Full Width [alt+shift+f] FOCUS MODE Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
40
I was wondering: how often do nanosecond timestamps collide on modern systems? The answer is: very often, like 5% of all samples, when reading the clock on all 4 physical cores at the same time. As a result, I think it is unsafe to assume that a raw nanosecond timestamp is a unique identifier. I wrote a small test program to test this. I used Go, which records both the "absolute" time and the "monotonic clock" relative time on each call to time.Now(), so I compared both the relative difference between consecutive timestamps, as well as just the absolute timestamps. As expected, the behavior depends on the system, so I observe very different results on Mac OS X and Linux. On Linux, within a single thread, both the absolute and monotonic times always increase. On my system, the minimum increment was 32 ns. Between threads, approximately 5% of the absolute times were exactly the same as other threads. Even with 2 threads on a 4 core system, approximately 2% of timestamps collided. On Mac...
over a year ago

Comments

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from Evan Jones - Software Engineer | Computer Scientist

Setenv is not Thread Safe and C Doesn't Want to Fix It

You can't safely use the C setenv() or unsetenv() functions in a program that uses threads. Those functions modify global state, and can cause other threads calling getenv() to crash. This also causes crashes in other languages that use those C standard library functions, such as Go's os.Setenv (Go issue) and Rust's std::env::set_var() (Rust issue). I ran into this in a Go program, because Go's built-in DNS resolver can call C's getaddrinfo(), which uses environment variables. This cost me 2 days to track down and file the Go bug. Sadly, this problem has been known for decades. For example, an article from January 2017 said: "None of this is new, but we do re-discover it roughly every five years. See you in 2022." This was only one year off! (She wrote an update in October 2023 after I emailed her about my Go bug.) This is a flaw in the POSIX standard, which extends the C Standard to allow modifying environment varibles. The most infuriating part is that many people who could influence the standard or maintain the C libraries don't see this as a problem. The argument is that the specification clearly documents that setenv() cannot be used with threads. Therefore, if someone does this, the crashes are their fault. We should apparently read every function's specification carefully, not use software written by others, and not use threads. These are unrealistic assumptions in modern software. I think we should instead strive to create APIs that are hard to screw up, and evolve as the ecosystem changes. The C language and standard library continue to play an important role at the base of most software. We either need to figure out how to improve it, or we need to figure out how to abandon it. Why is setenv() not thread-safe? The biggest problem is that getenv() returns a char*, with no need for applications to free it later. One thread could be using this pointer when another thread changes the same environment variable using setenv() or unsetenv(). The getenv() function is perfect if environment variables never change. For example, for accessing a process's initial table of environment variables (see the System V ABI: AMD64 Section 3.4.1). It turns out the C Standard only includes getenv(), so according to C, that is exactly how this should work. However, most implementations also follow the POSIX standard (e.g. POSIX.1-2017), which extends C to include functions that modify the environment. This means the current getenv() API is problematic. Even worse, putenv() adds a char* to the set of environment variables. It is explicitly required that if the application modifies the memory after putenv() returns, it modifies the environment variables. This means applications can modify the value passed to putenv() at any time, without any synchronization. FreeBSD used to implement putenv() by copying the value, but it changed it with FreeBSD 7 in 2008, which suggests some programs really do depend on modifying the environment in this fashion (see FreeBSD putenv man page). As a final problem, environ is a NULL-terminated array of pointers (char**) that an application can read and assign to (see definition in POSIX.1-2017). This is how applications can iterate over all environment variables. Accesses to this array are not thread-safe. However, in my experience many fewer applications use this than getenv() and setenv(). However, this does cause some libraries to not maintain the set of environment variables in a thread-safe way, since they directly update this table. Environment variable implementations Implementations need to choose what do do when an application overwrites an existing variable. I looked at glibc, musl, Solaris/Illumos, and FreeBSD/Apple's C standard libraries, and they make the following choices: Never free environment variables (glibc, Solaris/Illumos): Calling setenv() repeatedly is effectively a memory leak. However, once a value is returned from getenv(), it is immutable and can be used by threads safely. Free the environment variables (musl, FreeBSD/Apple): Using the pointer returned by getenv() after another thread calls setenv() can crash. A second problem is ensuring the set of environment variables is updated in a thread-safe fashion. This is what causes crashes in glibc. glibc uses an array to hold pointers to the "NAME=value" strings. It holds a lock in setenv() when changing this array, but not in getenv(). If a thread calling setenv() needs to resize the array of pointers, it copies the values to a new array and frees the previous one. This can cause other threads executing getenv() to crash, since they are now iterating deallocated memory. This is particularly annoying since glibc already leaks environment variables, and holds a lock in setenv(). All it needs to do is hold the lock inside getenv(), and it would no longer crash. This would make getenv() slightly slower. However, getenv() already uses a linear search of the array, so performance does not appear to be a concern. More sophisticated implementations are possible if this is a problem, such as Solaris/Illumos's lock-free implementation. Why do programs use environment variables? Environment variables useful for configuring shared libraries or language runtimes that are included in other programs. This allows users to change the configuration, without program authors needing to explicitly pass the configuration in. One alternative is command line flags, which requires programs to parse them and pass them in to the libraries. Another alternative are configuration files, which then need some other way to disable or configure, to be able to test new configurations. Environment variables are a simple solution. AS a result, many libraries call getenv() (see a partial list below). Since many libraries are configured through environment variables, a program may need to change these variables to configure the libraries it uses. This is common at application startup. This causes programs to need to call setenv(). Given this issue, it seems like libraries should also provide a way to explicitly configure any settings, and avoid using environment variables. We should fix this problem, and we can In my opinion, it is rediculous that this has been a known problem for so long. It has wasted thousands of hours of people's time, either debugging the problems, or debating what to do about it. We know how to fix the problem. First, we can make a thread-safe implementation, like Illumos/Solaris. This has some limitations: it leaks memory in setenv(), and is still unsafe if a program uses putenv() or the environ variable. However, this is an improvement over the current Linux and Apple implementations. The second solution is to add new APIs to get one and get all environment variables that are thread-safe by design, like Microsoft's getenv_s() (see below for the controversy around C11's "Annex K"). My preferred solution would be to do both. This would reduce the chances of hitting this problem for existing programs and libraries, and also provide a path to avoid the problems entirely for new code or languages like Go and Rust. My rough idea would be the following: Add a function to copy one single environment variable to a user-specified buffer, similar to getenv_s(). Add a thread-safe API to iterate over all environment variables, or to copy all variables out. Mark getenv() as deprecated, recommending the new thread-safe getenv() function instead. Mark putenv() as deprecated, recommending setenv() instead. Mark environ as deprecated, recommending environment variable functions instead. Update the implementation of environment varibles to be thread-safe. This requires leaking memory if getenv() is used on a variable, but we can detect if the old functions are used, and only leak memory in that case. This means programs written in other languages will avoid these problems as soon as their runtimes are updated. Update the C and POSIX standards to require the above changes. This would be progress. The getenv_s / C Standard Annex K controversy Microsoft provides getenv_s(), which copies the environment variable into a caller-provided buffer. This is easy to make thread-safe by holding a read lock while copying the variable. After the function returns, future changes to the environment have no effect. This is included in the C11 Standard as Annex K "Bounds Checking Interfaces". The C standard Annexes are optional features. This Annex includes new functions intended to make it harder to make mistakes with buffers that are the wrong size. The first draft of this extension was published in 2003. This is when Microsoft was focusing on "Trustworthy Computing" after a January 2002 memo from Bill Gates. Basically, Windows wasn't designed to be connected to the Internet, and now that it was, people were finding many security problems. Lots of them were caused by buffer handling mistakes. Microsoft developed new versions of a number of problematic functions, and added checks to the Visual C++ compiler to warn about using the old ones. They then attempted to standardize these functions. My understanding is the people responsible for the Unix POSIX standards did not like the design of these functions, so they refused to implement them. For more details, see Field Experience With Annex K published in September 2015, Stack Overflow: Why didn't glibc implement _s functions? updated March 2023, and Rich Felker of musl on both technical and social reasons for not implementing Annex K from February 2019. I haven't looked at the rest of the functions, but having spent way too long looking at getenv(), the general idea of getenv_s() seems like a good idea to me. Standardizing this would help avoid this problem. Incomplete list of common environment variables This is a list of some uses of environment variables from fairly widely used libraries and services. This shows that environment variables are pretty widely used. Cloud Provider Credentials and Services AWS's SDKs for credentials (e.g. AWS_ACCESS_KEY_ID) Google Cloud Application Default Credentials (e.g. GOOGLE_APPLICATION_CREDENTIALS) Microsoft Azure Default Azure Credential (e.g. AZURE_CLIENT_ID) AWS's Lambda serverless product: sets a large number of variables like AWS_REGION, AWS_LAMBDA_FUNCTION_NAME, and credentials like AWS_SECRET_ACCESS_KEY Google Cloud Run serverless product: configuration like PORT, K_SERVICE, K_REVISION Kubernetes service discovery: Defines variables SERVICE_NAME_HOST and SERVICE_NAME_PORT. Third-party C/C++ Libraries OpenTelemetry: Metrics and tracing. Many environment variables like OTEL_SERVICE_NAME and OTEL_RESOURCE_ATTRIBUTES. OpenSSL: many configurable variables like HTTPS_PROXY, OPENSSL_CONF, OPENSSL_ENGINES. BoringSSL: Google's fork of OpenSSL used in Chrome and others. It reads SSLKEYLOGFILE just like OpenSSL for logging TLS keys for debugging. Libcurl: proxies, SSL/TLS configuration and debugging like HTTPS_PROXY, CURL_SSL_BACKEND, CURL_DEBUG. Libpq Postgres client library: connection parameters including credentials like PGHOSTADDR, PGDATABASE, and PGPASSWORD. Rust Standard Library std::thread RUST_MIN_STACK: Calls std::env::var() on the first call to spawn() a new thread. It is cached in a static atomic variable and never read again. See implementation in thread::min_stack(). std::backtrace RUST_LIB_BACKTRACE: Calls std::env::var() on the first call to capture a backtrace. It is cached in a static atomic variable and never read again. See implementation in Backtrace::enabled().

a year ago 56 votes
Random Load Balancing is Unevenly Distributed

This is a reminder that random load balancing is unevenly distributed. If we distribute a set of items randomly across a set of servers (e.g. by hashing, or by randomly selecting a server), the average number of items on each server is num_items / num_servers. It is easy to assume this means each server has close to the same number of items. However, since we are selecting servers at random, they will have different numbers of items, and the imbalance can be important. For load balancing, a reasonable model is that each server has fixed capacity (e.g. it can serve 3000 requests/second, or store 100 items, etc.). We need to divide the total workload over the servers, so that each server stays below its capacity. This means the number of servers is determined by the most loaded server, not the average. This is a classic balls in bins problem that has been well studied, and there are some interesting theoretical results. However, I wanted some specific numbers, so I wrote a small simulation. The summary is that the imbalance depends on the expected number of items per server (that is, num_items / num_servers). This means workload is more balanced with fewer servers, or with more items. This means that dividing a set of items over more servers makes the distribution more unfair, which is a reason we can get worse than linear scaling of a distributed system. Let's make this more concrete with an example. Let's assume we have a workload of 1000 items, and each server can hold a maximum of 100 items. If we place the exact same number of items on each server, we only need 10 servers, and each of them is completely busy. However, if we place the items randomly, then the median (p50) number of items is 100 items. This means half the servers will have more than 100 items, and will be overloaded. If we want less than a 1% chance of an overloaded server, we need to look at the 99th percentile (p99) server load. We need to use at least 13 servers, which has a p99 load of 97 items. For 14 servers, the average is 77 items, so our servers are on average 23% idle. This shows how the imbalance leads to wasted capacity. This is a bit of an extreme example, because the number of items is small. Let's assume we can make the items 10× smaller, say by dividing them into pieces. Our workload now consists of 10k items, and each server has the capacity to hold 1000 (1k) items. Our perfectly balanced workload still needs 10 servers. With random load balancing, to have a less than 1 in 1000 chance of exceeding our capacity, we only need 11 servers, which has a p99 load of 98 items and a p999 of 100 items. With 11 servers, the average number of items is 910 or 91%, so our servers are only 9% idle. This shows how splitting work into smaller pieces improves load balancing. Another way to look at this is to think about a scaling scenario. Let's go back to our workload of 1000 items, where each server can handle 100 items, and we have 13 servers to ensure we have less than a 1% chance of an overloaded server. Now let's assume the amount of work per item doubles, for example because the service has become more popular, so each item has become larger. Now, each server can hold a maximum of 50 items. If we have perfectly linear scaling, we can double the number of servers from 13 to 26 to handle this workload. However, 26 servers has a p99 of 53 items, so we again have a more than 1% chance of overload. We need to use 28 servers which has a p99 of 50 items. This means we doubled the workload, but had to increase the number of servers from 13 to 28, which is 2.15×. This is sub-linear scaling. As a way to visualize the imbalance, the chart below shows the p99 to average ratio, which is a measure of how imbalanced the system is. If everything is perfectly balanced, the value is 1.0. A value of 2.0 means 1% of servers will have double the number of items of the average server. This shows that the imbalance increases with the number of servers, and increases with fewer items. Power of Two Random Choices Another way to improve load balancing is to have smarter placement. Perfect placement can be hard, but it is often possible to use the "power of two random choices" technique: select two servers at random, and place the item on the least loaded of the two. This makes the distribution much more balanced. For 1000 items and 100 items/server, 11 servers has a p999 of 93 items, so much less than 0.1% chance of overload, compared to needing 14 servers with random load balancing. For the scaling scenario where each server can only handle 50 items, we only need 21 servers to have a p999 of 50 items, compared to 28 servers with random load balancing. The downside of the two choices technique is that each request is now more expensive, since it must query two servers instead of one. However, in many cases where the "item not found" requests are much less expensive than the "item found" requests, this can still be a substantial improvement. For another look at how this improves load balancing, with a nice simulation that includes information delays, see Marc Brooker's blog post. Raw simulation output I will share the code for this simulation later. simulating placing items on servers with random selection iterations=10000 (number of times num_items are placed on num_servers) measures the fraction of items on each server (server_items/num_items) and reports the percentile of all servers in the run P99_AVG_RATIO = p99 / average; approximately the worst server compared to average num_items=1000: num_servers=3 p50=0.33300 p95=0.35800 p99=0.36800 p999=0.37900 AVG=0.33333; P99_AVG_RATIO=1.10400; ITEMS_PER_NODE=333.3 num_servers=5 p50=0.20000 p95=0.22100 p99=0.23000 p999=0.24000 AVG=0.20000; P99_AVG_RATIO=1.15000; ITEMS_PER_NODE=200.0 num_servers=10 p50=0.10000 p95=0.11600 p99=0.12300 p999=0.13100 AVG=0.10000; P99_AVG_RATIO=1.23000; ITEMS_PER_NODE=100.0 num_servers=11 p50=0.09100 p95=0.10600 p99=0.11300 p999=0.12000 AVG=0.09091; P99_AVG_RATIO=1.24300; ITEMS_PER_NODE=90.9 num_servers=12 p50=0.08300 p95=0.09800 p99=0.10400 p999=0.11200 AVG=0.08333; P99_AVG_RATIO=1.24800; ITEMS_PER_NODE=83.3 num_servers=13 p50=0.07700 p95=0.09100 p99=0.09700 p999=0.10400 AVG=0.07692; P99_AVG_RATIO=1.26100; ITEMS_PER_NODE=76.9 num_servers=14 p50=0.07100 p95=0.08500 p99=0.09100 p999=0.09800 AVG=0.07143; P99_AVG_RATIO=1.27400; ITEMS_PER_NODE=71.4 num_servers=25 p50=0.04000 p95=0.05000 p99=0.05500 p999=0.06000 AVG=0.04000; P99_AVG_RATIO=1.37500; ITEMS_PER_NODE=40.0 num_servers=50 p50=0.02000 p95=0.02800 p99=0.03100 p999=0.03500 AVG=0.02000; P99_AVG_RATIO=1.55000; ITEMS_PER_NODE=20.0 num_servers=100 p50=0.01000 p95=0.01500 p99=0.01800 p999=0.02100 AVG=0.01000; P99_AVG_RATIO=1.80000; ITEMS_PER_NODE=10.0 num_servers=1000 p50=0.00100 p95=0.00300 p99=0.00400 p999=0.00500 AVG=0.00100; P99_AVG_RATIO=4.00000; ITEMS_PER_NODE=1.0 num_items=2000: num_servers=3 p50=0.33350 p95=0.35050 p99=0.35850 p999=0.36550 AVG=0.33333; P99_AVG_RATIO=1.07550; ITEMS_PER_NODE=666.7 num_servers=5 p50=0.20000 p95=0.21500 p99=0.22150 p999=0.22850 AVG=0.20000; P99_AVG_RATIO=1.10750; ITEMS_PER_NODE=400.0 num_servers=10 p50=0.10000 p95=0.11100 p99=0.11600 p999=0.12150 AVG=0.10000; P99_AVG_RATIO=1.16000; ITEMS_PER_NODE=200.0 num_servers=11 p50=0.09100 p95=0.10150 p99=0.10650 p999=0.11150 AVG=0.09091; P99_AVG_RATIO=1.17150; ITEMS_PER_NODE=181.8 num_servers=12 p50=0.08350 p95=0.09350 p99=0.09800 p999=0.10300 AVG=0.08333; P99_AVG_RATIO=1.17600; ITEMS_PER_NODE=166.7 num_servers=13 p50=0.07700 p95=0.08700 p99=0.09100 p999=0.09600 AVG=0.07692; P99_AVG_RATIO=1.18300; ITEMS_PER_NODE=153.8 num_servers=14 p50=0.07150 p95=0.08100 p99=0.08500 p999=0.09000 AVG=0.07143; P99_AVG_RATIO=1.19000; ITEMS_PER_NODE=142.9 num_servers=25 p50=0.04000 p95=0.04750 p99=0.05050 p999=0.05450 AVG=0.04000; P99_AVG_RATIO=1.26250; ITEMS_PER_NODE=80.0 num_servers=50 p50=0.02000 p95=0.02550 p99=0.02750 p999=0.03050 AVG=0.02000; P99_AVG_RATIO=1.37500; ITEMS_PER_NODE=40.0 num_servers=100 p50=0.01000 p95=0.01400 p99=0.01550 p999=0.01750 AVG=0.01000; P99_AVG_RATIO=1.55000; ITEMS_PER_NODE=20.0 num_servers=1000 p50=0.00100 p95=0.00250 p99=0.00300 p999=0.00400 AVG=0.00100; P99_AVG_RATIO=3.00000; ITEMS_PER_NODE=2.0 num_items=5000: num_servers=3 p50=0.33340 p95=0.34440 p99=0.34920 p999=0.35400 AVG=0.33333; P99_AVG_RATIO=1.04760; ITEMS_PER_NODE=1666.7 num_servers=5 p50=0.20000 p95=0.20920 p99=0.21320 p999=0.21740 AVG=0.20000; P99_AVG_RATIO=1.06600; ITEMS_PER_NODE=1000.0 num_servers=10 p50=0.10000 p95=0.10700 p99=0.11000 p999=0.11320 AVG=0.10000; P99_AVG_RATIO=1.10000; ITEMS_PER_NODE=500.0 num_servers=11 p50=0.09080 p95=0.09760 p99=0.10040 p999=0.10380 AVG=0.09091; P99_AVG_RATIO=1.10440; ITEMS_PER_NODE=454.5 num_servers=12 p50=0.08340 p95=0.08980 p99=0.09260 p999=0.09580 AVG=0.08333; P99_AVG_RATIO=1.11120; ITEMS_PER_NODE=416.7 num_servers=13 p50=0.07680 p95=0.08320 p99=0.08580 p999=0.08900 AVG=0.07692; P99_AVG_RATIO=1.11540; ITEMS_PER_NODE=384.6 num_servers=14 p50=0.07140 p95=0.07740 p99=0.08000 p999=0.08300 AVG=0.07143; P99_AVG_RATIO=1.12000; ITEMS_PER_NODE=357.1 num_servers=25 p50=0.04000 p95=0.04460 p99=0.04660 p999=0.04880 AVG=0.04000; P99_AVG_RATIO=1.16500; ITEMS_PER_NODE=200.0 num_servers=50 p50=0.02000 p95=0.02340 p99=0.02480 p999=0.02640 AVG=0.02000; P99_AVG_RATIO=1.24000; ITEMS_PER_NODE=100.0 num_servers=100 p50=0.01000 p95=0.01240 p99=0.01340 p999=0.01460 AVG=0.01000; P99_AVG_RATIO=1.34000; ITEMS_PER_NODE=50.0 num_servers=1000 p50=0.00100 p95=0.00180 p99=0.00220 p999=0.00260 AVG=0.00100; P99_AVG_RATIO=2.20000; ITEMS_PER_NODE=5.0 num_items=10000: num_servers=3 p50=0.33330 p95=0.34110 p99=0.34430 p999=0.34820 AVG=0.33333; P99_AVG_RATIO=1.03290; ITEMS_PER_NODE=3333.3 num_servers=5 p50=0.20000 p95=0.20670 p99=0.20950 p999=0.21260 AVG=0.20000; P99_AVG_RATIO=1.04750; ITEMS_PER_NODE=2000.0 num_servers=10 p50=0.10000 p95=0.10500 p99=0.10700 p999=0.10940 AVG=0.10000; P99_AVG_RATIO=1.07000; ITEMS_PER_NODE=1000.0 num_servers=11 p50=0.09090 p95=0.09570 p99=0.09770 p999=0.09990 AVG=0.09091; P99_AVG_RATIO=1.07470; ITEMS_PER_NODE=909.1 num_servers=12 p50=0.08330 p95=0.08790 p99=0.08980 p999=0.09210 AVG=0.08333; P99_AVG_RATIO=1.07760; ITEMS_PER_NODE=833.3 num_servers=13 p50=0.07690 p95=0.08130 p99=0.08320 p999=0.08530 AVG=0.07692; P99_AVG_RATIO=1.08160; ITEMS_PER_NODE=769.2 num_servers=14 p50=0.07140 p95=0.07570 p99=0.07740 p999=0.07950 AVG=0.07143; P99_AVG_RATIO=1.08360; ITEMS_PER_NODE=714.3 num_servers=25 p50=0.04000 p95=0.04330 p99=0.04460 p999=0.04620 AVG=0.04000; P99_AVG_RATIO=1.11500; ITEMS_PER_NODE=400.0 num_servers=50 p50=0.02000 p95=0.02230 p99=0.02330 p999=0.02440 AVG=0.02000; P99_AVG_RATIO=1.16500; ITEMS_PER_NODE=200.0 num_servers=100 p50=0.01000 p95=0.01170 p99=0.01240 p999=0.01320 AVG=0.01000; P99_AVG_RATIO=1.24000; ITEMS_PER_NODE=100.0 num_servers=1000 p50=0.00100 p95=0.00150 p99=0.00180 p999=0.00210 AVG=0.00100; P99_AVG_RATIO=1.80000; ITEMS_PER_NODE=10.0 num_items=100000: num_servers=3 p50=0.33333 p95=0.33579 p99=0.33681 p999=0.33797 AVG=0.33333; P99_AVG_RATIO=1.01043; ITEMS_PER_NODE=33333.3 num_servers=5 p50=0.20000 p95=0.20207 p99=0.20294 p999=0.20393 AVG=0.20000; P99_AVG_RATIO=1.01470; ITEMS_PER_NODE=20000.0 num_servers=10 p50=0.10000 p95=0.10157 p99=0.10222 p999=0.10298 AVG=0.10000; P99_AVG_RATIO=1.02220; ITEMS_PER_NODE=10000.0 num_servers=11 p50=0.09091 p95=0.09241 p99=0.09304 p999=0.09379 AVG=0.09091; P99_AVG_RATIO=1.02344; ITEMS_PER_NODE=9090.9 num_servers=12 p50=0.08334 p95=0.08477 p99=0.08537 p999=0.08602 AVG=0.08333; P99_AVG_RATIO=1.02444; ITEMS_PER_NODE=8333.3 num_servers=13 p50=0.07692 p95=0.07831 p99=0.07888 p999=0.07954 AVG=0.07692; P99_AVG_RATIO=1.02544; ITEMS_PER_NODE=7692.3 num_servers=14 p50=0.07143 p95=0.07277 p99=0.07332 p999=0.07396 AVG=0.07143; P99_AVG_RATIO=1.02648; ITEMS_PER_NODE=7142.9 num_servers=25 p50=0.04000 p95=0.04102 p99=0.04145 p999=0.04193 AVG=0.04000; P99_AVG_RATIO=1.03625; ITEMS_PER_NODE=4000.0 num_servers=50 p50=0.02000 p95=0.02073 p99=0.02103 p999=0.02138 AVG=0.02000; P99_AVG_RATIO=1.05150; ITEMS_PER_NODE=2000.0 num_servers=100 p50=0.01000 p95=0.01052 p99=0.01074 p999=0.01099 AVG=0.01000; P99_AVG_RATIO=1.07400; ITEMS_PER_NODE=1000.0 num_servers=1000 p50=0.00100 p95=0.00117 p99=0.00124 p999=0.00132 AVG=0.00100; P99_AVG_RATIO=1.24000; ITEMS_PER_NODE=100.0 power of two choices num_items=1000: num_servers=3 p50=0.33300 p95=0.33400 p99=0.33500 p999=0.33600 AVG=0.33333; P99_AVG_RATIO=1.00500; ITEMS_PER_NODE=333.3 num_servers=5 p50=0.20000 p95=0.20100 p99=0.20200 p999=0.20300 AVG=0.20000; P99_AVG_RATIO=1.01000; ITEMS_PER_NODE=200.0 num_servers=10 p50=0.10000 p95=0.10100 p99=0.10200 p999=0.10200 AVG=0.10000; P99_AVG_RATIO=1.02000; ITEMS_PER_NODE=100.0 num_servers=11 p50=0.09100 p95=0.09200 p99=0.09300 p999=0.09300 AVG=0.09091; P99_AVG_RATIO=1.02300; ITEMS_PER_NODE=90.9 num_servers=12 p50=0.08300 p95=0.08500 p99=0.08500 p999=0.08600 AVG=0.08333; P99_AVG_RATIO=1.02000; ITEMS_PER_NODE=83.3 num_servers=13 p50=0.07700 p95=0.07800 p99=0.07900 p999=0.07900 AVG=0.07692; P99_AVG_RATIO=1.02700; ITEMS_PER_NODE=76.9 num_servers=14 p50=0.07200 p95=0.07300 p99=0.07300 p999=0.07400 AVG=0.07143; P99_AVG_RATIO=1.02200; ITEMS_PER_NODE=71.4 num_servers=25 p50=0.04000 p95=0.04100 p99=0.04200 p999=0.04200 AVG=0.04000; P99_AVG_RATIO=1.05000; ITEMS_PER_NODE=40.0 num_servers=50 p50=0.02000 p95=0.02100 p99=0.02200 p999=0.02200 AVG=0.02000; P99_AVG_RATIO=1.10000; ITEMS_PER_NODE=20.0 num_servers=100 p50=0.01000 p95=0.01100 p99=0.01200 p999=0.01200 AVG=0.01000; P99_AVG_RATIO=1.20000; ITEMS_PER_NODE=10.0 num_servers=1000 p50=0.00100 p95=0.00200 p99=0.00200 p999=0.00300 AVG=0.00100; P99_AVG_RATIO=2.00000; ITEMS_PER_NODE=1.0 power of two choices num_items=2000: num_servers=3 p50=0.33350 p95=0.33400 p99=0.33400 p999=0.33450 AVG=0.33333; P99_AVG_RATIO=1.00200; ITEMS_PER_NODE=666.7 num_servers=5 p50=0.20000 p95=0.20050 p99=0.20100 p999=0.20150 AVG=0.20000; P99_AVG_RATIO=1.00500; ITEMS_PER_NODE=400.0 num_servers=10 p50=0.10000 p95=0.10050 p99=0.10100 p999=0.10100 AVG=0.10000; P99_AVG_RATIO=1.01000; ITEMS_PER_NODE=200.0 num_servers=11 p50=0.09100 p95=0.09150 p99=0.09200 p999=0.09200 AVG=0.09091; P99_AVG_RATIO=1.01200; ITEMS_PER_NODE=181.8 num_servers=12 p50=0.08350 p95=0.08400 p99=0.08400 p999=0.08450 AVG=0.08333; P99_AVG_RATIO=1.00800; ITEMS_PER_NODE=166.7 num_servers=13 p50=0.07700 p95=0.07750 p99=0.07800 p999=0.07800 AVG=0.07692; P99_AVG_RATIO=1.01400; ITEMS_PER_NODE=153.8 num_servers=14 p50=0.07150 p95=0.07200 p99=0.07250 p999=0.07250 AVG=0.07143; P99_AVG_RATIO=1.01500; ITEMS_PER_NODE=142.9 num_servers=25 p50=0.04000 p95=0.04050 p99=0.04100 p999=0.04100 AVG=0.04000; P99_AVG_RATIO=1.02500; ITEMS_PER_NODE=80.0 num_servers=50 p50=0.02000 p95=0.02050 p99=0.02100 p999=0.02100 AVG=0.02000; P99_AVG_RATIO=1.05000; ITEMS_PER_NODE=40.0 num_servers=100 p50=0.01000 p95=0.01050 p99=0.01100 p999=0.01100 AVG=0.01000; P99_AVG_RATIO=1.10000; ITEMS_PER_NODE=20.0 num_servers=1000 p50=0.00100 p95=0.00150 p99=0.00200 p999=0.00200 AVG=0.00100; P99_AVG_RATIO=2.00000; ITEMS_PER_NODE=2.0 power of two choices num_items=5000: num_servers=3 p50=0.33340 p95=0.33360 p99=0.33360 p999=0.33380 AVG=0.33333; P99_AVG_RATIO=1.00080; ITEMS_PER_NODE=1666.7 num_servers=5 p50=0.20000 p95=0.20020 p99=0.20040 p999=0.20060 AVG=0.20000; P99_AVG_RATIO=1.00200; ITEMS_PER_NODE=1000.0 num_servers=10 p50=0.10000 p95=0.10020 p99=0.10040 p999=0.10040 AVG=0.10000; P99_AVG_RATIO=1.00400; ITEMS_PER_NODE=500.0 num_servers=11 p50=0.09100 p95=0.09120 p99=0.09120 p999=0.09140 AVG=0.09091; P99_AVG_RATIO=1.00320; ITEMS_PER_NODE=454.5 num_servers=12 p50=0.08340 p95=0.08360 p99=0.08360 p999=0.08380 AVG=0.08333; P99_AVG_RATIO=1.00320; ITEMS_PER_NODE=416.7 num_servers=13 p50=0.07700 p95=0.07720 p99=0.07720 p999=0.07740 AVG=0.07692; P99_AVG_RATIO=1.00360; ITEMS_PER_NODE=384.6 num_servers=14 p50=0.07140 p95=0.07160 p99=0.07180 p999=0.07180 AVG=0.07143; P99_AVG_RATIO=1.00520; ITEMS_PER_NODE=357.1 num_servers=25 p50=0.04000 p95=0.04020 p99=0.04040 p999=0.04040 AVG=0.04000; P99_AVG_RATIO=1.01000; ITEMS_PER_NODE=200.0 num_servers=50 p50=0.02000 p95=0.02020 p99=0.02040 p999=0.02040 AVG=0.02000; P99_AVG_RATIO=1.02000; ITEMS_PER_NODE=100.0 num_servers=100 p50=0.01000 p95=0.01020 p99=0.01040 p999=0.01040 AVG=0.01000; P99_AVG_RATIO=1.04000; ITEMS_PER_NODE=50.0 num_servers=1000 p50=0.00100 p95=0.00120 p99=0.00140 p999=0.00140 AVG=0.00100; P99_AVG_RATIO=1.40000; ITEMS_PER_NODE=5.0 power of two choices num_items=10000: num_servers=3 p50=0.33330 p95=0.33340 p99=0.33350 p999=0.33360 AVG=0.33333; P99_AVG_RATIO=1.00050; ITEMS_PER_NODE=3333.3 num_servers=5 p50=0.20000 p95=0.20010 p99=0.20020 p999=0.20030 AVG=0.20000; P99_AVG_RATIO=1.00100; ITEMS_PER_NODE=2000.0 num_servers=10 p50=0.10000 p95=0.10010 p99=0.10020 p999=0.10020 AVG=0.10000; P99_AVG_RATIO=1.00200; ITEMS_PER_NODE=1000.0 num_servers=11 p50=0.09090 p95=0.09100 p99=0.09110 p999=0.09110 AVG=0.09091; P99_AVG_RATIO=1.00210; ITEMS_PER_NODE=909.1 num_servers=12 p50=0.08330 p95=0.08350 p99=0.08350 p999=0.08360 AVG=0.08333; P99_AVG_RATIO=1.00200; ITEMS_PER_NODE=833.3 num_servers=13 p50=0.07690 p95=0.07700 p99=0.07710 p999=0.07720 AVG=0.07692; P99_AVG_RATIO=1.00230; ITEMS_PER_NODE=769.2 num_servers=14 p50=0.07140 p95=0.07160 p99=0.07160 p999=0.07170 AVG=0.07143; P99_AVG_RATIO=1.00240; ITEMS_PER_NODE=714.3 num_servers=25 p50=0.04000 p95=0.04010 p99=0.04020 p999=0.04020 AVG=0.04000; P99_AVG_RATIO=1.00500; ITEMS_PER_NODE=400.0 num_servers=50 p50=0.02000 p95=0.02010 p99=0.02020 p999=0.02020 AVG=0.02000; P99_AVG_RATIO=1.01000; ITEMS_PER_NODE=200.0 num_servers=100 p50=0.01000 p95=0.01010 p99=0.01020 p999=0.01020 AVG=0.01000; P99_AVG_RATIO=1.02000; ITEMS_PER_NODE=100.0 num_servers=1000 p50=0.00100 p95=0.00110 p99=0.00120 p999=0.00120 AVG=0.00100; P99_AVG_RATIO=1.20000; ITEMS_PER_NODE=10.0 power of two choices num_items=100000: num_servers=3 p50=0.33333 p95=0.33334 p99=0.33335 p999=0.33336 AVG=0.33333; P99_AVG_RATIO=1.00005; ITEMS_PER_NODE=33333.3 num_servers=5 p50=0.20000 p95=0.20001 p99=0.20002 p999=0.20003 AVG=0.20000; P99_AVG_RATIO=1.00010; ITEMS_PER_NODE=20000.0 num_servers=10 p50=0.10000 p95=0.10001 p99=0.10002 p999=0.10002 AVG=0.10000; P99_AVG_RATIO=1.00020; ITEMS_PER_NODE=10000.0 num_servers=11 p50=0.09091 p95=0.09092 p99=0.09093 p999=0.09093 AVG=0.09091; P99_AVG_RATIO=1.00023; ITEMS_PER_NODE=9090.9 num_servers=12 p50=0.08333 p95=0.08335 p99=0.08335 p999=0.08336 AVG=0.08333; P99_AVG_RATIO=1.00020; ITEMS_PER_NODE=8333.3 num_servers=13 p50=0.07692 p95=0.07694 p99=0.07694 p999=0.07695 AVG=0.07692; P99_AVG_RATIO=1.00022; ITEMS_PER_NODE=7692.3 num_servers=14 p50=0.07143 p95=0.07144 p99=0.07145 p999=0.07145 AVG=0.07143; P99_AVG_RATIO=1.00030; ITEMS_PER_NODE=7142.9 num_servers=25 p50=0.04000 p95=0.04001 p99=0.04002 p999=0.04002 AVG=0.04000; P99_AVG_RATIO=1.00050; ITEMS_PER_NODE=4000.0 num_servers=50 p50=0.02000 p95=0.02001 p99=0.02002 p999=0.02002 AVG=0.02000; P99_AVG_RATIO=1.00100; ITEMS_PER_NODE=2000.0 num_servers=100 p50=0.01000 p95=0.01001 p99=0.01002 p999=0.01002 AVG=0.01000; P99_AVG_RATIO=1.00200; ITEMS_PER_NODE=1000.0 num_servers=1000 p50=0.00100 p95=0.00101 p99=0.00102 p999=0.00102 AVG=0.00100; P99_AVG_RATIO=1.02000; ITEMS_PER_NODE=100.0

over a year ago 46 votes
How much does the read/write buffer size matter for socket throughput?

The read() and write() system calls take a variable-length byte array as an argument. As a simplified model, the time for the system call should be some constant "per-call" time, plus time directly proportional to the number of bytes in the array. That is, the time for each call should be time = (per_call_minimum_time) + (array_len) × (per_byte_time). With this model, using a larger buffer should increase throughput, asymptotically approaching 1/per_byte_time. I was curious: do real system calls behave this way? What are the ideal buffer sizes for read() and write() if we want to maximize throughput? I decided to do some experiments with blocking I/O. These are not rigorous, and I suspect the results will vary significantly if the hardware and software are different than one the system I tested. The really short answer is that a buffer of 32 KiB is a good starting point on today's systems, and I would want to measure the performance to go beyond that. However, for large writes, performance can increase. On Linux, the simple model holds for small buffers (≤ 4 KiB), but once the program approaches the maximum throughput, the throughput becomes highly variable and in many cases decreases as the buffers get larger. For blocking I/O, approximately 32 KiB is large enough to hit the maximum throughput for read(), but write() throughput improves with buffers up to around 256 KiB - 1 MiB. The reason for the asymmetry is that the Linux kernel will only write less than the entire buffer (a "short write") if there is an error (e.g. a signal causing EINTR). Thus, larger write buffers means the operating system needs to switch to the process less often. On the other head, "short reads", where a read() returns less than the maximum length, become increasingly common as the buffer size increases, which diminishes the benefit. There is a SO_RCVLOWAT socket option to change this that I did not test. The experiments were run on two 16 CPU Google Cloud T2D instances, which use AMD EPYC Milan processors (3rd generation, released in 2021). Each core is a real physical core. I used Ubuntu 23.04 running kernel 6.2.0-1005-gcp. My benchmark program is written in Rust and is available on Github. On localhost, Unix sockets were able to transfer data at approximately 9000 MiB/s. Localhost TCP sockets were a bit slower, around 7000 MiB/s. When using two separate cloud VMs with a networking throughput limit of 32 Gbps = 3800 MiB/s, I needed to use 6 TCP sockets to reliably reach that maximum throughput. A single TCP socket gets around 1400 MiB/s with 256 KiB buffers, with peaks as high as 2200 MiB/s. Experiment 1: /dev/zero and /dev/urandom My first experiment is reading from the /dev/zero and /dev/urandom devices. These are software devices implemented by the kernel, so they should have low overhead and low variability, since other tasks are not involved. Reading from /dev/urandom should be much slower than /dev/zero since the kernel must generate random bytes, rather than just zeros. The chart below shows the throughput for reading from /dev/zero as the buffer size is increased. The results show that the basic linear time per system call model holds until the system reaches maximum throughput (256 kiB buffer = 39000 MiB/s for /dev/zero, or 16 kiB = 410 MiB/s for /dev/urandom). As the buffer size increases further, the throughput decreases as the buffers get too big. This suggests that some other cost for larger buffers starts to outweigh the reduction in number of system calls. Perhaps CPU caches become less effective? The AMD EPYC Milan (3rd gen) CPU I tested on has 32 KiB of L1 data cache and 512 KiB of L2 data cache per core. The performance decreases don't exactly line up with these numbers, but it still seems plausible. The numbers for /dev/urandom are substantially lower, but otherwise similar. I did a linear least-squares fit on the average time per system call, shown in the following chart. If I use all the data, the fit is not good, because the trend changes for larger buffers. However, if I use the data up to the maximum throughput at 256 KiB, the fit is very good, as shown on the chart below. The linear fit models the minimum time per system call as 167 ns, with 0.0235 ns/byte additional time. If we want to use smaller buffers, using a 64 KiB buffer for reading from /dev/zero gets within 95% of the maximum throughput. Experiment 2: Unix and localhost TCP sockets Exchanging data with other processes is the thing I am actually interested in, so I tested Unix and TCP sockets on a single machine. In this case, I varied both the write buffer size and the read buffer size. Unfortunately, these results vary a lot. A more robust comparison would require running each experiment many times, and using some sort of statistical comparison. However, this "quick and dirty" experiment satisfied my curiousity, so I didn't do that. As a result, my conclusions here are vague. The simple model that increasing buffer size should decrease overhead is true, but only until the buffers are about 4 KiB. Above that point, the results start to be highly variable, and it is much harder to draw general conclusion. However, appears that increasing the write buffer size generally is quite helpful up to at least 256 KiB, and often needed as much as 1 MiB to get the highest localhost throughput. I suspect this is because on Linux with blocking sockets, write() will not return until it has written all the data in the buffer, unless there is an error (e.g. EINTR). As a result, passing a large buffer means the kernel can do a lot of the work without needing to switch back to user space. Unfortunately, the same is not true for read(), which often returns "short reads" with any data that is available in the buffer. This starts with buffer sizes around 2 KiB, with the percentage of short reads increasing as the buffer size gets larger. This means the simple model does not hold, because we aren't actually increasing the bytes per read call. I suspect this is a factor which means this microbenchmark is likely not representative of real programs. A real program will do something with the buffer, which will provide time for more data to be buffered in the kernel, and would probably decrease the number of short reads. This likely means larger buffers are in practice more useful than this microbenchmark suggests. As a result of this, the highest throughput often was achievable with small read buffers. I'm somewhat arbitrarily selecting 16 KiB at the best read buffer, and 256 KiB as the best write buffer, although a 1 MiB write buffer seems to be To give a sense of how variable the results are, the plot below shows the local Unix socket throughput for each read and write buffer throughput size. I apologize for the ugly plot. I did not want to spend the time to make it more beautiful. This plot is interactive so you can slice the data to the area of interest. I recommend zooming in to the left hand size with read buffers up to about 300 KiB. The first thing to note is at least on Linux with blocking sockets, the writer will almost never have a "short write", where the write system call returns before writing all the data in the buffer. Unless there is a signal (EINTR) or some other "error" condition, write() will not return until all the bytes are written. The same is not true for reads. The read() system call will often return a "short" read, starting around buffer sizes of 2 KiB. The percentage of short reads generally increases as buffer sizes get bigger, which is logical. Another note is that sockets have in-kernel send and receive buffers. I did not tune these at all. It is possible that better performance is possible by tuning these settings, but that was not my goal. I wanted to know what happens "out of the box" for general-purpose programs without any special tuning. Experiment 3: TCP between two hosts In this experiment, I used two separate hosts connected with 32 Gbps networking in Google Cloud. I first tested the TCP throughput using iperf, to independently verify the network performance. A single TCP connection with iperf is not enough to fully utilize the network. I tried fiddling with some command line options and with Kernel settings like net.ipv4.tcp_rmem and wasn't able to get much better than about 12 Gb/s = 1400 MiB/s. The throughput is also highly varible. Here is some example output with iperf reporting at 2 second intervals, where you can see the throughput ranging from 10 to 19 Gb/s, with an average over the entire interval of 12 Gb/s. To hit the maximum network throughput, I need to use 6 or more parallel TCP connections (iperf -c IP_ADDRESS --time 60 --interval 2 -l 262144 -P 6). Using 3 connections gets around 26 Gb/s, and using 4 or 5 will occasionally hit the maximum, but will also occasionally drop down. Using at least 6 seems to reliably stay at the maximum. Due to this variability, it is hard to draw any conclusions about buffer size. In particular: a single TCP connection is not limited by CPU. The system uses about 40% of a single CPU core, basically all in the kernel. This is more about how the buffer sizes may impact scheduling choices. That said, it is clear that you cannot hit the maximum throughput with a small write buffer. The experiments with 4 KiB write buffers reached approximately 300 MiB/s, while an 8 KiB write buffer was much faster, around 1400 MiB/s. Larger still generally seems better, up to around 256 KiB, which occasionally reached 2200 MiB/s = 17.6 Gb/s. The plot below shows the TCP socket throughput for each read and write buffer size. Again, I apologize for the ugly plot.

over a year ago 95 votes
The C Standard Library Function isspace() Depends on Locale

This is a post for myself, because I wasted a lot of time understanding this bug, and I want to be able to remember it in the future. I expect close to zero others to be interested. The C standard library function isspace() returns a non-zero value (true) for the six "standard" ASCII white-space characters ('\t', '\n', '\v', '\f', '\r', ' '), and any locale-specific characters. By default, a program starts in the "C" locale, which will only return true for the six ASCII white-space characters. However, if the program changes locales, it can return true for other values. As a result, unless you really understand locales, you should use your own version of this function, or ICU4C's u_isspace() function. An implementation of isspace() for ASCII is one line: /* Returns true for the 6 ASCII white-space characters: \t \n \v \f \r ' '. */ int isspace_ascii(int c) { return c == '\t' || c == '\n' || c == '\v' || c == '\f' || c == '\r' || c == ' '; } I ran into this because On Mac OS X, Postgres switches to the system's default locale, which is something that uses UTF-8 (e.g. en_US.UTF-8, fr_CA.UTF-8, etc). In this case, isspace() returns true for Unicode white-space values, which includes 0x85 = NEL = Next Line, and 0xA0 = NBSP = No-Break Space. This caused a bug in parsing Postgres Hstore values that use Unicode. I have attempted to submit a patch to fix this (mailing list post, commitfest entry). For a program to demonstrate the behaviour on different systems, see isspace_locale on Github.

over a year ago 101 votes

More in programming

strongly typed?

What does it mean when someone writes that a programming language is “strongly typed”? I’ve known for many years that “strongly typed” is a poorly-defined term. Recently I was prompted on Lobsters to explain why it’s hard to understand what someone means when they use the phrase. I came up with more than five meanings! how strong? The various meanings of “strongly typed” are not clearly yes-or-no. Some developers like to argue that these kinds of integrity checks must be completely perfect or else they are entirely worthless. Charitably (it took me a while to think of a polite way to phrase this), that betrays a lack of engineering maturity. Software engineers, like any engineers, have to create working systems from imperfect materials. To do so, we must understand what guarantees we can rely on, where our mistakes can be caught early, where we need to establish processes to catch mistakes, how we can control the consequences of our mistakes, and how to remediate when somethng breaks because of a mistake that wasn’t caught. strong how? So, what are the ways that a programming language can be strongly or weakly typed? In what ways are real programming languages “mid”? Statically typed as opposed to dynamically typed? Many languages have a mixture of the two, such as run time polymorphism in OO languages (e.g. Java), or gradual type systems for dynamic languages (e.g. TypeScript). Sound static type system? It’s common for static type systems to be deliberately unsound, such as covariant subtyping in arrays or functions (Java, again). Gradual type systems migh have gaping holes for usability reasons (TypeScript, again). And some type systems might be unsound due to bugs. (There are a few of these in Rust.) Unsoundness isn’t a disaster, if a programmer won’t cause it without being aware of the risk. For example: in Lean you can write “sorry” as a kind of “to do” annotation that deliberately breaks soundness; and Idris 2 has type-in-type so it accepts Girard’s paradox. Type safe at run time? Most languages have facilities for deliberately bypassing type safety, with an “unsafe” library module or “unsafe” language features, or things that are harder to spot. It can be more or less difficult to break type safety in ways that the programmer or language designer did not intend. JavaScript and Lua are very safe, treating type safety failures as security vulnerabilities. Java and Rust have controlled unsafety. In C everything is unsafe. Fewer weird implicit coercions? There isn’t a total order here: for instance, C has implicit bool/int coercions, Rust does not; Rust has implicit deref, C does not. There’s a huge range in how much coercions are a convenience or a source of bugs. For example, the PHP and JavaScript == operators are made entirely of WAT, but at least you can use === instead. How fancy is the type system? To what degree can you model properties of your program as types? Is it convenient to parse, not validate? Is the Curry-Howard correspondance something you can put into practice? Or is it only capable of describing the physical layout of data? There are probably other meanings, e.g. I have seen “strongly typed” used to mean that runtime representations are abstract (you can’t see the underlying bytes); or in the past it sometimes meant a language with a heavy type annotation burden (as a mischaracterization of static type checking). how to type So, when you write (with your keyboard) the phrase “strongly typed”, delete it, and come up with a more precise description of what you really mean. The desiderata above are partly overlapping, sometimes partly orthogonal. Some of them you might care about, some of them not. But please try to communicate where you draw the line and how fuzzy your line is.

yesterday 8 votes
Logical Duals in Software Engineering

(Last week's newsletter took too long and I'm way behind on Logic for Programmers revisions so short one this time.1) In classical logic, two operators F/G are duals if F(x) = !G(!x). Three examples: x || y is the same as !(!x && !y). <>P ("P is possibly true") is the same as ![]!P ("not P isn't definitely true"). some x in set: P(x) is the same as !(all x in set: !P(x)). (1) is just a version of De Morgan's Law, which we regularly use to simplify boolean expressions. (2) is important in modal logic but has niche applications in software engineering, mostly in how it powers various formal methods.2 The real interesting one is (3), the "quantifier duals". We use lots of software tools to either find a value satisfying P or check that all values satisfy P. And by duality, any tool that does one can do the other, by seeing if it fails to find/check !P. Some examples in the wild: Z3 is used to solve mathematical constraints, like "find x, where f(x) >= 0. If I want to prove a property like "f is always positive", I ask z3 to solve "find x, where !(f(x) >= 0), and see if that is unsatisfiable. This use case powers a LOT of theorem provers and formal verification tooling. Property testing checks that all inputs to a code block satisfy a property. I've used it to generate complex inputs with certain properties by checking that all inputs don't satisfy the property and reading out the test failure. Model checkers check that all behaviors of a specification satisfy a property, so we can find a behavior that reaches a goal state G by checking that all states are !G. Here's TLA+ solving a puzzle this way.3 Planners find behaviors that reach a goal state, so we can check if all behaviors satisfy a property P by asking it to reach goal state !P. The problem "find the shortest traveling salesman route" can be broken into some route: distance(route) = n and all route: !(distance(route) < n). Then a route finder can find the first, and then convert the second into a some and fail to find it, proving n is optimal. Even cooler to me is when a tool does both finding and checking, but gives them different "meanings". In SQL, some x: P(x) is true if we can query for P(x) and get a nonempty response, while all x: P(x) is true if all records satisfy the P(x) constraint. Most SQL databases allow for complex queries but not complex constraints! You got UNIQUE, NOT NULL, REFERENCES, which are fixed predicates, and CHECK, which is one-record only.4 Oh, and you got database triggers, which can run arbitrary queries and throw exceptions. So if you really need to enforce a complex constraint P(x, y, z), you put in a database trigger that queries some x, y, z: !P(x, y, z) and throws an exception if it finds any results. That all works because of quantifier duality! See here for an example of this in practice. Duals more broadly "Dual" doesn't have a strict meaning in math, it's more of a vibe thing where all of the "duals" are kinda similar in meaning but don't strictly follow all of the same rules. Usually things X and Y are duals if there is some transform F where X = F(Y) and Y = F(X), but not always. Maybe the category theorists have a formal definition that covers all of the different uses. Usually duals switch properties of things, too: an example showing some x: P(x) becomes a counterexample of all x: !P(x). Under this definition, I think the dual of a list l could be reverse(l). The first element of l becomes the last element of reverse(l), the last becomes the first, etc. A more interesting case is the dual of a K -> set(V) map is the V -> set(K) map. IE the dual of lived_in_city = {alice: {paris}, bob: {detroit}, charlie: {detroit, paris}} is city_lived_in_by = {paris: {alice, charlie}, detroit: {bob, charlie}}. This preserves the property that x in map[y] <=> y in dual[x]. And after writing this I just realized this is partial retread of a newsletter I wrote a couple months ago. But only a partial retread! ↩ Specifically "linear temporal logics" are modal logics, so "eventually P ("P is true in at least one state of each behavior") is the same as saying !always !P ("not P isn't true in all states of all behaviors"). This is the basis of liveness checking. ↩ I don't know for sure, but my best guess is that Antithesis does something similar when their fuzzer beats videogames. They're doing fuzzing, not model checking, but they have the same purpose check that complex state spaces don't have bugs. Making the bug "we can't reach the end screen" can make a fuzzer output a complete end-to-end run of the game. Obvs a lot more complicated than that but that's the general idea at least. ↩ For CHECK to constraint multiple records you would need to use a subquery. Core SQL does not support subqueries in check. It is an optional database "feature outside of core SQL" (F671), which Postgres does not support. ↩

2 days ago 9 votes
Omarchy 2.0

Omarchy 2.0 was released on Linux's 34th birthday as a gift to perhaps the greatest open-source project the world has ever known. Not only does Linux run 95% of all servers on the web, billions of devices as an embedded OS, but it also turns out to be an incredible desktop environment! It's crazy that it took me more than thirty years to realize this, but while I spent time in Apple's walled garden, the free software alternative simply grew better, stronger, and faster. The Linux of 2025 is not the Linux of the 90s or the 00s or even the 10s. It's shockingly more polished, capable, and beautiful. It's been an absolute honor to celebrate Linux with the making of Omarchy, the new Linux distribution that I've spent the last few months building on top of Arch and Hyprland. What began as a post-install script has turned into a full-blown ISO, dedicated package repository, and flourishing community of thousands of enthusiasts all collaborating on making it better. It's been improving rapidly with over twenty releases since the premiere in late June, but this Version 2.0 update is the biggest one yet. If you've been curious about giving Linux a try, you're not afraid of an operating system that asks you to level up and learn a little, and you want to see what a totally different computing experience can look and feel like, I invite you to give it a go. Here's a full tour of Omarchy 2.0.

3 days ago 8 votes
Dissecting the Apple M1 GPU, the end

In 2020, Apple released the M1 with a custom GPU. We got to work reverse-engineering the hardware and porting Linux. Today, you can run Linux on a range of M1 and M2 Macs, with almost all hardware working: wireless, audio, and full graphics acceleration. Our story begins in December 2020, when Hector Martin kicked off Asahi Linux. I was working for Collabora working on Panfrost, the open source Mesa3D driver for Arm Mali GPUs. Hector put out a public call for guidance from upstream open source maintainers, and I bit. I just intended to give some quick pointers. Instead, I bought myself a Christmas present and got to work. In between my university coursework and Collabora work, I poked at the shader instruction set. One thing led to another. Within a few weeks, I drew a triangle. In 3D graphics, once you can draw a triangle, you can do anything. Pretty soon, I started work on a shader compiler. After my final exams that semester, I took a few days off from Collabora to bring up an OpenGL driver capable of spinning gears with my new compiler. Over the next year, I kept reverse-engineering and improving the driver until it could run 3D games on macOS. Meanwhile, Asahi Lina wrote a kernel driver for the Apple GPU. My userspace OpenGL driver ran on macOS, leaving her kernel driver as the missing piece for an open source graphics stack. In December 2022, we shipped graphics acceleration in Asahi Linux. In January 2023, I started my final semester in my Computer Science program at the University of Toronto. For years I juggled my courses with my part-time job and my hobby driver. I faced the same question as my peers: what will I do after graduation? Maybe Panfrost? I started reverse-engineering of the Mali Midgard GPU back in 2017, when I was still in high school. That led to an internship at Collabora in 2019 once I graduated, turning into my job throughout four years of university. During that time, Panfrost grew from a kid’s pet project based on blackbox reverse-engineering, to a professional driver engineered by a team with Arm’s backing and hardware documentation. I did what I set out to do, and the project succeeded beyond my dreams. It was time to move on. What did I want to do next? Finish what I started with the M1. Ship a great driver. Bring full, conformant OpenGL drivers to the M1. Apple’s drivers are not conformant, but we should strive for the industry standard. Bring full, conformant Vulkan to Apple platforms, disproving the myth that Vulkan isn’t suitable for Apple hardware. Bring Proton gaming to Asahi Linux. Thanks to Valve’s work for the Steam Deck, Windows games can run better on Linux than even on Windows. Why not reap those benefits on the M1? Panfrost was my challenge until we “won”. My next challenge? Gaming on Linux on M1. Once I finished my coursework, I started full-time on gaming on Linux. Within a month, we shipped OpenGL 3.1 on Asahi Linux. A few weeks later, we passed official conformance for OpenGL ES 3.1. That put us at feature parity with Panfrost. I wanted to go further. OpenGL (ES) 3.2 requires geometry shaders, a legacy feature not supported by either Arm or Apple hardware. The proprietary OpenGL drivers emulate geometry shaders with compute, but there was no open source prior art to borrow. Even though multiple Mesa drivers need geometry/tessellation emulation, nobody did the work to get there. My early progress on OpenGL was fast thanks to the mature common code in Mesa. It was time to pay it forward. Over the rest of the year, I implemented geometry/tessellation shader emulation. And also the rest of the owl. In January 2024, I passed conformance for the full OpenGL 4.6 specification, finishing up OpenGL. Vulkan wasn’t too bad, either. I polished the OpenGL driver for a few months, but once I started typing a Vulkan driver, I passed 1.3 conformance in a few weeks. What remained was wiring up the geometry/tessellation emulation to my shiny new Vulkan driver, since those are required for Direct3D. Et voilà, Proton games. Along the way, Karol Herbst passed OpenCL 3.0 conformance on the M1, running my compiler atop his “rusticl” frontend. Meanwhile, when the Vulkan 1.4 specification was published, we were ready and shipped a conformant implementation on the same day. After that, I implemented sparse texture support, unlocking Direct3D 12 via Proton. …Now what? Ship a great driver? Check. Conformant OpenGL 4.6, OpenGL ES 3.2, and OpenCL 3.0? Check. Conformant Vulkan 1.4? Check. Proton gaming? Check. That’s a wrap. We’ve succeeded beyond my dreams. The challenges I chased, I have tackled. The drivers are fully upstream in Mesa. Performance isn’t too bad. With the Vulkan on Apple myth busted, conformant Vulkan is now coming to macOS via LunarG’s KosmicKrisp project building on my work. Satisfied, I am now stepping away from the Apple ecosystem. My friends in the Asahi Linux orbit will carry the torch from here. As for me? Onto the next challenge!

3 days ago 12 votes
Changing Careers to Software Development in Japan

TokyoDev has published a number of different guides on coming to Japan to work as a software developer. But what if you’re already employed in another industry in Japan, and are considering changing your career to software development? I interviewed four people who became developers after they moved to Japan, for their advice and personal experiences on: Why they chose development How they switched careers How they successfully found their first jobs What mistakes they made in the job hunt The most important advice they give to others Why switch to software development? A lifelong goal For Yuta Asakura, a career in software was the dream all along. “I’ve always wanted to work with computers,” he said, “but due to financial difficulties, I couldn’t pursue a degree in computer science. I had to start working early to support my single mother. As the eldest child, I focused on helping my younger brother complete his education.” To support his family, Asakura worked in construction for eight years, eventually becoming a foreman in Yokohama. Meanwhile, his brother graduated, and became a software engineer after joining the Le Wagon Tokyo bootcamp. About a year before his brother graduated, Asakura began to delve back into development. “I had already begun self-studying in my free time by taking online courses and building small projects,” he explained. “ I quickly became hooked by how fun and empowering it was to learn, apply, and build. It wasn’t always easy. There were moments I wanted to give up, but the more I learned, the more interesting things I could create. That feeling kept me going.” What truly inspired me was the idea of creating something from nothing. Coming from a construction background, I was used to building things physically. But I wanted to create things that were digital, scalable, borderless, and meaningful to others. An unexpected passion As Andrew Wilson put it, “Wee little Andrew had a very digital childhood,” full of games and computer time. Rather than pursuing tech, however, he majored in Japanese and moved to Japan in 2012, where he initially worked as a language teacher and recruiter before settling into sales. Wilson soon discovered that sales wasn’t really his strong suit. “At the time I was selling three different enterprise software solutions.” So I had to have a fairly deep understanding of that software from a user perspective, and in the course of learning about these products and giving technical demonstrations, I realized that I liked doing that bit of my job way more than I liked actually trying to sell these things. Around that time, he also realized he didn’t want to manually digitize the many business cards he always collected during sales meetings: “That’s boring, and I’m lazy.” So instead, he found a business card-scanning app, made a spreadsheet to contain the data, automated the whole process, and shared it internally within his company. His manager approached him soon afterwards, saying, “You built this? We were looking to hire someone to do this!” Encouraged, Wilson continued to develop it. “As soon as I was done with work,” he explained with a laugh, “I was like, ‘Oh boy, I can work on my spreadsheet!’” As a result, Wilson came to the conclusion that he really should switch careers and pursue his passion for programming. Similarly to Wilson, Malcolm Hendricks initially focused on Japanese. He came to Japan as an exchange student in 2002, and traveled to Japan several more times before finally relocating in 2011. Though his original role was as a language teacher, he soon found a job at a Japanese publishing company, where he worked as an editor and writer for seven years. However, he felt burned out on the work, and also that he was in danger of stagnating; since he isn’t Japanese, the road to promotion was a difficult one. He started following some YouTube tutorials on web development, and eventually began creating websites for his friends. Along the way, he fell in love with development, on both a practical and a philosophical level. “There’s another saying I’ve heard here and there—I don’t know exactly who to attribute it to—but the essence of it goes that ‘Computer science is just teaching rocks how to think,’” Hendricks said. “My mentor Bob has been guiding me through the very fundamentals of computer science, down to binary calculations, Boolean logic, gate theory, and von Neumann architecture. He explains the fine minutia and often concludes with, ‘That’s how it works. There’s no magic to it.’ “Meanwhile, in the back of my mind, I can’t help but be mystified at the things we are all now able to do, such as having video calls from completely different parts of the world, or even me here typing on squares of plastic to make letters appear on a screen that has its own source of light inside it. . . . [It] sounds like the highest of high-fantasy wizardry to me.” I’ve always had a love for technomancy, but I never figured I might one day get the chance to be a technomancer myself. And I love it! We have the ability to create nigh unto anything in the digital world. A practical solution When Paulo D’Alberti moved to Japan in 2019, he only spoke a little Japanese, which limited his employment prospects. With his prior business experience, he landed an online marketing role for a blockchain startup, but eventually exited the company to pursue a more stable work environment. “But when I decided to leave the company,” D’Alberti said, “my Japanese was still not good enough to do business. So I was at a crossroads.” Do I decide to join a full-time Japanese language course, aiming to get JLPT N2 or the equivalent, and find a job on the business side? . . . Or do I say screw it and go for a complete career change and get skills in something more technical, that would allow me to carry those skills [with me] even if I were to move again to another country?” The portability of a career in development was a major plus for D’Alberti. “That was one of the big reasons. Another consideration was that, looking at the boot camps that were available, the promise was ‘Yeah, we’ll teach you to be a software developer in nine weeks or two months.’ That was a much shorter lead time than getting from JLPT N4 to N2. I definitely wouldn’t be able to do that in two months.” Since D’Alberti had family obligations, the timeline for his career switch was crucial. “We still had family costs and rent and groceries and all of that. I needed to find a job as soon as possible. I actually already at that point had been unsuccessfully job hunting for two months. So that was like, ‘Okay, the savings are winding up, and we are running out of options. I need to make a decision and make it fast.’” How to switch careers Method 1: Software Development Bootcamp Under pressure to find new employment quickly, D’Alberti decided to enter the Le Wagon Coding Bootcamp in Tokyo. Originally, he wavered between Le Wagon and Code Chrysalis, which has since ended its bootcamp programs. “I went with Le Wagon for two reasons,” he explained. “There were some scheduling reasons. . . . But the main reason was that Code Chrysalis required you to pass a coding exam before being admitted to their bootcamp.” Since D’Alberti was struggling to learn development by himself, he knew his chances of passing any coding exam were slim. “I tried Code Academy, I tried Solo Learn, I tried a whole bunch of apps online, I would follow the examples, the exercises . . . nothing clicked. I wouldn’t understand what I was doing or why I was doing it.” At the time, Le Wagon only offered full-time web development courses, although they now also have part-time courses and a data science curriculum. Since D’Alberti was unemployed, a full-time program wasn’t a problem for him, “But it did mean that the people who were present were very particular [kinds] of people: students who could take some time off to add this to their [coursework], or foreigners who took three months off and were traveling and decide to come here and do studying plus sightseeing, and I think there were one or two who actually asked for time off from the job in order to participate.” It was a very intense course, and the experience itself gave me exactly what I needed. I had been trying to learn by myself. It did not work. I did not understand. [After joining], the first day or second day, suddenly everything clicked. D’Alberti appreciated how Le Wagon organized the curriculum to build continuously off previous lessons. By the time he graduated in June of 2019, he’d built three applications from scratch, and felt far more confident in his coding abilities. “It was great. [The curriculum] was amazing, and I really felt super confident in my abilities after the three months. Which, looking back,” he joked, “I still had a lot to learn.” D’Alberti did have some specific advice for those considering a bootcamp: “Especially in the last couple of weeks, it can get very dramatic. You are divided into teams and as a team, you’re supposed to develop an application that you will be demonstrating in front of other people.” Some of the students, D’Alberti explained, felt that pressure intensely; one of his classmates broke down in tears. “Of course,” he added, “one of the big difficulties of joining a bootcamp is economical. The bootcamp itself is quite expensive.” While between 700,000 and 800,000 yen when D’Alberti went through the bootcamp, Le Wagon’s tuition has now risen to 890,000 yen for Web Development and 950,000 for Data Science. At the time D’Alberti joined there was no financial assistance. Now, Le Wagon has an agreement with Hello Work, so that students who are enrolled in the Hello Work system can be reimbursed for up to 70 percent of the bootcamp’s tuition. Though already studying development by himself, Asakura also enrolled in Le Wagon Tokyo in 2024, “to gain structure and accountability,” he said. One lesson that really stayed with me came from Sylvain Pierre, our bootcamp director. He said, ‘You stop being a developer the moment you stop learning or coding.’ That mindset helped me stay on track. Method 2: Online computer science degree Wilson considered going the bootcamp route, but decided against it. He knew, from his experience in recruiting, that a degree would give him an edge—especially in Japan, where having the right degree can make a difference in visa eligibility “The quality of bootcamps is perfectly fine,” he explained. “If you go through a bootcamp and study hard, you can get a job and become a developer no problem. I wanted to differentiate myself on paper as much as I could . . . [because] there are a lot of smart, motivated people who go through a bootcamp.” Whether it’s true or not, whether it’s valid or not, if you take two candidates who are very similar on paper, and one has a coding bootcamp and one has a degree, from a typical Japanese HR perspective, they’re going to lean toward the person with the degree. “Whether that’s good or not, that’s sort of a separate situation,” Wilson added. “But the reality [is] I’m older and I’m trying to make a career change, so I want to make sure that I’m giving myself every advantage that I can.” For these reasons, Wilson opted to get his computer science degree online. “There’s a program out of the University of Oregon, for people who already had a Bachelor’s degree in a different subject to get a Bachelor’s degree in Computer Science. “Because it’s limited to people who already have a Bachelor’s degree, that means you don’t need to take any non-computer science classes. You don’t need any electives or prerequisites or anything like that.” As it happened, Wilson was on paternity leave when he started studying for his degree. “That was one of my motivations to finish quickly!” he said. In the end, with his employer’s cooperation, he extended his paternity leave to two years, and finished the degree in five quarters. Method 3: Self-taught Hendricks took a different route, combining online learning materials with direct experience. He primarily used YouTube tutorials, like this project from one of his favorite channels, to teach himself. Once he had the basics down, he started creating websites for friends, as well as for the publishing company he worked for at the time. With every site, he’d put his name at the bottom of the page, as a form of marketing. This worked well enough that Hendricks was able to quit his work at the translation company and transition to full-time freelancing. However, eventually the freelancing work dried up, and he decided he wanted to experience working at a tech company—and not just for job security reasons. Hendricks saw finding a full-time development role as the perfect opportunity to push himself and see just how far he could get in his new career. There’s a common trope, probably belonging more to the sports world at large, about the importance of shedding ‘blood, sweat, and tears’ in the pursuit of one’s passion . . . and that’s also how I wanted to cut my teeth in the software engineering world. The job hunt While all four are now successfully employed as developers, Asakura, D’Alberti, Wilson, and Hendricks approached and experienced the job hunt differently. Following is their hard-earned advice on best practices and common mistakes. DO network When Hendricks started his job hunt, he faced the disadvantages of not having any formal experience, and also being both physically and socially isolated from other developers. Since he and his family were living in Nagano, he wasn’t able to participate in most of the tech events and meet-ups available in Tokyo or other big cities. His initial job hunt took around a year, and at one point he was sending so many applications that he received a hundred rejections in a week. It wasn’t until he started connecting with the community that he was able to turn it around, eventually getting three good job offers in a single week. Networking, for me, is what made all the difference. It was through networking that I found my mentors, found community, and joined and even started a few great Discord servers. These all undeniably contributed to me ultimately landing my current job, but they also made me feel welcome in the industry. Hendricks particularly credits his mentors, Ean More and Bob Cousins, for giving him great advice. “My initial mentor [Ean More] I actually met through a mutual IT networking Facebook group. I noticed that he was one of the more active members, and that he was always ready to lend a hand to help others with their questions and spread a deeper understanding of programming and computer science. He also often posted snippets of his own code to share with the community and receive feedback, and I was interested in a lot of what he was posting. “I reached out to him and told him I thought it was amazing how selfless he was in the group, and that, while I’m still a junior, if there was ever any grunt work I could do under his guidance, I would be happy to do so. Since he had a history of mentoring others, he offered to do so for me, and we’ve been mentor/mentee and friends ever since.” “My other mentor [Bob Cousins],” Hendricks continued, “was a friend of my late uncle’s. My uncle had originally begun mentoring me shortly before his passing. We were connected through a mutual friend whom I lamented to about not having any clue how to continue following the path my uncle had originally laid before me. He mentioned that he knew just the right person and gave me an email address to contact. I sent an email to the address and was greeted warmly by the man who would become another mentor, and like an uncle to me.” Although Hendricks found him via a personal connection, Cousins runs a mentorship program that caters to a wide variety of industries. Wilson also believes in the power of networking—and not just for the job hunt. “One of the things I like about programming,” he said, “is that it’s a very collaborative community. Everybody wants to help everybody.” We remember that everyone had to start somewhere, and we’ll take time to help those starting out. It’s a very welcoming community. Just do it! We’re all here for you, and if you need help I’ll refer you. Asakura, by contrast, thinks that networking can help, but that it works a little differently in Japan than in other countries. “Don’t rely on it too much,” he said. “Unlike in Western countries, personal referrals don’t always lead directly to job opportunities in Japan. Your skills, effort, and consistency will matter more in the long run.” DO treat the job hunt like a job Once he’d graduated from Le Wagon, D’Alberti said, “I considered job-hunting my full-time job.”  I checked all the possible networking events and meetup events that were going on in the city, and tried to attend all of them, every single day. I had a list of 10 different job boards that I would go and just refresh on a daily basis to see, ‘Okay, Is there anything new now?’ And, of course, I talked with recruiters. D’Alberti suggests beginning the search earlier than you think you need to. “I had started actively job hunting even before graduating [from Le Wagon],” he said. “That’s advice I give to everyone who joins the bootcamp. “Two weeks before graduation, you have one simple web application that you can show. You have a second one you’re working on in a team, and you have a third one that you know what it’s going to be about. So, already, there are three applications that you can showcase or you can use to explain your skills. I started going to meetups and to different events, talking with people, showing my CV.” The process wasn’t easy, as most companies and recruiters weren’t interested in hiring for junior roles. But his intensive strategy paid off within a month, as D’Albert landed three invitations to interview: one from a Japanese job board, one from a recruiter, and one from LinkedIn. For Asakura, treating job hunting like a job was as much for his mental health as for his career. “The biggest challenge was dealing with impostor syndrome and feeling like I didn’t belong because I didn’t have a computer science degree,” he explained. “I also experienced burnout from pushing myself too hard.” To cope, I stuck to a structured routine. I went to the gym daily to decompress, kept a consistent study schedule as if I were working full-time, and continued applying for jobs even when it felt hopeless. At first, Asakura tried to apply to jobs strategically by tracking each application, tailoring his resume, and researching every role. “But after dozens of rejections,” he said, “I eventually switched to applying more broadly and sent out over one hundred applications. I also reached out to friends who were already software engineers and asked for direct referrals, but unfortunately, nothing worked out.” Still, Asakura didn’t give up. He practiced interviews in both English and Japanese with his friends, and stayed in touch with recruiters. Most importantly, he kept developing and adding to his portfolio. DO make use of online resources “What ultimately helped me was staying active and visible,” Asakura said. I consistently updated my GitHub, LInkedIn, and Wantedly profiles. Eventually, I received a message on Wantedly from the CTO of a company who was impressed with my portfolio, and that led to my first developer job.” “If you have the time, certifications can also help validate your knowledge,” Asakura added, “especially in fields like cloud and AI. Some people may not realize this, but the rise of artificial intelligence is closely tied to the growth of cloud computing. Earning certifications such as AWS, Kubernetes, and others can give you a strong foundation and open new opportunities, especially as these technologies continue to evolve.” Hendricks also heavily utilized LinkedIn and similar sites, though in a slightly different way. “I would also emphasize the importance of knowing how to use job-hunting sites like Indeed and LinkedIn,” he said. “I had the best luck when I used them primarily to do initial research into companies, then applied directly through the companies’ own websites, rather than through job postings that filter applicants before their resumés ever make it to the actual people looking to hire.” In addition, Hendricks recommends studying coding interview prep tutorials from freeCodeCamp. Along with advice from his mentors and the online communities he joined, he credits those tutorials with helping him successfully receive offers after a long job hunt. DO highlight experience with Japanese culture and language Asakura felt that his experience in Japan, and knowledge of Japanese, gave him an edge. “I understand Japanese work culture [and] can speak the language,” Asakura said, “and as a Japanese national I didn’t require visa sponsorship. That made me a lower-risk hire for companies here.” Hendricks also felt that his excellent Japanese made him a more attractive hire. While applying, he emphasized to companies that he could be a bridge to the global market and business overseas. However, he also admitted this strategy steered him towards applying with more domestic Japanese companies, which were also less likely to hire someone without a computer science degree. “So,” he said, “it sort of washed out.” Wilson is another who put a lot of emphasis on his Japanese language skills, from a slightly different angle. A lot of interviewees typically don’t speak Japanese well . . . and a lot of companies here say that they’re very international, but if they want very good programmers, [those people] spend their lives programming, not studying English. So having somebody who can bridge the language gap on the IT side can be helpful. DO lean into your other experience Several career switchers discovered that their past experiences and skills, while not immediately relevant to their new career, still proved quite helpful in landing that first role—sometimes in very unexpected ways. When Wilson was pitching his language skills to companies, he wasn’t talking about just Japanese–English translation. He also highlighted his prior experience in sales to suggest that he could help communicate with and educate non-technical audiences. “Actually to be a software engineer, there’s a lot of technical communication you have to do.” I have worked with some incredible coders who are so good at the technical side and just don’t want to do the personal side. But for those of us who are not super-geniuses and can’t rely purely on our tech skills . . . there’s a lot of non-technical discussion that goes around building a product.” This strategy, while eventually fruitful, didn’t earn Wilson a job right away. Initially, he applied to more than sixty companies over the course of three to four months. “I didn’t have any professional [coding] experience, so it was actually quite a rough time,” he said. “I interviewed all over the place. I was getting rejected all over town.” The good news was, Wilson said, “I’m from Chicago. I don’t know what it is, but there are a lot of Chicagoans who work in Tokyo for whatever reason.” When he finally landed an interview, one of the three founders of the company was also from Chicago, giving them something in common. “We hit it off really well in the interview. I think that kind of gave me the edge to get the role, to be honest.” Like Wilson, D’Alberti found that his previous work as a marketer helped him secure his first developer role—which was ironic, he felt, given that he’d partially chosen to switch careers because he hadn’t been able to find an English-language marketing job in Japan. “I had my first interview with the CEO,” he told me, “and this was for a Japanese startup that was building chatbots, and they wanted to expand into the English market. So I talked with the CEO, and he was very excited to get to know me and sent me to talk with the CTO.” The CTO, unfortunately, wasn’t interested in hiring a junior developer with no professional experience. “And I thought that was the end of it. But then I got called again by the CEO. I wanted to join for the engineering position, and he wanted to have me for my marketing experience.” In the end we agreed that I would join in a 50-50 arrangement. I would do 50 percent of my job in marketing and going to conferences and talking to people, and 50 percent on the engineering side. I was like, ‘Okay, I’ll take that.’ This ended up working better than D’Alberti had expected, partially due to external circumstances. “When COVID came, we couldn’t travel abroad, so most of the job I was doing in my marketing role I couldn’t perform anymore. “So they sat me down and [said], ‘What are we going to do with you, since we cannot use you for marketing anymore?’ And I was like, ‘Well, I’m still a software developer. I could continue working in that role.’ And that actually allowed me to fully transition.” DON’T make these mistakes It was D’Alberti’s willingness to compromise on that first development role that led to his later success, so he would explicitly encourage other career-changers to avoid, in his own words, “being too picky.” This advice is based, not just on his own experience, but also on his time working as a teaching assistant at Le Wagon. “There were a couple of people who would be like, ‘Yeah, I’d really like to find a job and I’m not getting any interviews,’” he explained. “And then we’d go and ask, ‘Okay, how many companies are you applying to? What are you doing?’ But [they’d say] ‘No, see, [this company] doesn’t offer enough’ or ‘I don’t really like this company’ or ‘I’d like to do something else.’ Those who would be really picky or wouldn’t put in the effort, they wouldn’t land a job. Those who were deadly serious about ‘I need to get a job as a software developer,’ they’d find one. It might not be a great job, it might not be at a good company, but it would be a good first start from which to move on afterwards. Asakura also knew some other bootcamp graduates who struggled to find work. “A major reason was a lack of Japanese language skills,” he said. Even for junior roles, many companies in Japan require at least conversational Japanese, especially domestic ones. On the other hand, if you prioritize learning Japanese, that can give you an edge on entering the industry: “Many local companies are open to training junior developers, as long as they see your motivation and you can communicate effectively. International companies, on the other hand, often have stricter technical requirements and may pass on candidates without degrees or prior experience.” Finally, Hendricks said that during his own job hunt, “Not living in Tokyo was a problem.” It was something that he was able to overcome via diligent digital networking, but he’d encourage career-changers to think seriously about their future job prospects before settling outside a major metropolis in Japan. Their top advice I asked each developer to share their number one piece of advice for career-changers. D’Alberti wasn’t quite sure what to suggest, given recent changes in the tech market overall. “I don’t have clear advice to someone who’s trying to break into tech right now,” he said. “It might be good to wait and see what happens with the AI path. Might be good to actually learn how to code using AI, if that’s going to be the way to distinguish yourself from other junior developers. It might be to just abandon the idea of [being] a linear software developer in the traditional sense, and maybe look more into data science, if there are more opportunities.” But assuming they still decide ‘Yes, I want to join, I love the idea of being a software developer and I want to go forward’ . . . my main suggestion is patience. “It’s going to be tough,” he added. By contrast, Hendricks and Wilson had the same suggestion: if you want to change careers, then go for it, full speed ahead. “Do it now, or as soon as you possibly can,” Hendricks stated adamantly. His life has been so positively altered by discovering and pursuing his passion, that his only regret is he didn’t do it sooner. Wilson said something strikingly similar. “Do it. Just do it. I went back and forth a lot,” he explained. “‘Oh, should I do this, it’s so much money, I already have a job’ . . . just rip the bandaid off. Just do it. You probably have a good reason.” He pointed out that while starting over and looking for work is scary, it’s also possible that you’ll lose your current job anyway, at which point you’ll still be job hunting but in an industry you no longer even enjoy. “If you keep at it,” he said, “you can probably do it.” “Not to talk down to developers,” he added, “but it’s not the hardest job in the world. You have to study and learn and be the kind of person who wants to sit at the computer and write code, but if you’re thinking about it, you’re probably the kind of person who can do it, and that also means you can probably weather the awful six months of job hunting.” You only need to pass one job interview. You only need to get your foot in the door. Asakura agreed with “just do it,” but with a twist. “Build in public,” he suggested. “Share your progress. Post on GitHub. Keep your LinkedIn active.” Let people see your journey, because even small wins build momentum and credibility. “To anyone learning to code right now,” Asakura added, “don’t get discouraged by setbacks or rejections. Focus on building, learning, and showing up every day. Your portfolio speaks louder than your past, and consistency will eventually open the door.” If you want to read more how-tos and success stories around networking, working with recruitment agencies, writing your resume, etc., check out TokyoDev’s other articles. If you’d like to hear more about being a developer in Japan, we invite you to join the TokyoDev Discord, which has over 6,000 members as well as dedicated channels for resume review, job posts, life in Japan, and more.

3 days ago 13 votes