More from The History of the Web
When we think about AI, we can't only think of what it has generated. We need to think about what it does to what the world has already created. The post What happens to what we’ve already created? appeared first on The History of the Web.
The breakthroughs of the web are often compared to the printing press. But could the former exist without the latter? The post Would the internet exist today if the printing press didn’t come before it? appeared first on The History of the Web.
Early computers faced unexpected failures, and that gave us graceful degradation. But on the web, we needed something different. We needed progressive enhancement. The post Progressive enhancement brings everyone in appeared first on The History of the Web.
There is something you can do to help the open web. Put yourself on it. The post The Free Web appeared first on The History of the Web.
More in programming
One of the biggest mistakes that new startup founders make is trying to get away from the customer-facing roles too early. Whether it's customer support or it's sales, it's an incredible advantage to have the founders doing that work directly, and for much longer than they find comfortable. The absolute worst thing you can do is hire a sales person or a customer service agent too early. You'll miss all the golden nuggets that customers throw at you for free when they're rejecting your pitch or complaining about the product. Seeing these reasons paraphrased or summarized destroy all the nutrients in their insights. You want that whole-grain feedback straight from the customers' mouth! When we launched Basecamp in 2004, Jason was doing all the customer service himself. And he kept doing it like that for three years!! By the time we hired our first customer service agent, Jason was doing 150 emails/day. The business was doing millions of dollars in ARR. And Basecamp got infinitely, better both as a market proposition and as a product, because Jason could funnel all that feedback into decisions and positioning. For a long time after that, we did "Everyone on Support". Frequently rotating programmers, designers, and founders through a day of answering emails directly to customers. The dividends of doing this were almost as high as having Jason run it all in the early years. We fixed an incredible number of minor niggles and annoying bugs because programmers found it easier to solve the problem than to apologize for why it was there. It's not easy doing this! Customers often offer their valuable insights wrapped in rude language, unreasonable demands, and bad suggestions. That's why many founders quit the business of dealing with them at the first opportunity. That's why few companies ever do "Everyone On Support". That's why there's such eagerness to reduce support to an AI-only interaction. But quitting dealing with customers early, not just in support but also in sales, is an incredible handicap for any startup. You don't have to do everything that every customer demands of you, but you should certainly listen to them. And you can't listen well if the sound is being muffled by early layers of indirection.
I’m sitting in a small coffee shop in Brooklyn. I have a warm drink, and it’s just started to snow outside. I’m visiting New York to see Operation Mincemeat on Broadway – I was at the dress rehearsal yesterday, and I’ll be at the opening preview tonight. I’ve seen this show more times than I care to count, and I hope US theater-goers love it as much as Brits. The people who make the show will tell you that it’s about a bunch of misfits who thought they could do something ridiculous, who had the audacity to believe in something unlikely. That’s certainly one way to see it. The musical tells the true story of a group of British spies who tried to fool Hitler with a dead body, fake papers, and an outrageous plan that could easily have failed. Decades later, the show’s creators would mirror that same spirit of unlikely ambition. Four friends, armed with their creativity, determination, and a wardrobe full of hats, created a new musical in a small London theatre. And after a series of transfers, they’re about to open the show under the bright lights of Broadway. But when I watch the show, I see a story about friendship. It’s about how we need our friends to help us, to inspire us, to push us to be the best versions of ourselves. I see the swaggering leader who needs a team to help him truly achieve. The nervous scientist who stands up for himself with the support of his friends. The enthusiastic secretary who learns wisdom and resilience from her elder. And so, I suppose, it’s fitting that I’m not in New York on my own. I’m here with friends – dozens of wonderful people who I met through this ridiculous show. At first, I was just an audience member. I sat in my seat, I watched the show, and I laughed and cried with equal measure. After the show, I waited at stage door to thank the cast. Then I came to see the show a second time. And a third. And a fourth. After a few trips, I started to see familiar faces waiting with me at stage door. So before the cast came out, we started chatting. Those conversations became a Twitter community, then a Discord, then a WhatsApp. We swapped fan art, merch, and stories of our favourite moments. We went to other shows together, and we hung out outside the theatre. I spent New Year’s Eve with a few of these friends, sitting on somebody’s floor and laughing about a bowl of limes like it was the funniest thing in the world. And now we’re together in New York. Meeting this kind, funny, and creative group of people might seem as unlikely as the premise of Mincemeat itself. But I believed it was possible, and here we are. I feel so lucky to have met these people, to take this ridiculous trip, to share these precious days with them. I know what a privilege this is – the time, the money, the ability to say let’s do this and make it happen. How many people can gather a dozen friends for even a single evening, let alone a trip halfway round the world? You might think it’s silly to travel this far for a theatre show, especially one we’ve seen plenty of times in London. Some people would never see the same show twice, and most of us are comfortably into double or triple-figures. Whenever somebody asks why, I don’t have a good answer. Because it’s fun? Because it’s moving? Because I enjoy it? I feel the need to justify it, as if there’s some logical reason that will make all of this okay. But maybe I don’t have to. Maybe joy doesn’t need justification. A theatre show doesn’t happen without people who care. Neither does a friendship. So much of our culture tells us that it’s not cool to care. It’s better to be detached, dismissive, disinterested. Enthusiasm is cringe. Sincerity is weakness. I’ve certainly felt that pressure – the urge to play it cool, to pretend I’m above it all. To act as if I only enjoy something a “normal” amount. Well, fuck that. I don’t know where the drive to be detached comes from. Maybe it’s to protect ourselves, a way to guard against disappointment. Maybe it’s to seem sophisticated, as if having passions makes us childish or less mature. Or perhaps it’s about control – if we stay detached, we never have to depend on others, we never have to trust in something bigger than ourselves. Being detached means you can’t get hurt – but you’ll also miss out on so much joy. I’m a big fan of being a big fan of things. So many of the best things in my life have come from caring, from letting myself be involved, from finding people who are a big fan of the same things as me. If I pretended not to care, I wouldn’t have any of that. Caring – deeply, foolishly, vulnerably – is how I connect with people. My friends and I care about this show, we care about each other, and we care about our joy. That care and love for each other is what brought us together, and without it we wouldn’t be here in this city. I know this is a once-in-a-lifetime trip. So many stars had to align – for us to meet, for the show we love to be successful, for us to be able to travel together. But if we didn’t care, none of those stars would have aligned. I know so many other friends who would have loved to be here but can’t be, for all kinds of reasons. Their absence isn’t for lack of caring, and they want the show to do well whether or not they’re here. I know they care, and that’s the important thing. To butcher Tennyson: I think it’s better to care about something you cannot affect, than to care about nothing at all. In a world that’s full of cynicism and spite and hatred, I feel that now more than ever. I’d recommend you go to the show if you haven’t already, but that’s not really the point of this post. Maybe you’ve already seen Operation Mincemeat, and it wasn’t for you. Maybe you’re not a theatre kid. Maybe you aren’t into musicals, or history, or war stories. That’s okay. I don’t mind if you care about different things to me. (Imagine how boring the world would be if we all cared about the same things!) But I want you to care about something. I want you to find it, find people who care about it too, and hold on to them. Because right now, in this city, with these people, at this show? I’m so glad I did. And I hope you find that sort of happiness too. Some of the people who made this trip special. Photo by Chloe, and taken from her Twitter. Timing note: I wrote this on February 15th, but I delayed posting it because I didn’t want to highlight the fact I was away from home. [If the formatting of this post looks odd in your feed reader, visit the original article]
Humanity's Last Exam by Center for AI Safety (CAIS) and Scale AI
Most of our cultural virtues, celebrated heroes, and catchy slogans align with the idea of "never give up". That's a good default! Most people are inclined to give up too easily, as soon as the going gets hard. But it's also worth remembering that sometimes you really should fold, admit defeat, and accept that your plan didn't work out. But how to distinguish between a bad plan and insufficient effort? It's not easy. Plenty of plans look foolish at first glance, especially to people without skin in the game. That's the essence of a disruptive startup: The idea ought to look a bit daft at first glance or it probably doesn't carry the counter-intuitive kernel needed to really pop. Yet it's also obviously true that not every daft idea holds the potential to be a disruptive startup. That's why even the best venture capital investors in the world are wrong far more than they're right. Not because they aren't smart, but because nobody is smart enough to predict (the disruption of) the future consistently. The best they can do is make long bets, and then hope enough of them pay off to fund the ones that don't. So far, so logical, so conventional. A million words have been written by a million VCs about how their shrewd eyes let them see those hidden disruptive kernels before anyone else could. Good for them. What I'm more interested in knowing more about is how and when you pivot from a promising bet to folding your hand. When do you accept that no amount of additional effort is going to get that turkey to soar? I'm asking because I don't have any great heuristics here, and I'd really like to know! Because the ability to fold your hand, and live to play your remaining chips another day, isn't just about startups. It's also about individual projects. It's about work methods. Hell, it's even about politics and societies at large. I'll give you just one small example. In 2017, Rails 5.1 shipped with new tooling for doing end-to-end system tests, using a headless browser to validate the functionality, as a user would in their own browser. Since then, we've spent an enormous amount of time and effort trying to make this approach work. Far too much time, if you ask me now. This year, we finished our decision to fold, and to give up on using these types of system tests on the scale we had previously thought made sense. In fact, just last week, we deleted 5,000 lines of code from the Basecamp code base by dropping literally all the system tests that we had carried so diligently for all these years. I really like this example, because it draws parallels to investing and entrepreneurship so well. The problem with our approach to system tests wasn't that it didn't work at all. If that had been the case, bailing on the approach would have been a no brainer long ago. The trouble was that it sorta-kinda did work! Some of the time. With great effort. But ultimately wasn't worth the squeeze. I've seen this trap snap on startups time and again. The idea finds some traction. Enough for the founders to muddle through for years and years. Stuck with an idea that sorta-kinda does work, but not well enough to be worth a decade of their life. That's a tragic trap. The only antidote I've found to this on the development side is time boxing. Programmers are just as liable as anyone to believe a flawed design can work if given just a bit more time. And then a bit more. And then just double of what we've already spent. The time box provides a hard stop. In Shape Up, it's six weeks. Do or die. Ship or don't. That works. But what's the right amount of time to give a startup or a methodology or a societal policy? There's obviously no universal answer, but I'd argue that whatever the answer, it's "less than you think, less than you want". Having the grit to stick with the effort when the going gets hard is a key trait of successful people. But having the humility to give up on good bets turned bad might be just as important.
No newsletter next week, I'm teaching a TLA+ workshop. Speaking of which: I spend a lot of time thinking about formal methods (and TLA+ specifically) because it's where the source of almost all my revenue. But I don't share most of the details because 90% of my readers don't use FM and never will. I think it's more interesting to talk about ideas from FM that would be useful to people outside that field. For example, the idea of "property strength" translates to the idea that some tests are stronger than others. Another possible export is how FM approaches nondeterminism. A nondeterministic algorithm is one that, from the same starting conditions, has multiple possible outputs. This is nondeterministic: # Pseudocode def f() { return rand()+1; } When specifying systems, I may not encounter nondeterminism more often than in real systems, but I am definitely more aware of its presence. Modeling nondeterminism is a core part of formal specification. I mentally categorize nondeterminism into five buckets. Caveat, this is specifically about nondeterminism from the perspective of system modeling, not computer science as a whole. If I tried to include stuff on NFAs and amb operations this would be twice as long.1 1. True Randomness Programs that literally make calls to a random function and then use the results. This the simplest type of nondeterminism and one of the most ubiquitous. Most of the time, random isn't truly nondeterministic. Most of the time computer randomness is actually pseudorandom, meaning we seed a deterministic algorithm that behaves "randomly-enough" for some use. You could "lift" a nondeterministic random function into a deterministic one by adding a fixed seed to the starting state. # Python from random import random, seed def f(x): seed(x) return random() >>> f(3) 0.23796462709189137 >>> f(3) 0.23796462709189137 Often we don't do this because the point of randomness is to provide nondeterminism! We deliberately abstract out the starting state of the seed from our program, because it's easier to think about it as locally nondeterministic. (There's also "true" randomness, like using thermal noise as an entropy source, which I think are mainly used for cryptography and seeding PRNGs.) Most formal specification languages don't deal with randomness (though some deal with probability more broadly). Instead, we treat it as a nondeterministic choice: # software if rand > 0.001 then return a else crash # specification either return a or crash This is because we're looking at worst-case scenarios, so it doesn't matter if crash happens 50% of the time or 0.0001% of the time, it's still possible. 2. Concurrency # Pseudocode global x = 1, y = 0; def thread1() { x++; x++; x++; } def thread2() { y := x; } If thread1() and thread2() run sequentially, then (assuming the sequence is fixed) the final value of y is deterministic. If the two functions are started and run simultaneously, then depending on when thread2 executes y can be 1, 2, 3, or 4. Both functions are locally sequential, but running them concurrently leads to global nondeterminism. Concurrency is arguably the most dramatic source of nondeterminism. Small amounts of concurrency lead to huge explosions in the state space. We have words for the specific kinds of nondeterminism caused by concurrency, like "race condition" and "dirty write". Often we think about it as a separate topic from nondeterminism. To some extent it "overshadows" the other kinds: I have a much easier time teaching students about concurrency in models than nondeterminism in models. Many formal specification languages have special syntax/machinery for the concurrent aspects of a system, and generic syntax for other kinds of nondeterminism. In P that's choose. Others don't special-case concurrency, instead representing as it as nondeterministic choices by a global coordinator. This more flexible but also more inconvenient, as you have to implement process-local sequencing code yourself. 3. User Input One of the most famous and influential programming books is The C Programming Language by Kernighan and Ritchie. The first example of a nondeterministic program appears on page 14: For the newsletter readers who get text only emails,2 here's the program: #include /* copy input to output; 1st version */ main() { int c; c = getchar(); while (c != EOF) { putchar(c); c = getchar(); } } Yup, that's nondeterministic. Because the user can enter any string, any call of main() could have any output, meaning the number of possible outcomes is infinity. Okay that seems a little cheap, and I think it's because we tend to think of determinism in terms of how the user experiences the program. Yes, main() has an infinite number of user inputs, but for each input the user will experience only one possible output. It starts to feel more nondeterministic when modeling a long-standing system that's reacting to user input, for example a server that runs a script whenever the user uploads a file. This can be modeled with nondeterminism and concurrency: We have one execution that's the system, and one nondeterministic execution that represents the effects of our user. (One intrusive thought I sometimes have: any "yes/no" dialogue actually has three outcomes: yes, no, or the user getting up and walking away without picking a choice, permanently stalling the execution.) 4. External forces The more general version of "user input": anything where either 1) some part of the execution outcome depends on retrieving external information, or 2) the external world can change some state outside of your system. I call the distinction between internal and external components of the system the world and the machine. Simple examples: code that at some point reads an external temperature sensor. Unrelated code running on a system which quits programs if it gets too hot. API requests to a third party vendor. Code processing files but users can delete files before the script gets to them. Like with PRNGs, some of these cases don't have to be nondeterministic; we can argue that "the temperature" should be a virtual input into the function. Like with PRNGs, we treat it as nondeterministic because it's useful to think in that way. Also, what if the temperature changes between starting a function and reading it? External forces are also a source of nondeterminism as uncertainty. Measurements in the real world often comes with errors, so repeating a measurement twice can give two different answers. Sometimes operations fail for no discernable reason, or for a non-programmatic reason (like something physically blocks the sensor). All of these situations can be modeled in the same way as user input: a concurrent execution making nondeterministic choices. 5. Abstraction This is where nondeterminism in system models and in "real software" differ the most. I said earlier that pseudorandomness is arguably deterministic, but we abstract it into nondeterminism. More generally, nondeterminism hides implementation details of deterministic processes. In one consulting project, we had a machine that received a message, parsed a lot of data from the message, went into a complicated workflow, and then entered one of three states. The final state was totally deterministic on the content of the message, but the actual process of determining that final state took tons and tons of code. None of that mattered at the scope we were modeling, so we abstracted it all away: "on receiving message, nondeterministically enter state A, B, or C." Doing this makes the system easier to model. It also makes the model more sensitive to possible errors. What if the workflow is bugged and sends us to the wrong state? That's already covered by the nondeterministic choice! Nondeterministic abstraction gives us the potential to pick the worst-case scenario for our system, so we can prove it's robust even under those conditions. I know I beat the "nondeterminism as abstraction" drum a whole lot but that's because it's the insight from formal methods I personally value the most, that nondeterminism is a powerful tool to simplify reasoning about things. You can see the same approach in how I approach modeling users and external forces: complex realities black-boxed and simplified into nondeterministic forces on the system. Anyway, I hope this collection of ideas I got from formal methods are useful to my broader readership. Lemme know if it somehow helps you out! I realized after writing this that I already talked wrote an essay about nondeterminism in formal specification just under a year ago. I hope this one covers enough new ground to be interesting! ↩ There is a surprising number of you. ↩