Full Width [alt+shift+f] Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
70
On a recent run I was talking with a friend from Spain about immigration in Europe. We speculated about whether the population of Spain would be growing or shrinking if there were no international migration. I thought it might be shrinking, but we were not sure. Fortunately, Our World in Data has just the information we need! I downloaded data from OWID’s interactive graph, “Population growth rate with and without migration”, ultimately from UN, World Population Prospects (2022) and processed... Read More Read More
9 months ago

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from Probably Overthinking It

Algorithmic Fairness

This is the last in a series of excerpts from Elements of Data Science, now available from Lulu.com and online booksellers. This article is based on the Recidivism Case Study, which is about algorithmic fairness. The goal of the case study is to explain the statistical arguments presented in two articles from 2016: Both are about COMPAS, a statistical tool used in the justice system to assign defendants a “risk score” that is intended to reflect the risk that they... Read More Read More

a month ago 23 votes
Confidence In the Press

This is the fifth in a series of excerpts from Elements of Data Science, now available from Lulu.com and online booksellers. It’s based on Chapter 16, which is part of the political alignment case study. You can read the complete example here, or run the Jupyter notebook on Colab. Because this is a teaching example, it builds incrementally. If you just want to see the results, scroll to the end! Chapter 16 is a template for exploring relationships between political... Read More Read More

2 months ago 50 votes
Political Alignment and Outlook

This is the fourth in a series of excerpts from Elements of Data Science, now available from Lulu.com and online booksellers. It’s from Chapter 15, which is part of the political alignment case study. You can read the complete chapter here, or run the Jupyter notebook on Colab. In the previous chapter, we used data from the General Social Survey (GSS) to plot changes in political alignment over time. In this notebook, we’ll explore the relationship between political alignment and... Read More Read More

2 months ago 61 votes
Reject Math Supremacy

The premise of Think Stats, and the other books in the Think series, is that programming is a tool for teaching and learning — and many ideas that are commonly presented in math notation can be more clearly presented in code. In the draft third edition of Think Stats there is almost no math — not because I made a special effort to avoid it, but because I found that I didn’t need it. For example, here’s how I present... Read More Read More

2 months ago 57 votes
Young Americans are Marrying Later or Never

I’ve written before about changes in marriage patterns in the U.S., and it’s one of the examples in Chapter 13 of the new third edition of Think Stats. My analysis uses data from the National Survey of Family Growth (NSFG). Today they released the most recent data, from surveys conducted in 2022 and 2023. So here are the results, updated with the newest data: The patterns are consistent with what we’ve see in previous iterations — each successive cohort marries... Read More Read More

3 months ago 60 votes

More in science

Robotaxis Are Here

Within 1-5 years, our daily transportation will be upended, and cities will be reshaped.

12 hours ago 1 votes
The 2025 Wolf Prize in Physics

One nice bit of condensed matter/nanoscale physics news:  This year's Wolf Prize in Physics has gone to three outstanding scientists, Jim Eisenstein, Moty Heiblum, and Jainendra Jain, each of whom have done very impactful work involving 2D electron gases - systems of electrons confined to move only in two dimensions by the electronic structure and alignment of energy bands at interfaces between semiconductors.  Of particular relevance to these folks are the particularly clean 2D electron gases at the interfaces between GaAs and AlGaAs, or in GaAs quantum wells embedded in AlGaAs. A thread that connects all three of these scientists is the fractional quantum Hall effect in these 2D systems.  Electrons confined to move in 2D, in the presence of a magnetic field perpendicular to the plane of motion, form a remarkable system.  The quantum wavefunction of an electron in this situation changes as the magnetic induction \(B\) is increased.  The energy levels of such an electron are given by \((n+1/2)\hbar \omega_{c}\), where \(\omega_c \equiv eB/m*\) is the cyclotron frequency.  These energy levels are called Landau Levels.  The ratio between the 2D density of electrons and the density of magnetic flux in fundamental units (\(B/(h/e)\)) is called the "filling factor", \(\nu\), and when this is an integer, the Hall conductance is quantized in fundamental units - see here.   Figure 4 from this article by Jain, with \(R_{xx}(B)\) data from here.  Notice how the data around \(B=0\) looks a lot like the data around \(\nu = 1/2\), which looks a lot like the data around \(\nu=1/4\).  A remarkable thing happens when \(\nu = 1/2\) - see the figure above.  There is no quantum Hall effect there; in fact, if you look at the longitudinal resistance \(R_{xx}\) as a function of \(B\) near \(\nu = 1/2\), it looks remarkably like \(R_{xx}(B)\) near \(B = 0\).  At this half-integer filling factor, the 2D electrons plus the magnetic flux "bundle together", leading to a state with new low-energy excitations called composite fermions that act like they are in zero magnetic field.  In many ways the FQHE looks like the integer quantum Hall effect for these composite fermions, though the situation is more complicated than that.  Jainendra Jain did foundational work on the theory of composite fermions, among many other things. Jim Eisenstein has done a lot of great experimental work involving composite fermions and even-denominator FQH states.  My postdoctoral mentor, Bob Willett, and he are first two authors on the paper where an unusual quantum Hall state was discovered at \(\nu = 5/2\), a state still under active investigation for potential topological quantum computing applications.   One particularly surprising result from Eisenstein's group was the discovery that some "high" Landau level even-denominator fillings (\(\nu = 9/2, 11/2\)) showed enormously anisotropic resistances, with big differences between \(R_{xx}\) and \(R_{yy}\), an example of the onset of a "stripe" phase of alternating fillings.   Another very exciting result from Eisenstein's group used 2D electron gases in close proximity parallel layers and in high magnetic fields, as well as 2D electron gases near 2D hole gases.  Both can allow the formation of excitons, bound states of electrons and holes, but with the electrons and holes in neighboring layers so that they could not annihilate each other.  Moreover, a Bose-Einstein condensation of those excitons is possible leading to remarkable superflow of excitons and resonant tunneling between the layers.  This review article is a great discussion of all of this. Moty Heiblum's group at the Weizmann Institute has been one of the world-leading groups investigating "mesoscopic" physics of confined electrons in the past 30+ years.  They have performed some truly elegant experiments using 2D electron gases as their platform.  A favorite of mine (mentioned in my textbook) is this one, in which they make a loop-shaped interferometer for electrons which shows oscillations in the conductance as they thread magnetic flux through the loop; they then use a nearby quantum point contact as a charge sensor near one arm of the interferometer, a which-path detector that tunably suppresses the quantum interference.  His group also did foundational work on the use of shot noise as a tool to examine the nature and transport of charge carriers in condensed matter systems (an idea that I found inspiring).  Their results showing that the quasiparticles in the fractional quantum Hall regime can have fractional charges are remarkable.  More recently, they have shown how subtle these measurements really can be, in 2D electron systems that can support neutral excitations as well as charged ones. All in all, this is a great recognition of outstanding scientists for a large volume of important, influential work. (On a separate note:  I will be attending 3+ days of the APS meeting next week.  I'll try to do my usual brief highlight posts, time permitting.  If people have suggestions of cool content, please let me know.)

2 hours ago 1 votes
Flipping the switch on far-UVC

We’ve known about far-UVC’s promise for a decade. Why isn't it everywhere?

2 days ago 5 votes
Why Do Researchers Care About Small Language Models?

Larger models can pull off greater feats, but the accessibility and efficiency of smaller models make them attractive tools. The post Why Do Researchers Care About Small Language Models? first appeared on Quanta Magazine

2 days ago 3 votes
Stem Cells for Parkinson’s Disease

For my entire career as a neurologist, spanning three decades, I have been hearing about various kinds of stem cell therapy for Parkinson’s Disease (PD). Now a Phase I clinical trial is under way studying the latest stem cell technology, autologous induced pluripotent stem cells, for this purpose. This history of cell therapy for PD […] The post Stem Cells for Parkinson’s Disease first appeared on NeuroLogica Blog.

2 days ago 3 votes