More from orlp.net - Blog Archive
It seems that in 2025 a lot of people fall into one of two camps when it comes to AI: skeptic or fanatic. The skeptic thinks AI sucks, that it’s overhyped, it only ever parrots nonsense and it will all blow over soon. The fanatic thinks general human-level intelligence is just around the corner, and that AI will solve almost all our problems. I hope my title is sufficiently ambiguous to attract both camps. The fanatic will be outraged, being ready to jump into the fray to point out why AI isn’t or won’t stay bad. The skeptic will feel validated, and will be eager to read more reasons as to why AI sucks. I’m neither a skeptic nor a fanatic. I see AI more neutrally, as a tool, and from that viewpoint I make the following two observations: AI is bad. It is often incorrect, expensive, racist, trained on data without knowledge or consent, environmentally unfriendly, disruptive to society, etc. AI is useful. Despite the above shortcomings there are tasks for which AI is cheap and effective. I’m no seer, perhaps AI will improve, become more accurate, less biased, cheaper, trained on open access data, cost less electricity, etc. Or perhaps we have plateaued in performance, and there is no political or economic goodwill to address any of the other issues, nor will there be. However, even if AI does not improve in any of the above metrics, it will still be useful, and I hope to show you in this article why. Hence my point: bad AI is here to stay. If you agree with me on this, I hope you’ll also agree with me that we have to stop pretending AI is useless and start taking it and its problems seriously. A formula for query cost Suppose I am a human with some kind of question that can be answered. I know AI could potentially help me with this question, but I wonder if it’s worth it or if I should not use it at all. To help with this we can quantify the risk associated with any potential method of answering the question: $$\mathrm{Risk}_\mathrm{AI} = \mathrm{Cost(query)} + (1 - P(\mathrm{success})) \cdot \mathrm{Cost(bad)}$$ That is, the risk of using any particular method is the cost associated with the method plus the cost of the consequences of a bad answer multiplied by the probability of failure. Here ‘Cost’ is a highly multidimensional object, which can consist of but is not limited to: time, money, environmental impact, ethical concerns, etc. In a lot of cases however we don’t have to blindly trust the answer, and we can verify it. In these cases the consequence of a bad answer is that you’re left in the exact same scenario before trying, except knowing that the AI is of no use. In some scenarios when the AI is non-deterministic it might be worth it to try again as well, but let’s assume for now that you’d have to switch method. In this case the risk is: $$\mathrm{Risk}_\mathrm{AI} = \mathrm{Cost(query)} + \mathrm{Cost(verify)} + (1 - P(\mathrm{success})) \cdot {\mathrm{Risk}}_\mathrm{Other}$$ The cost of a query is usually fairly fixed and known, and although verification cost can vary drastically from task to task, I’d argue that in most cases the cost of verification is also fairly predictable and known. This makes the risk formula applicable in a lot of scenarios, if you have a good idea of the chance of success. The latter, however, can usually only be established empirically, so for one-shot queries without having done any similar queries in the past it can be hard to evaluate whether trying AI is a good idea before doing so. There is one more expansion to the formula I’d like to make before we can look at some examples, and that is to the definition of a successful answer: $$P(\mathrm{success}) = P(\mathrm{correct} \cap \mathrm{relevant})$$ I define a successful answer as one that is both correct and relevant. For example “1 + 1 = 2” might be a correct answer, but irrelevant if we asked about anything else. Relevance is always subjective, but often the correctness of an answer is as well - I’m not assuming here that all questions are about objective facts. Cheap and effective AI queries Because AIs are fallible, usually the biggest cost is in fact the time needed for a human to verify the answer as correct and relevant (or the cost of consequences if left unverified). However, I’ve noticed a real asymmetry between these two properties when it comes to AIs: AIs often give incorrect answers. Worse, they will do so confidently, forcing you to waste time checking their answer instead of them simply stating that they don’t know for sure. AIs almost never give irrelevant answers. If I ask about cheese, the probability a modern AI starts talking about cars is very low. With this in mind I identify five general categories of query for which even bad AI is useful, either by massively reducing or eliminating this verification cost or by leaning on the strong relevance of AI answers: Inspiration, where $\operatorname{Cost}(\mathrm{bad}) \approx 0$, Creative, where $P(\mathrm{correct}) \approx 1$, Planning, where $P(\mathrm{correct}) = P(\mathrm{relevant}) = 1$, Retrieval, where $P(\mathrm{correct}) \approx P(\mathrm{relevant})$, and Objective, where $P(\mathrm{relevant}) = 1$ and correctness verification cost is low. Let’s go over them one by one and look at some examples. Inspiration ($\operatorname{Cost}(\mathrm{bad}) \approx 0$) In this category are the queries where the consequences of a wrong answer are (near) zero. Informally speaking, “it can’t hurt to try”. In my experience these kinds of queries tend to be the ones where you are looking for something but don’t know exactly what; you’ll know it when you see it. For example: “I have leeks, eggs and minced meat in the fridge, as well as a stocked pantry with non-perishable staples. Can you suggest me some dishes I can make with this for a dinner?” “What kind of fun activities can I do with a budget of $100 in New York?” “Suggest some names for a Python function that finds the smallest non-negative number in a list.” “The user wrote this partial paragraph on their phone, suggest three words that are most likely to follow for a quick typing experience.” “Give me 20 synonyms of or similar words to ‘good’.” I think the last query highlights where AI shines or falls for this kind of query. The more localized and personalized your question is, the better the AI will do compared to an alternative. For simple synonyms you can usually just look up the word on a dedicated synonym site, as millions of other people have also wondered the same thing. But the exact contents of your fridge or your exact Python function you’re writing are rather unique to you. Creative ($P(\mathrm{correct}) \approx 1$) In this category are the queries where there are no (almost) no wrong answers. The only thing that really matters is the relevance of the answer, and as I mentioned before, I think AIs are pretty good at being relevant. Examples of queries like these are: “Draw me an image of a polar bear using a computer.” “Write and perform for me a rock ballad about gnomes on tiny bicycles.” “Rephrase the following sentence to be more formal.” “Write a poem to accompany my Sinterklaas gift.” This category does have a controversial aspect to it: it is ‘soulless’, inhuman. Usually if there are no wrong answers we expect the creator to use this opportunity to express their inner thoughts, ideas, experiences and emotions to evoke them in others. If an AI generates art it is not viewed as genuine, even if it evokes the same emotions to those ignorant of the art’s source, because the human to human connection is lost. Current AI models have no inner thoughts, ideas, experiences or emotions, at least not in a way I recognize them. I think it’s fine to use AI art in places where it would otherwise be meaningless (e.g. your corporate presentation slides), fine for humans to use AI-assisted art tools to express themselves, but ultimately defeating the point of art if used as a direct substitute. In the Netherlands we celebrate Sinterklaas which is, roughly speaking, Santa Claus (except we also have Santa Claus, so our children double-dip during the gifting season). Traditionally, gifts from Sinterklaas come accompanied by poems describing the gift and the receiver in a humorous way. It is quite common nowadays, albeit viewed as lazy, to generate such a poem using AI. What’s interesting is that this practice long predates modern LLMs–the poems have such a fixed structure that poem generators have existed a long time. The earliest reference I can find is the 1984 MS-DOS program “Sniklaas”. So people being lazy in supposedly heartfelt art is nothing new. Planning ($P(\mathrm{correct}) = P(\mathrm{relevant}) = 1$) This is a more restrictive form of creativity, where irrelevant answers are absolutely impossible. This often requires some modification of the AI output generation method, where you restrict the output to the valid subdomain (for example yes / no, or binary numbers, etc). However, this is often trivial if you actually have access to the raw model by e.g. masking out invalid outputs, or you are working with a model which outputs the answer directly rather than in natural language or a stream of tokens. One might think in such a restrictive scenario there would be no useful queries, but this isn’t true. The quality of the answer with respect to some (complex) metric might still vary, and AIs might be far better than traditional methods at navigating such domains. For example: “Here is the schema of my database, a SQL query, a small sample of the data and 100 possible query plans. Which query plan seems most likely to execute the fastest? Take into account likely assumptions based on column names and these small data samples.” “What follows is a piece of code. Reformat the code, placing whitespace to maximize readability, while maintaining the exact same syntax tree as per this EBNF grammar.” “Re-order this set of if-else conditions in my code based on your intuition to minimize the expected number of conditions that need to be checked.” “Simplify this math expression using the following set of rewrite rules.” Retrieval ($P(\mathrm{correct}) \approx P(\mathrm{relevant})$) I define retrieval queries as those where the correctness of the answer depends (almost) entirely on its relevance. I’m including classification tasks in this category as well, as one can view it as retrieval of the class from the set of classes (or for binary classification, retrieval of positive samples from a larger set). Then, as long as the cost of verification is low (e.g. a quick glance at a result by a human to see if it interests them), or the consequences of not verifying an irrelevant answer are minimal, AIs can be excellent at this. For example: “Here are 1000 reviews of a restaurant, which ones are overall positive? Which ones mention unsanitary conditions?” “Find me pictures of my dog in my photo collection.” “What are good data structures for maintaining a list of events with dates and quickly counting the number of events in a specified period of time?” “I like Minecraft, can you suggest me some similar games?” “Summarise this 200 page government proposal.” “Which classical orchestral piece starts like ‘da da da daaaaa’”? Objective ($P(\mathrm{relevant}) = 1$, low verification cost) If a problem has an objective answer which can be verified, the relevance of the answer doesn’t really matter or arguably even make sense as a concept. Thus in these cases I’ll define $P(\mathrm{relevant}) = 1$ and leave the cost of verification entirely to correctness. AIs are often incorrect, but not always, so if the primary cost is verification and verification can be done very cheaply or entirely automatically without error, AIs can still be useful despite their fallibility. “What is the mathematical property where a series of numbers can only go up called?” “Identify the car model in this photo.” “I have a list of all Unicode glyphs which are commonly confused with other letters. Can you write an efficient function returning a boolean value that returns true for values in the list but false for all other code points?” “I formalized this mathematical conjecture in Lean. Can you help me write a proof for it?” In a way this category is reminiscent of the $P = NP$ problem. If you have an efficient verification algorithm, is finding solutions still hard in general? The answer seems to be yes, yet the proof eludes us. However, this is only true in general. For specific problems it might very well be possible to use AI to generate provably correct solutions with high probability, even though the the search space is far too large or too complicated for a traditional algorithm. Conclusion Out of the five identified categories, I consider inspiration and retrieval queries to be the strongest use-case for AI where often there is no alternative at all, besides an expensive and slow human that would rather be doing something else. Relevance is highly subjective, complex and fuzzy, which AI handles much better than traditional algorithms. Planning and objective queries are more niche, but absolutely will see use-cases for AI that are hard to replace. Creative queries are both something I think AI is really good at, while simultaneously being the most dangerous and useless category. Art, creativity and human-to-human connections are in my opinion some of the most fundamental aspects of human society, and I think it is incredibly dangerous to mess with them. So dangerous in fact I consider many such queries useless. I wanted the above examples all to be useful queries, so I did not list the following four examples in the “Creative” section despite them belonging there: “Write me ten million personalized spam emails including these links based on the following template.” “Emulate being the perfect girlfriend for me–never disagree with me or challenge my world views like real women do.” “Here is a feed of Reddit threads discussing the upcoming election. Post a comment in each thread, making up a personal anecdote how you are affected by immigrants in a negative way.” “A customer sent in this complaint. Try to help them with any questions they have but if your help is insufficient explain that you are sorry but can not help them any further. Do not reveal you are an AI.” Why do I consider these queries useless, despite them being potentially very profitable or effective? Because their cost function includes such a large detriment to society that only those who ignore its cost to society would ever use them. However, since the cost is “to society” and not to any particular individual, the only way to address this problem is with legislation, as otherwise bad actors are free to harm society for (temporary) personal gain. I wrote this article because I noticed that there are a lot of otherwise intelligent people out there who still believe (or hope) that all AI is useless garbage and that it and its problems will go away by itself. They will not. If you know someone that still believes so, please share this article with them. AI is bad, yes, but bad AI is still useful. Therefore, bad AI is here to stay, and we must deal with it.
Hash functions are incredibly neat mathematical objects. They can map arbitrary data to a small fixed-size output domain such that the mapping is deterministic, yet appears to be random. This “deterministic randomness” is incredibly useful for a variety of purposes, such as hash tables, checksums, monte carlo algorithms, communication-less distributed algorithms, etc, the list goes on. In this article we will take a look at the dark side of hash functions: when things go wrong. Luckily this essentially never happens due to unlucky inputs in the wild (for good hash functions, at least). However, people exist, and some of them may be malicious. Thus we must look towards computer security for answers. I will quickly explain some of the basics of hash function security and then show how easy it is to break this security for some commonly used non-cryptographic hash functions. As a teaser, this article explains how you can generate strings such as these, thousands per second: cityhash64("orlp-cityhash64-D-:K5yx*zkgaaaaa") == 1337 murmurhash2("orlp-murmurhash64-bkiaaa&JInaNcZ") == 1337 murmurhash3("orlp-murmurhash3_x86_32-haaaPa*+") == 1337 farmhash64("orlp-farmhash64-/v^CqdPvziuheaaa") == 1337 I also show how you can create some really funky pairs of strings that can be concatenated arbitrarily such that when concatenating $k$ strings together any of the $2^k$ combinations all have the same hash output, regardless of the seed used for the hash function: a = "xx0rlpx!xxsXъВ" b = "xxsXъВxx0rlpx!" murmurhash2(a + a, seed) == murmurhash2(a + b, seed) murmurhash2(a + a, seed) == murmurhash2(b + a, seed) murmurhash2(a + a, seed) == murmurhash2(b + b, seed) a = "!&orlpՓ" b = "yǏglp$X" murmurhash3(a + a, seed) == murmurhash3(a + b, seed) murmurhash3(a + a, seed) == murmurhash3(b + a, seed) murmurhash3(a + a, seed) == murmurhash3(b + b, seed) Hash function security basics Hash functions play a critical role in computer security. Hash functions are used not only to verify messages over secure channels, they are also used to identify trusted updates as well as known viruses. Virtually every signature scheme ever used starts with a hash function. If a hash function does not behave randomly, we can break the above security constructs. Cryptographic hash functions thus take the randomness aspect very seriously. The ideal hash function would choose an output completely at random for each input, remembering that choice for future calls. This is called a random oracle. The problem is that a random oracle requires a true random number generator, and more problematically, a globally accessible infinite memory bank. So we approximate it using deterministic hash functions instead. These compute their output by essentially shuffling their input really, really well, in such a way that it is not feasible to reverse. To help quantify whether a specific function does a good job of approximating a random oracle, cryptographers came up with a variety of properties that a random oracle would have. The three most important and well-known properties a secure cryptographic hash function should satisfy are: Pre-image resistance. For some constant $c$ it should be hard to find some input $m$ such that $h(m) = c$. Second pre-image resistance. For some input $m_1$ it should be hard to find another input $m_2$ such that $h(m_1) = h(m_2)$. Collision resistance. It should be hard to find inputs $m_1, m_2$ such that $h(m_1) = h(m_2)$. Note that pre-image resistance implies second pre-image resistance which in turn implies collision resistance. Conversely, a pre-image attack breaks all three properties. We generally consider one of these properties broken if there exists a method that produces a collision or pre-image faster than simply trying random inputs (also known as a brute force attack). However, there are definitely gradations in breakage, as some methods are only several orders of magnitude faster than brute force. That may sound like a lot, but a method taking $2^{110}$ steps instead of $2^{128}$ are still both equally out of reach for today’s computers. MD5 used to be a common hash function, and SHA-1 is still in common use today. While both were considered cryptographically secure at one point, generating MD5 collisions now takes less than a second on a modern PC. In 2017 a collaboration of researchers from CWI and Google and announced the first SHA-1 collision. However, as far as I’m aware, neither MD5 nor SHA-1 have practical (second) pre-image attacks, only theoretical ones. Non-cryptographic hash functions Cryptographically secure hash functions tend to have a small problem: they’re slow. Modern hash functions such as BLAKE3 resolve this somewhat by heavily vectorizing the hash using SIMD instructions, as well as parallelizing over multiple threads, but even then they require large input sizes before reaching those speeds. One particular use-case for hash functions is deriving a secret key from a password: a key derivation function. Unlike regular hash functions, being slow is actually a safety feature here to protect against brute forcing passwords. Modern ones such as Argon2 also intentionally use a lot of memory for protection against specialized hardware such as ASICs or FPGAs. A lot of problems don’t necessarily require secure hash functions, and people would much prefer a faster hash speed. Especially when we are computing many small hashes, such as in a hash table. Let’s take a look what common hash table implementations actually use as their hash for strings: C++: there are multiple standard library implementations, but 64-bit clang 13.0.0 on Apple M1 ships CityHash64. Currently libstdc++ ships MurmurHash64A, a variant of Murmur2 for 64-bit platforms. Java: OpenJDK uses an incredibly simple hash algorithm, which essentially just computes h = 31 * h + c for each character c. PHP: the Zend engine uses essentially the same algorithm as Java, just using unsigned integers and 33 as its multiplier. Nim: it used to use MurmurHash3_x86_32. While writing this article they appeared to have switched to use farmhash by default. Zig: it uses wyhash by default, with 0 as seed. Javascript: in V8 they use a custom weak string hash, with a randomly initialized seed. There were some that used stronger hashes by default as well: Go uses an AES-based hash if hardware acceleration is available on x86-64. Even though its construction is custom and likely not full-strength cryptographically secure, breaking it is too much effort and quite possibly beyond my capabilities. If not available, it uses an algorithm inspired by wyhash. Python and Rust use SipHash by default, which is a cryptographically secure pseudorandom function. This is effectively a hash function where you’re allowed to use a secret key during hashing, unlike a hash like SHA-2 where everyone knows all information involved. This latter concept is actually really important, at least for protecting against HashDoS in hash tables. Even if a hash function is perfectly secure over its complete output, hash tables further reduce the output to only a couple bits to find the data it is looking for. For a static hash function without any randomness it’s possible to produce large lists of hashes that collide post-reduction, just by brute force. But for non-cryptographic hashes as we’ll see here we often don’t need brute force and can generate collisions at high speed for the full output, if not randomized by a random seed. Interlude: inverse operations Before we get to breaking some of the above hash functions, I must explain a basic technique I will use a lot: the inverting of operations. We are first exposed to this in primary school, where we might get faced by a question such as “$2 + x = 10$”. There we learn subtraction is the inverse of addition, such that we may find $x$ by computing $10 - 2 = 8$. Most operations on the integer registers in computers are also invertible, despite the integers being reduced modulo $2^{w}$ in the case of overflow. Let us study some: Addition can be inverted using subtraction. That is, x += y can be inverted using x -= y. Seems obvious enough. Multiplication by a constant $c$ is not inverted by division. This would not work in the case of overflow. Instead, we calculate the modular multiplicative inverse of $c$. This is an integer $c^{-1}$ such that $c \cdot c^{-1} \equiv 1 \pmod {m}$. Then we invert multiplication by $c$ simply by multiplying by $c^{-1}$. This constant exists if and only if $c$ is coprime with our modulus $m$, which for us means that $c$ must be odd as $m = 2^n$. For example, multiplication by $2$ is not invertible, which is easy to see as such, as it is equivalent to a bit shift to the left by one position, losing the most significant bit forever. Without delving into the details, here is a snippet of Python code that computes the modular multiplicative inverse of an integer using the extended Euclidean algorithm by calculating $x, y$ such that $$cx + my = \gcd(c, m).$$ Then, because $c$ is coprime we find $\gcd(c, m) = 1$, which means that $$cx + 0 \equiv 1 \pmod m,$$ and thus $x = c^{-1}$. def egcd(a, b): if a == 0: return (b, 0, 1) g, y, x = egcd(b % a, a) return (g, x - (b // a) * y, y) def modinv(c, m): g, x, y = egcd(c, m) assert g == 1, "c, m must be coprime" return x % m Using this we can invert modular multiplication: >>> modinv(17, 2**32) 4042322161 >>> 42 * 17 * 4042322161 % 2**32 42 Magic! XOR can be inverted using… XOR. It is its own inverse. So x ^= y can be inverted using x ^= y. Bit shifts can not be inverted, but two common operations in hash functions that use bit shifts can be. The first is bit rotation by a constant. This is best explained visually, for example a bit rotation to the left by 3 places on a 8-bit word, where each bit is shown as a letter: abcdefghi defghiabc The formula for a right-rotation of k places is (x >> k) | (x << (w - k)), where w is the width of the integer type. Its inverse is a left-rotation, which simply swaps the direction of both shifts. Alternatively, the inverse of a right-rotation of k places is another right-rotation of w-k places. Another common operation in hash functions is the “xorshift”. It is an operation of one of the following forms, with $k > 0$: x ^= x << k // Left xorshift. x ^= x >> k // Right xorshift. How to invert it is entirely analogous between the two, so I will focus on the left xorshift. An important observation is that the least significant $k$ bits are left entirely untouched by the xorshift. Thus by repeating the operation, we recover the least significant $2k$ bits, as the XOR will invert itself for the next $k$ bits. Let’s take a look at the resulting value to see how we should proceed: v0 = (x << k) ^ x // Apply first step of inverse v1 = v0 ^ (v0 << k). v1 = (x << 2*k) ^ (x << k) ^ (x << k) ^ x // Simplify using self-inverse (x << k) ^ (x << k) = 0. v1 = (x << 2*k) ^ x From this we can conclude the following identity: $$\operatorname{xorshift}(\operatorname{xorshift}(x, k), k) = \operatorname{xorshift}(x, 2k)$$ Now we only need one more observation to complete our algorithm: a xorshift of $k \geq w$ where $w$ is the width of our integer is a no-op. Thus we repeatedly apply our doubling identity until we reach large enough $q$ such that $\operatorname{xorshift}(x, 2^q \cdot k) = x$. For example, to invert a left xorshift by 13 for 64-bit integers we apply the following sequence: x ^= x << 13 // Left xorshift by 13. x ^= x << 13 // Inverse step 1. x ^= x << 26 // Inverse step 2. x ^= x << 52 // Inverse step 3. // x ^= x << 104 // Next step would be a no-op. Armed with this knowledge, we can now attack. Breaking CityHash64 Let us take a look at (part of) the source code of CityHash64 from libcxx that’s used for hashing strings on 64-bit platforms: C++ standard library code goes through a process known as 'uglification', which prepends underscores to all identifiers. This is because those identifiers are reserved by the standard to only be used in the standard library, and thus won't be replaced by macros from standards-compliant code. For your sanity's sake I removed them here. static const uint64_t mul = 0x9ddfea08eb382d69ULL; static const uint64_t k0 = 0xc3a5c85c97cb3127ULL; static const uint64_t k1 = 0xb492b66fbe98f273ULL; static const uint64_t k2 = 0x9ae16a3b2f90404fULL; static const uint64_t k3 = 0xc949d7c7509e6557ULL; template<class T> T loadword(const void* p) { T r; std::memcpy(&r, p, sizeof(r)); return r; } uint64_t rotate(uint64_t val, int shift) { if (shift == 0) return val; return (val >> shift) | (val << (64 - shift)); } uint64_t hash_len_16(uint64_t u, uint64_t v) { uint64_t x = u ^ v; x *= mul; x ^= x >> 47; uint64_t y = v ^ x; y *= mul; y ^= y >> 47; y *= mul; return y; } uint64_t hash_len_17_to_32(const char *s, uint64_t len) { const uint64_t a = loadword<uint64_t>(s) * k1; const uint64_t b = loadword<uint64_t>(s + 8); const uint64_t c = loadword<uint64_t>(s + len - 8) * k2; const uint64_t d = loadword<uint64_t>(s + len - 16) * k0; return hash_len_16( rotate(a - b, 43) + rotate(c, 30) + d, a + rotate(b ^ k3, 20) - c + len ); } To break this, let’s assume we’ll always give length 32 inputs. Then the implementation will always call hash_len_17_to_32, and we have full control over variables a, b, c and d by changing our input. Note that d is only used once, in the final expression. This makes it a prime target for attacking the hash. We will choose a, b and c arbitrarily, and then solve for d to compute a desired hash outcome. Using the above modinv function we first compute the necessary modular multiplicative inverses of mul and k0: >>> 0x9ddfea08eb382d69 * 0xdc56e6f5090b32d9 % 2**64 1 >>> 0xc3a5c85c97cb3127 * 0x81bc9c5aa9c72e97 % 2**64 1 We also note that in this case the xorshift is easy to invert, as x ^= x >> 47 is simply its own inverse. Having all the components ready, we can invert the function step by step. We first load a, b and c like in the hash function, and compute uint64_t v = a + rotate(b ^ k3, 20) - c + len; which is the second parameter to hash_len_16. Then, starting from our desired return value of hash_len_16(u, v) we work backwards step by step, inverting each operation to find the function argument u that would result in our target hash. Then once we have found such the unique u we compute our required input d. Putting it all together: static const uint64_t mul_inv = 0xdc56e6f5090b32d9ULL; static const uint64_t k0_inv = 0x81bc9c5aa9c72e97ULL; void cityhash64_preimage32(uint64_t hash, char *s) { const uint64_t len = 32; const uint64_t a = loadword<uint64_t>(s) * k1; const uint64_t b = loadword<uint64_t>(s + 8); const uint64_t c = loadword<uint64_t>(s + len - 8) * k2; uint64_t v = a + rotate(b ^ k3, 20) - c + len; // Invert hash_len_16(u, v). Original operation inverted // at each step is shown on the right, note that it is in // the inverse order of hash_len_16. uint64_t y = hash; // return y; y *= mul_inv; // y *= mul; y ^= y >> 47; // y ^= y >> 47; y *= mul_inv; // y *= mul; uint64_t x = y ^ v; // uint64_t y = v ^ x; x ^= x >> 47; // x ^= x >> 47; x *= mul_inv; // x *= mul; uint64_t u = x ^ v; // uint64_t x = u ^ v; // Find loadword<uint64_t>(s + len - 16). uint64_t d = u - rotate(a - b, 43) - rotate(c, 30); d *= k0_inv; std::memcpy(s + len - 16, &d, sizeof(d)); } The chance that a random uint64_t forms 8 printable ASCII bytes is $\left(94/256\right)^8 \approx 0.033%$. Not great, but cityhash64_preimage32 is so fast that having to repeat it on average ~3000 times to get a purely ASCII result isn’t so bad. For example, the following 10 strings all hash to 1337 using CityHash64, generated using this code: I’ve noticed there’s variants of CityHash64 with subtle differences in the wild. I chose to attack the variant shipped with libc++, so it should work for std::hash there, for example. I also assume a little-endian machine throughout this article, your mileage may vary on a big-endian machine depending on the hash implementation. orlp-cityhash64-D-:K5yx*zkgaaaaa orlp-cityhash64-TXb7;1j&btkaaaaa orlp-cityhash64-+/LM$0 ;msnaaaaa orlp-cityhash64-u'f&>I'~mtnaaaaa orlp-cityhash64-pEEv.LyGcnpaaaaa orlp-cityhash64-v~~bm@,Vahtaaaaa orlp-cityhash64-RxHr_&~{miuaaaaa orlp-cityhash64-is_$34#>uavaaaaa orlp-cityhash64-$*~l\{S!zoyaaaaa orlp-cityhash64-W@^5|3^:gtcbaaaa Breaking MurmurHash2 We can’t let libstdc++ get away after targetting libc++, can we? The default string hash calls an implementation of MurmurHash2 with seed 0xc70f6907. The hash—simplified to only handle strings whose lengths are multiples of 8—is as follows: uint64_t murmurhash64a(const char* s, size_t len, uint64_t seed) { const uint64_t mul = 0xc6a4a7935bd1e995ULL; uint64_t hash = seed ^ (len * mul); for (const char* p = s; p != s + len; p += 8) { uint64_t data = loadword<uint64_t>(p); data *= mul; data ^= data >> 47; data *= mul; hash ^= data; hash *= mul; } hash ^= hash >> 47; hash *= mul; hash ^= hash >> 47; return hash; } We can take a similar approach here as before. We note that the modular multiplicative inverse of 0xc6a4a7935bd1e995 mod $2^{64}$ is 0x5f7a0ea7e59b19bd. As an example, we can choose the first 24 bytes arbitrarily, and solve for the last 8 bytes: void murmurhash64a_preimage32(uint64_t hash, char* s, uint64_t seed) { const uint64_t mul = 0xc6a4a7935bd1e995ULL; const uint64_t mulinv = 0x5f7a0ea7e59b19bdULL; // Compute the hash state for the first 24 bytes as normal. uint64_t state = seed ^ (32 * mul); for (const char* p = s; p != s + 24; p += 8) { uint64_t data = loadword<uint64_t>(p); data *= mul; data ^= data >> 47; data *= mul; state ^= data; state *= mul; } // Invert target hash transformation. // return hash; hash ^= hash >> 47; // hash ^= hash >> 47; hash *= mulinv; // hash *= mul; hash ^= hash >> 47; // hash ^= hash >> 47; // Invert last iteration for last 8 bytes. hash *= mulinv; // hash *= mul; uint64_t data = state ^ hash; // hash = hash ^ data; data *= mulinv; // data *= mul; data ^= data >> 47; // data ^= data >> 47; data *= mulinv; // data *= mul; std::memcpy(s + 24, &data, 8); // data = loadword<uint64_t>(s); } The following 10 strings all hash to 1337 using MurmurHash64A with the default seed 0xc70f6907, generated using this code: orlp-murmurhash64-bhbaaat;SXtgVa orlp-murmurhash64-bkiaaa&JInaNcZ orlp-murmurhash64-ewmaaa(%J+jw>j orlp-murmurhash64-vxpaaag"93\Yj5 orlp-murmurhash64-ehuaaafa`Wp`/| orlp-murmurhash64-yizaaa1x.zQF6r orlp-murmurhash64-lpzaaaZphp&c F orlp-murmurhash64-wsjbaa771rz{z< orlp-murmurhash64-rnkbaazy4X]p>B orlp-murmurhash64-aqnbaaZ~OzP_Tp Universal collision attack on MurmurHash64A In fact, MurmurHash64A is so weak that Jean-Philippe Aumasson, Daniel J. Bernstein and Martin Boßlet published an attack that creates sets of strings which collide regardless of the random seed used. To be fair to CityHash64… just kidding they found universal collisions against it as well, regardless of seed used. CityHash64 is actually much easier to break in this way, as simply doing the above pre-image attack targetting 0 as hash makes the output purely dependent on the seed, and thus a universal collision. To see how it works, let’s take a look at the core loop of MurmurHash64A: uint64_t data = loadword<uint64_t>(p); data *= mul; // Trivially invertible. data ^= data >> 47; // Trivially invertible. data *= mul; // Trivially invertible. state ^= data; state *= mul; We know we can trivially invert the operations done on data regardless of what the current state is, so we might as well have had the following body: state ^= data; state *= mul; Now the hash starts looking rather weak indeed. The clever trick they employ is by creating two strings simultaneously, such that they differ precisely in the top bit in each 8-byte word. Why the top bit? >>> 1 << 63 9223372036854775808 >>> (1 << 63) * mul % 2**64 9223372036854775808 Since mul is odd, its least significant bit is set. Multiplying 1 << 63 by it is equivalent to shifting that bit 63 places to the left, which is once again 1 << 63. That is, 1 << 63 is a fixed point for the state *= mul operation. We also note that for the top bit XOR is equivalent to addition, as the overflow from addition is removed mod $2^{64}$. So if we have two input strings, one starting with the 8 bytes data, and the other starting with data ^ (1 << 63) == data + (1 << 63) (after doing the trivial inversions). We then find that the two states, regardless of seed, differ exactly in the top bit after state ^= data. After multiplication we find we have two states x * mul and (x + (1 << 63)) * mul == x * mul + (1 << 63)… which again differ exactly in the top bit! We are now back to state ^= data in our iteration, for the next 8 bytes. We can now use this moment to cancel our top bit difference, by again feeding two 8-byte strings that differ in the top bit (after inverting). In fact, we only have to find one pair of such strings that differ in the top bit, which we can then repeat twice (in either order) to cancel our difference again. When represented as a uint64_t if we choose the first string as x we can derive the second string as x *= mul; // Forward transformation... x ^= x >> 47; // ... x *= mul; // ... x ^= 1 << 63; // Difference in top bit. x *= mulinv; // Backwards transformation... x ^= x >> 47; // ... x *= mulinv; // ... I was unable to find a printable ASCII string that has another printable ASCII string as its partner. But I was able to find the following pair of 8-byte UTF-8 strings that differ in exactly the top bit after the Murmurhash64A input transformation: xx0rlpx! xxsXъВ Combining them as such gives two 16-byte strings that when fed through the hash algorithm manipulate the state in the same way: a collision. xx0rlpx!xxsXъВ xxsXъВxx0rlpx! But it doesn’t stop there. By concatenating these two strings we can create $2^n$ different colliding strings each $16n$ bytes long. With the current libstdc++ implementation the following prints the same number eight times: std::hash<std::u8string> h; std::u8string a = u8"xx0rlpx!xxsXъВ"; std::u8string b = u8"xxsXъВxx0rlpx!"; std::cout << h(a + a + a) << "\n"; std::cout << h(a + a + b) << "\n"; std::cout << h(a + b + a) << "\n"; std::cout << h(a + b + b) << "\n"; std::cout << h(b + a + a) << "\n"; std::cout << h(b + a + b) << "\n"; std::cout << h(b + b + a) << "\n"; std::cout << h(b + b + b) << "\n"; Even if the libstdc++ would randomize the seed used by MurmurHash64a, the strings would still collide. Breaking MurmurHash3 Nim uses used to use MurmurHash3_x86_32, so let’s try to break that. If we once again simplify to strings whose lengths are a multiple of 4 we get the following code: uint32_t rotl32(uint32_t x, int r) { return (x << r) | (x >> (32 - r)); } uint32_t murmurhash3_x86_32(const char* s, int len, uint32_t seed) { const uint32_t c1 = 0xcc9e2d51; const uint32_t c2 = 0x1b873593; const uint32_t c3 = 0x85ebca6b; const uint32_t c4 = 0xc2b2ae35; uint32_t h = seed; for (const char* p = s; p != s + len; p += 4) { uint32_t k = loadword<uint32_t>(p); k *= c1; k = rotl32(k, 15); k *= c2; h ^= k; h = rotl32(h, 13); h = h * 5 + 0xe6546b64; } h ^= len; h ^= h >> 16; h *= c3; h ^= h >> 13; h *= c4; h ^= h >> 16; return h; } I think by now you should be able to get this function to spit out any value you want if you know the seed. The inverse of rotl32(x, r) is rotl32(x, 32-r) and the inverse of h ^= h >> 16 is once again just h ^= h >> 16. Only h ^= h >> 13 is a bit different, it’s the first time we’ve seen that a xorshift’s inverse has more than one step: h ^= h >> 13 h ^= h >> 26 Compute the modular inverses of c1 through c4 as well as 5 mod $2^{32}$, and go to town. If you want to cheat or check your answer, you can check out the code I’ve used to generate the following ten strings that all hash to 1337 when fed to MurmurHash3_x86_32 with seed 0: orlp-murmurhash3_x86_32-haaaPa*+ orlp-murmurhash3_x86_32-saaaUW&< orlp-murmurhash3_x86_32-ubaa/!/" orlp-murmurhash3_x86_32-weaare]] orlp-murmurhash3_x86_32-chaa5@/} orlp-murmurhash3_x86_32-claaM[,5 orlp-murmurhash3_x86_32-fraaIx`N orlp-murmurhash3_x86_32-iwaara&< orlp-murmurhash3_x86_32-zwaa]>zd orlp-murmurhash3_x86_32-zbbaW-5G Nim uses 0 as a fixed seed. You might wonder about the ethics of publishing functions for generating arbitrary amounts of collisions for hash functions actually in use today. I did consider holding back. But HashDoS has been a known attack for almost two decades now, and the universal hash collisions I’ve shown were also published more than a decade ago now as well. At some point you’ve had enough time to, uh, fix your shit. Universal collision attack on MurmurHash3 Suppose that Nim didn’t use 0 as a fixed seed, but chose a randomly generated one. Can we do a similar attack as the one done to MurmurHash2 to still generate universal multicollisions? Yes we can. Let’s take another look at that core loop body: uint32_t k = loadword<uint32_t>(p); k *= c1; // Trivially invertable. k = rotl32(k, 15); // Trivially invertable. k *= c2; // Trivially invertable. h ^= k; h = rotl32(h, 13); h = h * 5 + 0xe6546b64; Once again we can ignore the first three trivially invertable instructions as we can simply choose our input so that we get exactly the k we want. Remember from last time that we want to introduce a difference in exactly the top bit of h, as the multiplication will leave this difference in place. But here there is a bit rotation between the XOR and the multiplication. The solution? Simply place our bit difference such that rotl32(h, 13) shifts it into the top position. Does the addition of 0xe6546b64 mess things up? No. Since only the top bit between the two states will be different, there is a difference of exactly $2^{31}$ between the two states. This difference is maintained by the addition. Since two 32-bit numbers with the same top bit can be at most $2^{31} - 1$ apart, we can conclude that the two states still differ in the top bit after the addition. So we want to find two pairs of 32-bit ints, such that after applying the first three instructions the first pair differs in bit 1 << (31 - 13) == 0x00040000 and the second pair in bit 1 << 31 == 0x80000000. After some brute-force searching I found some cool pairs (again forced to use UTF-8), which when combined give the following collision: a = "!&orlpՓ" b = "yǏglp$X" As before, any concatenation of as and bs of length n collides with all other combinations of length n. Breaking FarmHash64 Nim switched to farmhash since I started writing this post. To break it we can notice that its structure is very similar to CityHash64, so we can use those same techniques again. In fact, the only changes between the two for lengths 17-32 bytes is that a few operators were changed from subtraction/XOR to addition, a rotation operator had its constant tweaked, and some k constants are slightly tweaked in usage. The process of breaking it is so similar that it’s entirely analogous, so we can skip straight to the result. These 10 strings all hash to 1337 with FarmHash64: orlp-farmhash64-?VrJ@L7ytzwheaaa orlp-farmhash64-p3`!SQb}fmxheaaa orlp-farmhash64-pdt'cuI\gvxheaaa orlp-farmhash64-IbY`xAG&ibkieaaa orlp-farmhash64-[_LU!d1hwmkieaaa orlp-farmhash64-QiY!clz]bttieaaa orlp-farmhash64-&?J3rZ_8gsuieaaa orlp-farmhash64-LOBWtm5Szyuieaaa orlp-farmhash64-Mptaa^g^ytvieaaa orlp-farmhash64-B?&l::hxqmfjeaaa Trivial fixed-seed wyhash multicollisions Zig uses wyhash with a fixed seed of zero. While I was unable to do seed-independent attacks against wyhash, using it with a fixed seed makes generating collisions trivial. Wyhash is built upon the folded multiply, which takes two 64-bit inputs, multiplies them to a 128-bit product before XORing together the two halves: uint64_t folded_multiply(uint64_t a, uint64_t b) { __uint128_t full = __uint128_t(a) * __uint128_t(b); return uint64_t(full) ^ uint64_t(full >> 64); } It’s easy to immediately see a critical flaw with this: if one of the two sides is zero, the output will also always be zero. To protect against this, wyhash always uses a folded multiply in the following form: out = folded_multiply(input_a ^ secret_a, input_b ^ secret_b); where secret_a and secret_b are determined by the seed, or outputs of previous iterations which are influenced by the seed. However, when your seed is constant… With a bit of creativity we can use the start of our string to prepare a ‘secret’ value which we can perfectly cancel with another ASCII string later in the input. So, without further ado, every 32-byte string of the form orlp-wyhash-oGf_________tWJbzMJR hashes to the same value with Zig’s default hasher. Zig uses a different set of parameters than the defaults found in the wyhash repository, so for good measure, this pattern provides arbitrary multicollisions for the default parameters found in wyhash when using seed == 0: orlp-wyhash-EUv_________NLXyytkp Conclusion We’ve seen that a lot of the hash functions in common use in hash tables today are very weak, allowing fairly trivial attacks to produce arbitrary amounts of collisions if not randomly initialized. Using a randomly seeded hash table is paramount if you don’t wish to become a victim of a hash flooding attack. We’ve also seen that some hash functions are vulnerable to attack even if randomly seeded. These are completely broken and should not be used if attacks are a concern at all. Luckily I was unable to find such attacks against most hashes, but the possibility of such an attack existing is quite unnerving. With universal hashing it’s possible to construct hash functions for which such an attack is provably impossible, last year I published a hash function called polymur-hash that has this property. Your HTTPS connection to this website also likely uses a universal hash function for authenticity of the transferred data, both Poly1305 and GCM are based on universal hashing for their security proofs. Well, such attacks are provably impossible against non-interactive attackers, everything goes out of the window again when an attacker is allowed to inspect the output hashes and use that to try and guess your secret key. Of course, if your data is not user-controlled, or there is no reasonable security model where your application would face attacks, you can get away with faster and insecure hashes. More to come on the subject of hashing and hash tables and how it can go right or wrong, but for now this article is long enough as-is…
Suppose you have a 64-bit word and wish to extract a couple bits from it. For example you just performed a SWAR algorithm and wish to extract the least significant bit of each byte in the u64. This is simple enough, you simply perform a binary AND with a mask of the bits you wish to keep: let out = word & 0x0101010101010101; However, this still leaves the bits of interest spread throughout the 64-bit word. What if we also want to compress the 8 bits we wish to extract into a single byte? Or what if we want the inverse, spreading the 8 bits of a byte among the least significant bits of each byte in a 64-bit word? PEXT and PDEP If you are using a modern x86-64 CPU, you are in luck. In the much underrated BMI instruction set there are two very powerful instructions: PDEP and PEXT. They are inverses of each other, PEXT extracts bits, PDEP deposits bits. PEXT takes in a word and a mask, takes just those bits from the word where the mask has a 1 bit, and compresses all selected bits to a contiguous output word. Simulated in Rust this would be: fn pext64(word: u64, mask: u64) -> u64 { let mut out = 0; let mut out_idx = 0; for i in 0..64 { let ith_mask_bit = (mask >> i) & 1; let ith_word_bit = (word >> i) & 1; if ith_mask_bit == 1 { out |= ith_word_bit << out_idx; out_idx += 1; } } out } For example if you had the bitstring abcdefgh and mask 10110001 you would get output bitstring 0000acdh. PDEP is exactly its inverse, it takes contiguous data bits as a word, and a mask, and deposits the data bits one-by-one (starting at the least significant bits) into those bits where the mask has a 1 bit, leaving the rest as zeros: fn pdep64(word: u64, mask: u64) -> u64 { let mut out = 0; let mut input_idx = 0; for i in 0..64 { let ith_mask_bit = (mask >> i) & 1; if ith_mask_bit == 1 { let next_word_bit = (word >> input_idx) & 1; out |= next_word_bit << i; input_idx += 1; } } out } So if you had the bitstring abcdefgh and mask 10100110 you would get output e0f00gh0 (recall that we traditionally write bitstrings with the least significant bit on the right). These instructions are incredibly powerful and flexible, and the amazing thing is that these instructions only take a single cycle on modern Intel and AMD CPUs! However, they are not available in other instruction sets, so whenever you use them you will also likely need to write a cross-platform alternative. Unfortunately, both PDEP and PEXT are very slow on AMD Zen and Zen2. They are implemented in microcode, which is really unfortunate. The platform advertises through CPUID that the instructions are supported, but they’re almost unusably slow. Use with caution. Extracting bits with multiplication While the following technique can’t replace all PEXT cases, it can be quite general. It is applicable when: The bit pattern you want to extract is static and known in advance. If you want to extract $k$ bits, there must at least be a $k-1$ gap between two bits of interest. We compute the bit extraction by adding together many left-shifted copies of our input word, such that we construct our desired bit pattern in the uppermost bits. The trick is to then realize that w << i is equivalent to w * (1 << i) and thus the sum of many left-shifted copies is equivalent to a single multiplication by (1 << i) + (1 << j) + ... I think the technique is best understood by visual example. Let’s use our example from earlier, extracting the least significant bit of each byte in a 64-bit word. We start off by masking off just those bits. After that we shift the most significant bit of interest to the topmost bit of the word to get our first shifted copy. We then repeat this, shifting the second most significant bit of interest to the second topmost bit, etc. We sum all these shifted copies. This results in the following (using underscores instead of zeros for clarity): mask = _______1_______1_______1_______1_______1_______1_______1_______1 t = w & mask t = _______a_______b_______c_______d_______e_______f_______g_______h t << 7 = a_______b_______c_______d_______e_______f_______g_______h_______ t << 14 = _b_______c_______d_______e_______f_______g_______h______________ t << 21 = __c_______d_______e_______f_______g_______h_____________________ t << 28 = ___d_______e_______f_______g_______h____________________________ t << 35 = ____e_______f_______g_______h___________________________________ t << 42 = _____f_______g_______h__________________________________________ t << 49 = ______g_______h_________________________________________________ t << 56 = _______h________________________________________________________ sum = abcdefghbcdefgh_cdefh___defgh___efgh____fgh_____gh______h_______ Note how we constructed abcdefgh in the topmost 8 bits, which we can then extract using a single right-shift by $64 - 8 = 56$ bits. Since (1 << 7) + (1 << 14) + ... + (1 << 56) = 0x102040810204080 we get the following implementation: fn extract_lsb_bit_per_byte(w: u64) -> u8 { let mask = 0x0101010101010101; let sum_of_shifts = 0x102040810204080; ((w & mask).wrapping_mul(sum_of_shifts) >> 56) as u8 } Not as good as PEXT, but three arithmetic instructions is not bad at all. Depositing bits with multiplication Unfortunately the following technique is significantly less general than the previous one. While you can take inspiration from it to implement similar algorithms, as-is it is limited to just spreading the bits of one byte to the least significant bit of each byte in a 64-bit word. The trick is similar to the one above. We add 8 shifted copies of our byte which once again translates to a multiplication. By choosing a shift that increases in multiples if 9 instead of 8 we ensure that the bit pattern shifts over by one position in each byte. We then mask out our bits of interest, and finish off with a shift and byteswap (which compiles to a single instruction bswap on Intel or rev on ARM) to put our output bits on the least significant bits and reverse the order. This technique visualized: b = ________________________________________________________abcdefgh b << 9 = _______________________________________________abcdefgh_________ b << 18 = ______________________________________abcdefgh__________________ b << 27 = _____________________________abcdefgh___________________________ b << 36 = ____________________abcdefgh____________________________________ b << 45 = ___________abcdefgh_____________________________________________ b << 54 = __abcdefgh______________________________________________________ b << 63 = h_______________________________________________________________ sum = h_abcdefgh_abcdefgh_abcdefgh_abcdefgh_abcdefgh_abcdefgh_abcdefgh mask = 1_______1_______1_______1_______1_______1_______1_______1_______ s & msk = h_______g_______f_______e_______d_______c_______b_______a_______ We once again note that the sum of shifts can be precomputed as 1 + (1 << 9) + ... + (1 << 63) = 0x8040201008040201, allowing the following implementation: fn deposit_lsb_bit_per_byte(b: u8) -> u64 { let sum_of_shifts = 0x8040201008040201; let mask = 0x8080808080808080; let spread = (b as u64).wrapping_mul(sum_of_shifts) & mask; u64::swap_bytes(spread >> 7) } This time it required 4 arithmetic instructions, not quite as good as PDEP, but again not bad compared to a naive implementation, and this is cross-platform.
This post is an anecdote from over a decade ago, of which I lost the actual code. So please forgive me if I do not accurately remember all the details. Some details are also simplified so that anyone that likes computer security can enjoy this article, not just those who have played World of Warcraft (although the Venn diagram of those two groups likely has a solid overlap). When I was around 14 years old I discovered World of Warcraft developed by Blizzard Games and was immediately hooked. Not long after I discovered add-ons which allow you to modify how your game’s user interface looks and works. However, not all add-ons I downloaded did exactly what I wanted to do. I wanted more. So I went to find out how they were made. In a weird twist of fate, I blame World of Warcraft for me seriously picking up programming. It turned out that they were made in the Lua programming language. Add-ons were nothing more than a couple .lua source files in a folder directly loaded into the game. The barrier of entry was incredibly low: just edit a file, press save and reload the interface. The fact that the game loaded your source code and you could see it running was magical! I enjoyed it immensely and in no time I was only writing add-ons and was barely playing the game itself anymore. I published quite a few add-ons in the next two years, which mostly involved copying other people’s code with some refactoring / recombining / tweaking to my wishes. Add-on security A thought you might have is that it’s a really bad idea to let users have fully programmable add-ons in your game, lest you get bots. However, the system Blizzard made to prevent arbitrary programmable actions was quite clever. Naturally, it did nothing to prevent actual botting, but at least regular rule-abiding players were fundamentally restricted to the automation Blizzard allowed. Most UI elements that you could create were strictly decorative or informational. These were completely unrestricted, as were most APIs that strictly gather information. For example you can make a health bar display using two frames, a background and a foreground, sizing the foreground frame using an API call to get the health of your character. Not all API calls were available to you however. Some were protected so they could only be called from official Blizzard code. These typically involved the API calls that would move your character, cast spells, use items, etc. Generally speaking anything that actually makes you perform an in-game action was protected. The API for getting your exact world location and camera orientation also became protected at some point. This was a reaction by Blizzard to new add-ons that were actively drawing 3D elements on top of the game world to make boss fights easier. However, some UI elements needed to actually interact with the game itself, e.g. if I want to make a button that casts a certain spell. For this you could construct a special kind of button that executes code in a secure environment when clicked. You were only allowed to create/destroy/move such buttons when not in combat, so you couldn’t simply conditionally place such buttons underneath your cursor to automate actions during combat. The catch was that this secure environment did allow you to programmatically set which spell to cast, but doesn’t let you gather the information you would need to do arbitrary automation. All access to state from outside the secure environment was blocked. There were some information gathering API calls available to match the more accessible in-game macro system, but nothing as fancy as getting skill cooldowns or unit health which would enable automatic optimal spellcasting. So there were two environments: an insecure one where you can get all information but can’t act on it, and a secure one where you can act but can’t get the information needed for automation. A backdoor channel Fast forward a couple years and I had mostly stopped playing. My interests had mainly moved on to more “serious” programming, and I was only occasionally playing, mostly messing around with add-on ideas. But this secure environment kept on nagging in my brain; I wanted to break it. Of course there was third-party software that completely disables the security restrictions from Blizzard, but what’s the fun in that? I wanted to do it “legitimately”, using the technically allowed tools, as a challenge. Obviously using clever code to bypass security restrictions is no better than using third-party software, and both would likely get you banned. I never actually wanted to use the code, just to see if I could make it work. So I scanned the secure environment allowed function list to see if I could smuggle any information from the outside into the secure environment. It all seemed pretty hopeless until I saw one tiny, innocent little function: random. An evil idea came in my head: random number generators (RNGs) used in computers are almost always pseudorandom number generators with (hidden) internal state. If I can manipulate this state, perhaps I can use that to pass information into the secure environment. Random number generator woes It turned out that random was just a small shim around C’s rand. I was excited! This meant that there was a single global random state that was shared in the process. It also helps that rand implementations tended to be on the weak side. Since World of Warcraft was compiled with MSVC, the actual implementation of rand was as follows: uint32_t state; int rand() { state = state * 214013 + 2531011; return (state >> 16) & 0x7fff; } This RNG is, for the lack of a better word, shite. It is a naked linear congruential generator, and a weak one at that. Which in my case, was a good thing. I can understand MSVC keeps rand the same for backwards compatibility, and at least all documentation I could find for rand recommends you not to use rand for cryptographic purposes. But was there ever a time where such a bad PRNG implementation was fit for any purpose? So let’s get to breaking this thing. Since the state is so laughably small and you can see 15 bits of the state directly you can keep a full list of all possible states consistent with a single output of the RNG and use further calls to the RNG to eliminate possibilities until a single one remains. But we can be significantly more clever. First we note that the top bit of state never affects anything in this RNG. (state >> 16) & 0x7fff masks out 15 bits, after shifting away the bottom 16 bits, and thus effectively works mod $2^{31}$. Since on any update the new state is a linear function of the previous state, we can propagate this modular form all the way down to the initial state as $$f(x) \equiv f(x \bmod m) \mod m$$ for any linear $f$. Let $a = 214013$ and $b = 2531011$. We observe the 15-bit output $r_0, r_1$ of two RNG calls. We’ll call the 16-bit portion of the RNG state that is hidden by the shift $h_0, h_1$ respectively, for the states after the first and second call. This means the state of the RNG after the first call is $2^{16} r_0 + h_0$ and similarly for $2^{16} r_1 + h_1$ after the second call. Then we have the following identity: $$a\cdot (2^{16}r_0 + h_0) + b \equiv 2^{16}r_1 + h_1 \mod 2^{31},$$ $$ah_0 \equiv h_1 + 2^{16}(r_1 - ar_0) - b \mod 2^{31}.$$ Now let $c \geq 0$ be the known constant $(2^{16}(r_1 - ar_0) - b) \bmod 2^{31}$, then for some integer $k$ we have $$ah_0 = h_1 + c + 2^{31} k.$$ Note that the left hand side ranges from $0$ to $a (2^{16} - 1) \approx 2^{33.71}$. Thus we must have $-1 \leq k \leq 2^{2.71} < 7$. Reordering we get the following expression for $h_0$: $$h_0 = \frac{c + 2^{31} k}{a} + h_1/a.$$ Since $a > 2^{16}$ while $0 \leq h_1 < 2^{16}$ we note that the term $0 \leq h_1/a < 1$. Thus, assuming a solution exists, we must have $$h_0 = \left\lceil\frac{c + 2^{31} k}{a}\right\rceil.$$ So for $-1 \leq k < 7$ we compute the above guess for the hidden portion of the RNG state after the first call. This gives us 8 guesses, after which we can reject bad guesses using follow-up calls to the RNG until a single unique answer remains. While I was able to re-derive the above with little difficulty now, 18 year old me wasn’t as experienced in discrete math. So I asked on crypto.SE, with the excuse that I wanted to ‘show my colleagues how weak this RNG is’. It worked, which sparks all kinds of interesting ethics questions. An example implementation of this process in Python: import random A = 214013 B = 2531011 class MsvcRng: def __init__(self, state): self.state = state def __call__(self): self.state = (self.state * A + B) % 2**32 return (self.state >> 16) & 0x7fff # Create a random RNG state we'll reverse engineer. hidden_rng = MsvcRng(random.randint(0, 2**32)) # Compute guesses for hidden state from 2 observations. r0 = hidden_rng() r1 = hidden_rng() c = (2**16 * (r1 - A * r0) - B) % 2**31 ceil_div = lambda a, b: (a + b - 1) // b h_guesses = [ceil_div(c + 2**31 * k, A) for k in range(-1, 7)] # Validate guesses until a single guess remains. guess_rngs = [MsvcRng(2**16 * r0 + h0) for h0 in h_guesses] guess_rngs = [g for g in guess_rngs if g() == r1] while len(guess_rngs) > 1: r = hidden_rng() guess_rngs = [g for g in guess_rngs if g() == r] # The top bit can not be recovered as it never affects the output, # but we should have recovered the effective hidden state. assert guess_rngs[0].state % 2**31 == hidden_rng.state % 2**31 While I did write the above process with a while loop, it appears to only ever need a third output at most to narrow it down to a single guess. Putting it together Once we could reverse-engineer the internal state of the random number generator we could make arbitrary automated decisions in the supposedly secure environment. How it worked was as follows: An insecure hook was registered that would execute right before the secure environment code would run. In this hook we have full access to information, and make a decision as to which action should be taken (e.g. casting a particular spell). This action is looked up in a hardcoded list to get an index. The current state of the RNG is reverse-engineered using the above process. We predict the outcome of the next RNG call. If this (modulo the length of our action list) does not give our desired outcome, we advance the RNG and try again. This repeats until the next random number would correspond to our desired action. The hook returns, and the secure environment starts. It generates a “random” number, indexes our hardcoded list of actions, and performs the “random” action. That’s all! By being able to simulate the RNG and looking one step ahead we could use it as our information channel by choosing exactly the right moment to call random in the secure environment. Now if you wanted to support a list of $n$ actions it would on average take $n$ steps of the RNG before the correct number came up to pass along, but that wasn’t a problem in practice. Conclusion I don’t know when Blizzard fixed the issue where the RNG state is so weak and shared, or whether they were aware of it being an issue at all. A few years after I had written the code I tried it again out of curiosity, and it had stopped working. Maybe they switched to a different algorithm, or had a properly separated RNG state for the secure environment. All-in-all it was a lot of effort for a niche exploit in a video game that I didn’t even want to use. But there certainly was a magic to manipulating something supposedly random into doing exactly what you want, like a magician pulling four aces from a shuffled deck.
More in programming
<![CDATA[My journey to Lisp began in the early 1990s. Over three decades later, a few days ago I rediscovered the first Lisp environment I ever used back then which contributed to my love for the language. Here it is, PC Scheme running under DOSBox-X on my Linux PC: Screenshot of the PC Scheme Lisp development environment for MS-DOS by Texas Instruments running under DOSBox-X on Linux Mint Cinnamon. Using PC Scheme again brought back lots of great memories and made me reflect on what the environment taught me about Lisp and Lisp tooling. As a Computer Science student at the University of Milan, Italy, around 1990 I took an introductory computers and programming class taught by Prof. Stefano Cerri. The textbook was the first edition of Structure and Interpretation of Computer Programs (SICP) and Texas Instruments PC Scheme for MS-DOS the recommended PC implementation. I installed PC Scheme under DR-DOS on a 20 MHz 386 Olidata laptop with 2 MB RAM and a 40 MB hard disk drive. Prior to the class I had read about Lisp here and there but never played with the language. SICP and its use of Scheme as an elegant executable formalism instantly fascinated me. It was Lisp love at first sight. The class covered the first three chapters of the book but I later read the rest on my own. I did lots of exercises using PC Scheme to write and run them. Soon I became one with PC Scheme. The environment enabled a tight development loop thanks to its Emacs-like EDWIN editor that was well integrated with the system. The Lisp awareness of EDWIN blew my mind as it was the first such tool I encountered. The editor auto-indented and reformatted code, matched parentheses, and supported evaluating expressions and code blocks. Typing a closing parenthesis made EDWIN blink the corresponding opening one and briefly show a snippet of the beginning of the matched expression. Paying attention to the matching and the snippets made me familiar with the shape and structure of Lisp code, giving a visual feel of whether code looks syntactically right or off. Within hours of starting to use EDWIN the parentheses ceased to be a concern and disappeared from my conscious attention. Handling parentheses came natural. I actually ended up loving parentheses and the aesthetics of classic Lisp. Parenthesis matching suggested me a technique for writing syntactically correct Lisp code with pen and paper. When writing a closing parenthesis with the right hand I rested the left hand on the paper with the index finger pointed at the corresponding opening parenthesis, moving the hands in sync to match the current code. This way it was fast and easy to write moderately complex code. PC Scheme spoiled me and set the baseline of what to expect in a Lisp environment. After the class I moved to PCS/Geneva, a more advanced PC Scheme fork developed at the University of Geneva. Over the following decades I encountered and learned Common Lisp, Emacs, Lisp, and Interlisp. These experiences cemented my passion for Lisp. In the mid-1990s Texas Instruments released the executable and sources of PC Scheme. I didn't know it at the time, or if I noticed I long forgot. Until a few days ago, when nostalgia came knocking and I rediscovered the PC Scheme release. I installed PC Scheme under the DOSBox-X MS-DOS emulator on my Linux Mint Cinnamon PC. It runs well and I enjoy going through the system to rediscover what it can do. Playing with PC Scheme after decades of Lisp experience and hindsight on computing evolution shines new light on the environment. I didn't fully realize at the time but the product packed an amazing value for the price. It cost $99 in the US and I paid it about 150,000 Lira in Italy. Costing as much as two or three texbooks, the software was affordable even to students and hobbyists. PC Scheme is a rich, fast, and surprisingly capable environment with features such as a Lisp-aware editor, a good compiler, a structure editor and other tools, many Scheme extensions such as engines and OOP, text windows, graphics, and a lot more. The product came with an extensive manual, a thick book in a massive 3-ring binder I read cover to cover more than once. A paper on the implementation of PC Scheme sheds light on how good the system is given the platform constraints. Using PC Scheme now lets me put into focus what it taught me about Lisp and Lisp systems: the convenience and productivity of Lisp-aware editors; interactive development and exploratory programming; and a rich Lisp environment with a vast toolbox of libraries and facilities — this is your grandfather's batteries included language. Three decades after PC Scheme a similar combination of features, facilities, and classic aesthetics drew me to Medley Interlisp, my current daily driver for Lisp development. #Lisp #MSDOS #retrocomputing a href="https://remark.as/p/journal.paoloamoroso.com/rediscovering-the-origins-of-my-lisp-journey"Discuss.../a Email | Reply @amoroso@fosstodon.org !--emailsub--]]>
I’ve been writing some internal dashboards recently, and one hard part is displaying timestamps. Our server does everything in UTC, but the team is split across four different timezones, so the server timestamps aren’t always easy to read. For most people, it’s harder to understand a UTC timestamp than a timestamp in your local timezone. Did that event happen just now, an hour ago, or much further back? Was that at the beginning of your working day? Or at the end? Then I remembered that I tried to solve this five years ago at a previous job. I wrote a JavaScript snippet that converts UTC timestamps into human-friendly text. It displays times in your local time zone, and adds a short suffix if the time happened recently. For example: today @ 12:00 BST (1 hour ago) In my old project, I was using writing timestamps in a <div> and I had to opt into the human-readable text for every date on the page. It worked, but it was a bit fiddly. Doing it again, I thought of a more elegant solution. HTML has a <time> element for expressing datetimes, which is a more meaningful wrapper than a <div>. When I render the dashboard on the server, I don’t know the user’s timezone, so I include the UTC timestamp in the page like so: <time datetime="2025-04-15 19:45:00Z"> Tue, 15 Apr 2025 at 19:45 UTC </time> I put a machine-readable date and time string with a timezone offset string in the datetime attribute, and then a more human-readable string in the text of the element. Then I add this JavaScript snippet to the page: window.addEventListener("DOMContentLoaded", function() { document.querySelectorAll("time").forEach(function(timeElem) { // Set the `title` attribute to the original text, so a user // can hover over a timestamp to see the UTC time. timeElem.setAttribute("title", timeElem.innerText); // Replace the display text with a human-friendly date string // which is localised to the user's timezone. timeElem.innerText = getHumanFriendlyDateString( timeElem.getAttribute("datetime") ); }) }); This updates any <time> element on the page to use a human friendly date string, which is localised to the user’s timezone. For example, I’m in the UK so that becomes: <time datetime="2025-04-15 19:45:00Z" title="Tue, 15 Apr 2025 at 19:45 UTC"> Tue, 15 Apr 2025 at 20:45 BST </time> In my experience, these timestamps are easier and more intuitive for people to read. I always include a timezone string (e.g. BST, EST, PDT) so it’s obvious that I’m showing a localised timestamp. If you really need the UTC timestamp, it’s in the title attribute, so you can see it by hovering over it. (Sorry, mouseless users, but I don’t think any of my team are browsing our dashboards from their phone or tablet.) If the JavaScript doesn’t load, you see the plain old UTC timestamp. It’s not ideal, but the page still loads and you can see all the information – this behaviour is an enhancement, not an essential. To me, this is the unfulfilled promise of the <time> element. In my fantasy world, web page authors would write the time in a machine-readable format, and browsers would show it in a way that makes sense for the reader. They’d take into account their language, locale, and time zone. I understand why that hasn’t happened – it’s much easier said than done. You need so much context to know what’s the “right” thing to do when dealing with datetimes, and guessing without that context is at the heart of many datetime bugs. These sort of human-friendly, localised timestamps are very handy sometimes, and a complete mess at other times. In my staff-only dashboards, I have that context. I know what these timestamps mean, who’s going to be reading them, and I think they’re a helpful addition that makes the data easier to read. [If the formatting of this post looks odd in your feed reader, visit the original article]
Nearly a quarter of seventeen-year-old boys in America have an ADHD diagnosis. That's crazy. But worse than the diagnosis is that the majority of them end up on amphetamines, like Adderall or Ritalin. These drugs allow especially teenage boys (diagnosed at 2-3x the rate of girls) to do what their mind would otherwise resist: Study subjects they find boring for long stretches of time. Hurray? Except, it doesn't even work. Because taking Adderall or Ritalin doesn't actually help you learn more, it merely makes trying tolerable. The kids might feel like the drugs are helping, but the test scores say they're not. It's Dunning-Kruger — the phenomenon where low-competence individuals overestimate their abilities — in a pill. Furthermore, even this perceived improvement is short-term. The sudden "miraculous" ability to sit still and focus on boring school work wanes in less than a year on the drugs. In three years, pill poppers are doing no better than those who didn't take amphetamines at all. These are all facts presented in a blockbuster story in New York Time Magazine entitled Have We Been Thinking About A.D.H.D. All Wrong?, which unpacks all the latest research on ADHD. It's depressing reading. Not least because the definition of ADHD is so subjective and situational. The NYTM piece is full of anecdotes from kids with an ADHD diagnosis whose symptoms disappeared when they stopped pursuing a school path out of step with their temperament. And just look at these ADHD markers from the DSM-5: Inattention Difficulty staying focused on tasks or play. Frequently losing things needed for tasks (e.g., toys, school supplies). Easily distracted by unrelated stimuli. Forgetting daily activities or instructions. Trouble organizing tasks or completing schoolwork. Avoiding or disliking tasks requiring sustained mental effort. Hyperactivity Fidgeting, squirming, or inability to stay seated. Running or climbing in inappropriate situations. Excessive talking or inability to play quietly. Acting as if “driven by a motor,” always on the go. Impulsivity Blurting out answers before questions are completed. Trouble waiting for their turn. Interrupting others’ conversations or games. The majority of these so-called symptoms are what I'd classify as "normal boyhood". I certainly could have checked off a bunch of them, and you only need six over six months for an official ADHD diagnosis. No wonder a quarter of those seventeen year-old boys in America qualify! Borrowing from Erich Fromm’s The Sane Society, I think we're looking at a pathology of normalcy, where healthy boys are defined as those who can sit still, focus on studies, and suppress kinetic energy. Boys with low intensity and low energy. What a screwy ideal to chase for all. This is all downstream from an obsession with getting as many kids through as much safety-obsessed schooling as possible. While the world still needs electricians, carpenters, welders, soldiers, and a million other occupations that exist outside the narrow educational ideal of today. Now I'm sure there is a small number of really difficult cases where even the short-term break from severe symptoms that amphetamines can provide is welcome. The NYTM piece quotes the doctor that did one of the most consequential studies on ADHD as thinking that's around 3% — a world apart from the quarter of seventeen-year-olds discussed above. But as ever, there is no free lunch in medicine. Long-term use of amphetamines acts as a growth inhibitor, resulting in kids up to an inch shorter than they otherwise would have been. On top of the awful downs that often follow amphetamine highs. And the loss of interest, humor, and spirit that frequently comes with the treatment too. This is all eerily similar to what happened in America when a bad study from the 1990s convinced a generation of doctors that opioids actually weren't addictive. By the time they realized the damage, they'd set in motion an overdose and addiction cascade that's presently killing over a 100,000 Americans a year. The book Empire of Pain chronicles that tragedy well. Or how about the surge in puberty-blocker prescriptions, which has now been arrested in the UK, following the Cass Review, as well as Finland, Norway, Sweden, France, and elsewhere. Doctors are supposed to first do no harm, but they're as liable to be swept up in bad paradigms, social contagions, and ideological echo chambers as the rest of us. And this insane over-diagnosis of ADHD fits that liability to a T.
Two weeks ago we released Dice’n Goblins, our first game on Steam. This project allowed me to discover and learn a lot of new things about game development and the industry. I will use this blog post to write down what I consider to be the most important lessons from the months spent working on this. The development started around 2 years ago when Daphnée started prototyping a dungeon crawler featuring a goblin protagonist. After a few iterations, the game combat started featuring dice, and then those dice could be used to make combos. In May 2024, the game was baptized Dice’n Goblins, and a Steam page was created featuring some early gameplay screenshots and footage. I joined the project full-time around this period. Almost one year later, after amassing more than 8000 wishlists, the game finally released on Steam on April 4th, 2025. It was received positively by the gaming press, with great reviews from PCGamer and LadiesGamers. It now sits at 92% positive reviews from players on Steam. Building RPGs isn’t easy As you can see from the above timeline, building this game took almost two years and two programmers. This is actually not that long if you consider that other indie RPGs have taken more than 6 years to come out. The main issue with the genre is that you need to create a believable world. In practice, this requires programming many different systems that will interact together to give the impression of a cohesive universe. Every time you add a new system, you need to think about how it will fit all the existing game features. For example, players typically expect an RPG to have a shop system. Of course, this means designing a shop non-player character (or building) and creating a UI that is displayed when you interact with it. But this also means thinking through a lot of other systems: combat needs to be changed to reward the player with gold, every item needs a price tag, chests should sometimes reward the player with gold, etc… Adding too many systems can quickly get into scope creep territory, and make the development exponentially longer. But you can only get away with removing so much until your game stops being an RPG. Making a game without a shop might be acceptable, but the experience still needs to have more features than “walking around and fighting monsters” to feel complete. RPGs are also, by definition, narrative experiences. While some games have managed to get away with procedurally generating 90% of the content, in general, you’ll need to get your hands dirty, write a story, and design a bunch of maps. Creating enough content for a game to fit 12h+ without having the player go through repetitive grind will by itself take a lot of time. Having said all that, I definitely wouldn’t do any other kind of games than RPGs, because this is what I enjoy playing. I don’t think I would be able to nail what makes other genres fun if I don’t play them enough to understand what separates the good from the mediocre. Marketing isn’t that complicated Everyone in the game dev community knows that there are way too many games releasing on Steam. To stand out amongst the 50+ games coming out every day, it’s important not only to have a finished product but also to plan a marketing campaign well in advance. For most people coming from a software engineering background, like me, this can feel extremely daunting. Our education and jobs do not prepare us well for this kind of task. In practice, it’s not that complicated. If your brain is able to provision a Kubernetes cluster, then you are most definitely capable of running a marketing campaign. Like anything else, it’s a skill that you can learn over time by practicing it, and iteratively improving your methods. During the 8 months following the Steam page release, we tried basically everything you can think of as a way to promote the game. Every time something was having a positive impact, we would do it more, and we quickly stopped things with low impact. The most important thing to keep in mind is your target audience. If you know who wants the game of games you’re making, it is very easy to find where they hang out and talk to them. This is however not an easy question to answer for every game. For a long while, we were not sure who would like Dice’n Goblins. Is it people who like Etrian Odyssey? Fans of Dicey Dungeons? Nostalgic players of Paper Mario? For us, the answer was mostly #1, with a bit of #3. Once we figured out what was our target audience, how to communicate with them, and most importantly, had a game that was visually appealing enough, marketing became very straightforward. This is why we really struggled to get our first 1000 wishlists, but getting the last 5000 was actually not that complicated. Publishers aren’t magic At some point, balancing the workload of actually building the game and figuring out how to market it felt too much for a two-person team. We therefore did what many indie studios do, and decided to work with a publisher. We worked with Rogue Duck Interactive, who previously published Dice & Fold, a fairly successful dice roguelike. Without getting too much into details, it didn’t work out as planned and we decided, by mutual agreement, to go back to self-publishing Dice’n Goblins. The issue simply came from the audience question mentioned earlier. Even though Dice & Fold and Dice’n Goblins share some similarities, they target a different audience, which requires a completely different approach to marketing. The lesson learned is that when picking a publisher, the most important thing you can do is to check that their current game catalog really matches the idea you have of your own game. If you’re building a fast-paced FPS, a publisher that only has experience with cozy simulation games will not be able to help you efficiently. In our situation, a publisher with experience in roguelikes and casual strategy games wasn’t a good fit for an RPG. In addition to that, I don’t think the idea of using a publisher to remove marketing toil and focus on making the game is that much of a good idea in the long term. While it definitely helps to remove the pressure from handling social media accounts and ad campaigns, new effort will be required in communicating and negotiating with the publishing team. In the end, the difference between the work saved and the work gained might not have been worth selling a chunk of your game. Conclusion After all this was said and done, one big question I haven’t answered is: would I do it again? The answer is definitely yes. Not only building this game was an extremely satisfying endeavor, but so much has been learned and built while doing it, it would be a shame not to go ahead and do a second one.