More from Bartosz Ciechanowski
In the vastness of empty space surrounding Earth, the Moon is our closest celestial neighbor. Its face, periodically filled with light and devoured by darkness, has an ever-changing, but dependable presence in our skies. In this article, we’ll learn about the Moon and its path around our planet, but to experience that journey first-hand, we have to enter the cosmos itself. This article has many interactive demonstrations which are best seen on the website.
The dream of soaring in the sky like a bird has captivated the human mind for ages. Although many failed, some eventually succeeded in achieving that goal. These days we take air transportation for granted, but the physics of flight can still be puzzling. In this article we’ll investigate what makes airplanes fly by looking at the forces generated by the flow of air around the aircraft’s wings. More specifically, we’ll focus on the cross section of those wings to reveal the shape of an airfoil – you can see it presented in yellow below: This article has many interactive demonstrations which are best seen on the website.
Invisible and relentless, sound is seemingly just there, traveling through our surroundings to carry beautiful music or annoying noises. In this article I’ll explain what sound is, how it’s created and propagated. Throughout this presentation you will be hearing different sounds, which you will often play yourself on little keyboards like the one below. You can either click its keys with your mouse or use WER keys on your computer keyboard, but before you do so make sure your system volume is at a reasonable level:You can press its keys with your fingers, but before you do so make sure your system volume is at a reasonable level. This article has many interactive demonstrations which are best seen on the website.
In the world of modern portable devices, it may be hard to believe that merely a few decades ago the most convenient way to keep track of time was a mechanical watch. Unlike their quartz and smart siblings, mechanical watches can run without using any batteries or other electronic components. Over the course of this article I’ll explain the workings of the mechanism seen in the demonstration below. You can drag the device around to change your viewing angle, and you can use the slider to peek at what’s going on inside: This article has many interactive demonstrations which are best seen on the website.
More in science
View this email in your browser A Change of Pace from Astronomy News As you may know, I have been writing science-fiction stories based on good astronomy as my retirement project. After a good number of rejections from the finest sci-fi magazines the world over, I am now finding some success. My ninth and tenth stories […] The post Two of My Science-Fiction Stories Published in May appeared first on Andrew Fraknoi - Astronomy Lectures - Astronomy Education Resources.
I was away on vacation the last week, hence no posts, but am now back to my usual schedule. In fact, I hope to be a little more consistent starting this summer because (if you follow me on the SGU you already know this) I am retiring from my day job at Yale at the […] The post Telepathy Tapes Promotes Pseudoscience first appeared on NeuroLogica Blog.
When the future arrived, it felt… ordinary. What happened to the glamour of tomorrow?
By extending the scope of the key insight behind Fermat’s Last Theorem, four mathematicians have made great strides toward building a “grand unified theory” of math. The post The Core of Fermat’s Last Theorem Just Got Superpowered first appeared on Quanta Magazine
Every week has brought more news about actions that, either as a collateral effect or a deliberate goal, will deeply damage science and engineering research in the US. Put aside for a moment the tremendously important issue of student visas (where there seems to be a policy of strategic vagueness, to maximize the implicit threat that there may be selective actions). Put aside the statement from a Justice Department official that there is a general plan is to "bring these universities to their knees", on the pretext that this is somehow about civil rights. The detailed version of the presidential budget request for FY26 is now out (pdf here for the NSF portion). If enacted, it would be deeply damaging to science and engineering research in the US and the pipeline of trained students who support the technology sector. Taking NSF first: The topline NSF budget would be cut from $8.34B to $3.28B. Engineering would be cut by 75%, Math and Physical Science by 66.8%. The anticipated agency-wide success rate for grants would nominally drop below 7%, though that is misleading (basically taking the present average success rate and cutting it by 2/3, while some programs are already more competitive than others.). In practice, many programs already have future-year obligations, and any remaining funds will have to go there, meaning that many programs would likely have no awards at all in the coming fiscal year. The NSF's CAREER program (that agency's flagship young investigator program) would go away This plan would also close one of the LIGO observatories (see previous link). (This would be an extra bonus level of stupid, since LIGO's ability to do science relies on having two facilities, to avoid false positives and to identify event locations in the sky. You might as well say that you'll keep an accelerator running but not the detector.) Here is the table that I think hits hardest, dollars aside: The number of people involved in NSF activities would drop by 240,000. The graduate research fellowship program would be cut by more than half. The NSF research training grant program (another vector for grad fellowships) would be eliminated. The situation at NIH and NASA is at least as bleak. See here for a discussion from Joshua Weitz at Maryland which includes this plot: This proposed dismantling of US research and especially the pipeline of students who support the technology sector (including medical research, computer science, AI, the semiconductor industry, chemistry and chemical engineering, the energy industry) is astonishing in absolute terms. It also does not square with the claim of some of our elected officials and high tech CEOs to worry about US competitiveness in science and engineering. (These proposed cuts are not about fiscal responsibility; just the amount added in the proposed DOD budget dwarfs these cuts by more than a factor of 3.) If you are a US citizen and think this is the wrong direction, now is the time to talk to your representatives in Congress. In the past, Congress has ignored presidential budget requests for big cuts. The American Physical Society, for example, has tools to help with this. Contacting legislators by phone is also made easy these days. From the standpoint of public outreach, Cornell has an effort backing large-scale writing of editorials and letters to the editor.