More from pcloadletter
I write this blog because I enjoy writing. Some people enjoy reading what I write, which makes me feel really great! Recently, I took down a post and stopped writing for a few months because I didn't love the reaction I was getting on social media sites like Reddit and Hacker News. On these social networks, there seems to be an epidemic of "gotcha" commenters, contrarians, and know-it-alls. No matter what you post, you can be sure that folks will come with their sharpest pitchforks to try to skewer you. I'm not sure exactly what it is about those two websites in particular. I suspect it's the gamification of the comment system (more upvotes = more points = dopamine hit). Unfortunately, it seems the easiest way to win points on these sites is to tear down the original content. At any rate, I really don't enjoy bad faith Internet comments and I have a decent-enough following outside of these social networks that I don't really have to endure them. Some might argue I need thicker skin. I don't think that's really true: your experience on the Internet is what you make of it. You don't have to participate in parts of it if you don't want. Also, I know many of you reading this post (likely RSS subscribers at this point) came from Reddit or Hacker News in the first place. I don't mean to insult you or suggest by any means that everyone, or even the majority of users, on these sites are acting in bad faith. Still, I have taken a page from Tom MacWright's playbook and decided to add a bit of javascript to my website that helpfully redirects users from these two sites elsewhere: try { const bannedReferrers = [/news\.ycombinator\.com/i, /reddit\.com/i]; if (document.referrer) { const ref = new URL(document.referrer); if (bannedReferrers.some((r) => r.test(ref.host))) { window.location.href = "https://google.com/"; } } } catch (e) {} After implementing this redirect, I feel a lot more energized to write! I'm no longer worried about having to endlessly caveat my work for fear of getting bludgeoned on social media. I'm writing what I want to write and, if for those of you here to join me, I say thank you!
The older I get, the more I dislike clever code. This is not a controversial take; it is pretty-well agreed upon that clever code is bad. But I particularly like the on-call responsiblity framing: write code that you can understand when you get paged at 2am. If you have never been lucky enough to get paged a 2am, I'll paint the picture for you: A critical part of the app is down. Your phone starts dinging on your nightstand next to you. You wake up with a start, not quite sure who you are or where you are. You put on your glasses and squint at the way-too-bright screen of your phone. It's PagerDuty. "Oh shit," you think. You pop open your laptop, open the PagerDuty web app, and read the alert. You go to your telemetry and logging systems and figure out approximate whereabouts in the codebase the issue is. You open your IDE and start sweating: "I have no idea what the hell any of this code means." The git blame shows you wrote the code 2 years ago. You thought that abstraction was pretty clever at the time, but now you're paying a price: your code is inscrutable to an exhausted, stressed version of yourself who just wants to get the app back online. Reasons for clever code # There are a few reasons for clever code that I have seen over my career. Thinking clever code is inherently good # I think at some point a lot of engineers end up in a place where they become very skilled in a language before they understand the importance of writing clean, readable code. Consider the following two javascript snippets: snippet 1 const sum = items.reduce( (acc, el) => (typeof el === "number" ? acc + el : acc), 0 ); snippet 2 let sum = 0; for (const item of items) { if (typeof item === "number") { sum = sum + item; } } At one point in my career, I would have assumed the first snippet was superior: fewer lines and uses the reduce method! But I promise far more engineers can very quickly and easily understand what's going on in the second snippet. I would much rather the second snippet in my codebase any day. Premature abstraction # Premature abstractions tend to be pretty common in object-oriented languages. This stackexchange answer made me laugh quite a bit, so I'll use it as an example. Let's say you have a system with employee information. Well perhaps you decide employees are types of humans, so we'd better have a human class, and humans are a type of mammal, so we'd better have a mammal class, and so on. All of a sudden, you might have to navigate several layers up to the animal class to see an employee's properties and methods. As the stackexchange answer succinctly put it: As a result, we ended up with code that really only needed to deal with, say, records of employees, but were carefully written to be ready if you ever hired an arachnid or maybe a crustacean. DRY dogma # Don't Repeat Yourself (DRY) is a coding philosophy where you try to minimize the amount of code repeated in your software. In theory, even repeating code once results in an increased chance that you'll miss updating the code in both places or having inconsistent behavior when you have to implement the code somewhere else. In practice, DRYing up code can sometimes be complex. Perhaps there is a little repeated code shared between client and server. Do we need to create a way to share this logic? If it's only one small instance, it simply may not be worth the complexity of sharing logic. If this is going to be a common issue in the codebase, then perhaps centralizing the logic is worth it. But importantly we can't just assume that one instance of repeated code means we must eliminate the redundancy. What should we aim for instead? # There's definitely a balance to be struck. We can't have purely dumb code with no abstractions: that ends up being pretty error prone. Imagine you're working with an API that has some set of required headers. Forcing all engineers to remember to include those headers with every API call is error-prone. file1 fetch("/api/users", { headers: { Authorization: `Bearer ${token}`, AppVersion: version, XsrfToken: xsrfToken, }, }); fetch(`/api/users/${userId}`, { headers: { Authorization: `Bearer ${token}`, AppVersion: version, XsrfToken: xsrfToken, }, }); file2 fetch("/api/transactions", { headers: { Authorization: `Bearer ${token}`, AppVersion: version, XsrfToken: xsrfToken, }, }); file3 fetch("/api/settings", { headers: { Authorization: `Bearer ${token}`, AppVersion: version, XsrfToken: xsrfToken, }, }); Furthermore, having to track down every instance of that API call to update the headers (or any other required info) could be challenging. In this instance, it makes a lot of sense to create some kind of API service that encapsulates the header logic: service function apiRequest(...args) { const [url, headers, ...rest] = args; return fetch( url, { ...headers, Authorization: `Bearer ${token}`, AppVersion: version, XsrfToken: xsrfToken, }, ...rest ); } file1 apiRequest("/api/users"); apiRequest(`/api/users/${userId}`); file2 apiRequest("/api/transactions"); file3 apiRequest("/api/settings"); The apiRequest function is a pretty helpful abstraction. It helps that it is a very minimal abstraction: just enough to prevent future engineers from making mistakes but not so much that it's confusing. These kinds of abstractions, however, can get out of hand. I have see code where making a request looks something like this: const API_PATH = "api"; const USER_PATH = "user"; const TRANSACTIONS_PATH = "transactions"; const SETTINGS_PATH = "settings"; createRequest( endpointGenerationFn, [API_PATH, USER_PATH], getHeaderOverrides("authenticated") ); createRequest( endpointGenerationFn, [API_PATH, USER_PATH, userId], getHeaderOverrides("authenticated") ); There's really no need for this. You're not saving all that much for making variables instead of using strings for paths. In fact, this ends up making it really hard for someone debugging the code to search! Typically, I'd lok for the string "api/user" in my IDE to try to find the location of the request. Would I be able to find it with this abstraction? Would I be able to find it at 2am? Furthermore, passing an endpoint-generation function that consumes the path parts seems like overkill and may be inscrutable to more junior engineers (or, again, 2am you). Keep it as simple as possible # So I think in the end my message is to keep your code as simple as possible. Don't create some abstraction that may or may not be needed eventually. Weigh the maintenance value of DRYing up parts of your codebase versus readability.
Here we go again: I'm so tired of crypto web3 LLMs. I'm positive there are wonderful applications for LLMs. The ChatGPT web UI seems great for summarizing information from various online sources (as long as you're willing to verify the things that you learn). But a lot fo the "AI businesses" coming out right now are just lightweight wrappers around ChatGPT. It's lazy and unhelpful. Probably the worst offenders are in the content marketing space. We didn't know how lucky we were back in the "This one weird trick for saving money" days. Now, rather than a human writing that junk, we have every article sounding like the writing voice equivalent of the dad from Cocomelon. Here's an approximate technical diagram of how these businesses work: Part 1 is what I like to call the "bilking process." Basically, you put up a flashy landing page promising content generation in exchange for a monthly subscription fee (or discounted annual fee, of course!). No more paying pesky writers! Once the husk of a company has secured the bag, part 2, the "bullshit process," kicks in. Customers provide their niches and the service happily passes queries over to the ChatGPT (or similar) API. Customers are rewarded with stinky garbage articles that sound like they're being narrated by HAL on Prozac in return. Success! I suppose we should have expected as much. With every new tech trend comes a deluge of tech investors trying to find the next great thing. And when this happens, it's a gold rush every time. I will say I'm more optimistic about "AI" (aka machine learning, aka statistics). There are going to be some pretty cool applications of this tech eventually—but your ChatGPT wrapper ain't it.
I have noticed a trend in a handful of products I've worked on at big tech companies. I have friends at other big tech companies that have noticed a similar trend: The products are kind of crummy. Here are some experiences that I have often encountered: the UI is flakey and/or unintuitive there is a lot of cruft in the codebase that has never been cleaned up bugs that have "acceptable" workarounds that never get fixed packages/dependencies are badly out of date the developer experience is crummy (bad build times, easily breakable processes) One of the reasons I have found for these issues is that we simply aren't investing enough time to increase product quality: we have poorly or nonexistent quality metrics, invest minimally in testing infrastructure (and actually writing tests), and don't invest in improving the inner loop. But why is this? My experience has been that quality is simply a hard sell in bigh tech. Let's first talk about something that's an easy sell right now: AI everything. Why is this an easy sell? Well, Microsoft could announce they put ChatGPT in a toaster and their stock price would jump $5/share. The sad truth is that big tech is hyper-focused on doing the things that make their stock prices go up in the short-term. It's hard to make this connection with quality initiatives. If your software is slightly less shitty, the stock price won't jump next week. So instead of being able to sell the obvious benefit of shiny new features, you need to have an Engineering Manager willing to risk having lower impact for the sake of having a better product. Even if there is broad consensus in your team, group, org that these quality improvements are necessary, there's a point up the corporate hierarchy where it simply doesn't matter to them. Certainly not as much as shipping some feature to great fanfare. Part of a bigger strategy? # Cory Doctorow has said some interesting things about enshittification in big tech: "enshittification is a three-stage process: first, surpluses are allocated to users until they are locked in. Then they are withdrawn and given to business-customers until they are locked in. Then all the value is harvested for the company's shareholders, leaving just enough residual value in the service to keep both end-users and business-customers glued to the platform." At a macro level, it's possible this is the strategy: hook users initially, make them dependent on your product, and then cram in superficial features that make the stock go up but don't offer real value, and keep the customers simply because they really have no choice but to use your product (an enterprise Office 365 customer probably isn't switching anytime soon). This does seem to have been a good strategy in the short-term: look at Microsoft's stock ever since they started cranking out AI everything. But how can the quality corner-cutting work long-term? I hope the hubris will backfire # Something will have to give. Big tech products can't just keep getting shittier—can they? I'd like to think some smaller competitors will come eat their lunch, but I'm not sure. Hopefully we're not all too entrenched in the big tech ecosystem for this to happen.
More in science
It's been a busy time that has cut into my blogging, but I wanted to point out some links from the past couple of weeks. Physics Today has a cover article this past issue about what is colloquially known as static electricity, but what is more technically described as triboelectricity, the transfer of charge between materials by rubbing. I just wrote about this six months ago, and the detailed mechanisms remain poorly understood. Large surface charge densities (like \(10^{12}\) electronic charges per square cm) can be created this way on insulators, leading to potential differences large enough to jump a spark from your finger to the door handle. This can also lead to static electric fields near surfaces that are not small and can reveal local variations in material properties. That leads right into this paper (which I learned about from here) about the extreme shapes of the heads of a family of insects called treehoppers. These little crawlies have head and body shapes that often have cuspy, pointy bits that stick out - spines, horns, etc. As we learn early on about electrostatics, elongated and pointy shapes tend to lead to large local electric fields and field gradients. The argument of this paper is that the spiky body and cranial morphology can help these insects better sense electric field distributions, and this makes it easier for them to find their way and avoid predators. This manuscript on the arXiv this week is a particularly nice, pedagogical review article (formatted for Rev Mod Phys) about quantum geometry and Berry curvature in condensed matter systems. I haven't had the chance to read it through, but I think this will end up being very impactful and a true resource for students to learn about these topics. Another very pretty recent preprint is this one, which examines the electronic phase diagram of twisted bilayers of WSe2, with a relative twist angle of 4.6°. Much attention has been paid to the idea that moiré lattices can be in a regime seemingly well described by a Hubbard-like model, with an on-site Coulomb repulsion energy \(U\) and an electronic bandwidth \(W\). This paper shows an exceptionally clean example of this, where disorder seems to be very weak, electron temperatures are quite cold, and phase diagrams are revealed that look remarkably like the phenomena seen in the cuprate superconductors (superconducting "domes" as a function of charge density adjacent to antiferromagnetic insulating states, and with "strange metal" linear-in-\(T\) resistance in the normal state near the superconducting charge density). Results like this make me more optimistic about overcoming some of the major challenges in using twisted van der Waals materials as simulators of hard-to-solve hamilitonians. I was all set to post this earlier today, with no awful news for once about science in the US that I felt compelled to discuss, but I got sidetracked by real work. Then, late this afternoon, this executive order about federal grants was released. I can't sugar coat it - it's awful. Ignoring a large volume of inflammatory rhetoric, it contains this gem, for instance: "The grant review process itself also undermines the interests of American taxpayers." It essentially tries to bar any new calls for proposals until a new (and problematic) process is put in place at every agency (see Sect. 3(c)). Also, it says "All else being equal, preference for discretionary awards should be given to institutions with lower indirect cost rates." Now, indirect cost rates are set by negotiations between institutions and the government. Places that only do very small volumes of research have low rates, so get ready for MIT to get fewer grants and Slippery Rock University to get more. The only certainty is that the nation's lawyers are going to have a field day with all the suits that will come out of this.
For those of you with a deeper interest in astronomy and how we learn about the universe, this may be of interest. There is a good discount if you register before Aug. 10. The Astronomical Society of the Pacific Presents: Eyes on the Cosmos: Cutting Edge Instruments and Ideas in Astronomy On Zoom, August 21, […] The post A 1-Day Virtual Symposium on Future of Astronomy appeared first on Andrew Fraknoi - Astronomy Lectures - Astronomy Education Resources.
Every spring, Forest Service fire leaders meet to plan for the upcoming fire season. This year, some employees were shocked by the blunt remarks made during a meeting with forest supervisors and fire staff officers from across the Intermountain West. “We were told, ‘Help is not on the way,’” said one employee, who asked to remain anonymous for fear of losing their job. “I’ve never been told that before.” Read more on E360 →
Hundreds of physicists (and a few journalists) journeyed to Helgoland, the birthplace of quantum mechanics, and grappled with what they have and haven’t learned about reality. The post ‘It’s a Mess’: A Brain-Bending Trip to Quantum Theory’s 100th Birthday Party first appeared on Quanta Magazine