in the US and the pipeline of trained students who support the technology sector.  Taking NSF first:  The topline NSF budget would be cut from $8.34B to $3.28B.  Engineering would be cut by 75%, Math and Physical Science by 66.8%.  The anticipated agency-wide success rate for grants would nominally drop below 7%, though that is misleading (basically taking the present average success rate and cutting it by 2/3, while some programs are already more competitive than others.).  In practice, many programs already have future-year obligations, and any remaining funds will have to go there, meaning that many programs would likely have no awards at all in the coming fiscal year.  The NSF's CAREER program (that agency's flagship young investigator program) would go away  This plan would also close one of the LIGO observatories (see previous link).  (This would be an extra bonus level of stupid, since LIGO's ability to do science relies on having two facilities, to avoid false positives and to identify event locations in the sky.  You might as well say that you'll keep an accelerator running but not the detector.)  Here is the table that I think hits hardest, dollars aside: The number of people involved in NSF activities would drop by 240,000.  The graduate research fellowship program would be cut by more than half.  The NSF research training grant program (another vector for grad fellowships) would be eliminated.   The situation at NIH and NASA is at least as bleak.  See here for a discussion from Joshua Weitz at Maryland which includes this plot:  This proposed dismantling of US research and especially the pipeline of students who support the technology sector (including medical research, computer science, AI, the semiconductor industry, chemistry and chemical engineering, the energy industry) is astonishing in absolute terms.  It also does not square with the claim of some of our elected officials and high tech CEOs to worry about US competitiveness in science and engineering.  (These proposed cuts are not about fiscal responsibility; just the amount added in the proposed DOD budget dwarfs these cuts by more than a factor of 3.) If you are a US citizen and think this is the wrong direction, now is the time to talk to your representatives in Congress. In the past, Congress has ignored presidential budget requests for big cuts.  The American Physical Society, for example, has tools to help with this.  Contacting legislators by phone is also made easy these days.  From the standpoint of public outreach, Cornell has an effort backing large-scale writing of editorials and letters to the editor.

yesterday 1 votes