More from Jim Nielsen’s Blog
Some lessons I’ve learned from experience. 1. Install Stuff Indiscriminately From npm Become totally dependent on others, that’s why they call them “dependencies” after all! Lean in to it. Once your dependencies break — and they will, time breaks all things — then you can spend lots of time and energy (which was your goal from the beginning) ripping out those dependencies and replacing them with new dependencies that will break later. Why rip them out? Because you can’t fix them. You don’t even know how they work, that’s why you introduced them in the first place! Repeat ad nauseam (that is, until you decide you don’t want to make websites that require lots of your time and energy, but that’s not your goal if you’re reading this article). 2. Pick a Framework Before You Know You Need One Once you hitch your wagon to a framework (a dependency, see above) then any updates to your site via the framework require that you first understand what changed in the framework. More of your time and energy expended, mission accomplished! 3. Always, Always Require a Compilation Step Put a critical dependency between working on your website and using it in the browser. You know, some mechanism that is required to function before you can even see your website — like a complication step or build process. The bigger and more complex, the better. This is a great way to spend lots of time and energy working on your website. (Well, technically it’s not really working on your website. It’s working on the thing that spits out your website. So you’ll excuse me for recommending something that requires your time and energy that isn’t your website — since that’s not the stated goal — but trust me, this apparent diversion will directly affect the overall amount of time and energy you spend making a website. So, ultimately, it will still help you reach our stated goal.) Requiring that the code you write be transpiled, compiled, parsed, and evaluated before it can be used in your website is a great way to spend extra time and energy making a website (as opposed to, say, writing code as it will be run which would save you time and energy and is not our goal here). More? Do you have more advice on building a website that will require a lot of your time and energy? Share your recommendations with others, in case they’re looking for such advice. Email · Mastodon · Bluesky
Here’s Jony Ive in his Stripe interview: What we make stands testament to who we are. What we make describes our values. It describes our preoccupations. It describes beautiful succinctly our preoccupation. I’d never really noticed the connection between these two words: occupation and preoccupation. What comes before occupation? Pre-occupation. What comes before what you do for a living? What you think about. What you’re preoccupied with. What you think about will drive you towards what you work on. So when you’re asking yourself, “What comes next? What should I work on?” Another way of asking that question is, “What occupies my thinking right now?” And if what you’re occupied with doesn’t align with what you’re preoccupied with, perhaps it's time for a change. Email · Mastodon · Bluesky
Here’s Jony Ive talking to Patrick Collison about measurement and numbers: People generally want to talk about product attributes that you can measure easily with a number…schedule, costs, speed, weight, anything where you can generally agree that six is a bigger number than two He says he used to get mad at how often people around him focused on the numbers of the work over other attributes of the work. But after giving it more thought, he now has a more generous interpretation of why we do this: because we want relate to each other, understand each other, and be inclusive of one another. There are many things we can’t agree on, but it’s likely we can agree that six is bigger than two. And so in this capacity, numbers become a tool for communicating with each other, albeit a kind of least common denominator — e.g. “I don’t agree with you at all, but I can’t argue that 134 is bigger than 87.” This is conducive to a culture where we spend all our time talking about attributes we can easily measure (because then we can easily communicate and work together) and results in a belief that the only things that matter are those which can be measured. People will give lip service to that not being the case, e.g. “We know there are things that can’t be measured that are important.” But the reality ends up being: only that which can be assigned a number gets managed, and that which gets managed is imbued with importance because it is allotted our time, attention, and care. This reminds me of the story of the judgement of King Solomon, an archetypal story found in cultures around the world. Here’s the story as summarized on Wikipedia: Solomon ruled between two women who both claimed to be the mother of a child. Solomon ordered the baby be cut in half, with each woman to receive one half. The first woman accepted the compromise as fair, but the second begged Solomon to give the baby to her rival, preferring the baby to live, even without her. Solomon ordered the baby given to the second woman, as her love was selfless, as opposed to the first woman's selfish disregard for the baby's actual well-being In an attempt to resolve the friction between two individuals, an appeal was made to numbers as an arbiter. We can’t agree on who the mother is, so let’s make it a numbers problem. Reduce the baby to a number and we can agree! But that doesn’t work very well, does it? I think there is a level of existence where measurement and numbers are a sound guide, where two and two make four and two halves make a whole. But, as humans, there is another level of existence where mathematical propositions don’t translate. A baby is not a quantity. A baby is an entity. Take a whole baby and divide it up by a sword and you do not half two halves of a baby. I am not a number. I’m an individual. Indivisible. What does this all have to do with software? Software is for us as humans, as individuals, and because of that I believe there is an aspect of its nature where metrics can’t take you.cIn fact, not only will numbers not guide you, they may actually misguide you. I think Robin Rendle articulated this well in his piece “Trust the vibes”: [numbers] are not representative of human experience or human behavior and can’t tell you anything about beauty or harmony or how to be funny or what to do next and then how to do it. Wisdom is knowing when to use numbers and when to use something else. Email · Mastodon · Bluesky
Exploring diagram.website, I came across The Computer is a Feeling by Tim Hwang and Omar Rizwan: the modern internet exerts a tyranny over our imagination. The internet and its commercial power has sculpted the computer-device. It's become the terrain of flat, uniform, common platforms and protocols, not eccentric, local, idiosyncratic ones. Before computers were connected together, they were primarily personal. Once connected, they became primarily social. The purpose of the computer shifted to become social over personal. The triumph of the internet has also impoverished our sense of computers as a tool for private exploration rather than public expression. The pre-network computer has no utility except as a kind of personal notebook, the post-network computer demotes this to a secondary purpose. Smartphones are indisputably the personal computer. And yet, while being so intimately personal, they’re also the largest distribution of behavior-modification devices the world has ever seen. We all willing carry around in our pockets a device whose content is largely designed to modify our behavior and extract our time and money. Making “computer” mean computer-feelings and not computer-devices shifts the boundaries of what is captured by the word. It removes a great many things – smartphones, language models, “social” “media” – from the domain of the computational. It also welcomes a great many things – notebooks, papercraft, diary, kitchen – back into the domain of the computational. I love the feeling of a personal computer, one whose purpose primarily resides in the domain of the individual and secondarily supports the social. It’s part of what I love about the some of the ideas embedded in local-first, which start from the principle of owning and prioritizing what you do on your computer first and foremost, and then secondarily syncing that to other computers for the use of others. Email · Mastodon · Bluesky
More in programming
Every 6 months or so, I decide to leave my cave and check out what the cool kids are doing with AI. Apparently the latest trend is to use fancy command line tools to write code using LLMs. This is a very nice change, since it suddenly makes AI compatible with my allergy to getting out of the terminal. The most popular of these tools seems to be Claude Code. It promises to be able to build in total autonomy, being able to use search code, write code, run tests, lint, and commit the changes. While this sounds great on paper, I’m not keen on getting locked into vendor tools from an unprofitable company. At some point, they will either need to raise their prices, enshittify their product, or most likely do both. So I went looking for what the free and open source alternatives are. Picking a model There’s a large amount of open source large language models on the market, with new ones getting released all the time. However, they are not all ready to be used locally in coding tasks, so I had to try a bunch of them before settling on one. deepseek-r1:8b Deepseek is the most popular open source model right now. It was created by the eponymous Chinese company. It made the news by beating numerous benchmarks while being trained on a budget that is probably lower than the compensation of some OpenAI workers. The 8b variant only weights 5.2 GB and runs decently on limited hardware, like my three years old Mac. This model is famous for forgetting about world events from 1989, but also seems to have a few issues when faced with concrete coding tasks. It is a reasoning model, meaning it “thinks” before acting, which should lead to improved accuracy. In practice, it regularly gets stuck indefinitely searching where it should start and jumping from one problem to the other in a loop. This can happen even on simple problems, and made it unusable for me. mistral:7b Mistral is the French alternative to American and Chinese models. I have already talked about their 7b model on this blog. It is worth noting that they have kept updating their models, and it should now be much more accurate than two years ago. Mistral is not a reasoning model, so it will jump straight to answering. This is very good if you’re working with tasks where speed and low compute use are a priority. Sadly, the accuracy doesn’t seem good enough for coding. Even on simple tasks, it will hallucinate functions or randomly delete parts of the code I didn’t want to touch. qwen3:8b Another model from China, qwen3 was created by the folks at Alibaba. It also claims impressive benchmark results, and can work as both a reasoning or non-thinking model. It was made with modern AI tooling in mind, by supporting MCPs and a framework for agentic development. This model actually seems to work as expected, providing somewhat accurate code output while not hanging in the reasoning part. Since it runs decently on my local setup, I decided to stick to that model for now. Setting up a local API with Ollama Ollama is now the default way to download and run local LLMs. It can be simply installed by downloading it from their website. Once installed, it works like Docker for models, by giving us access to commands like pull, run, or rm. Ollama will expose an API on localhost which can be used by other programs. For example, you can use it from your Python programs through ollama-python. Pair programming with aider The next piece of software I installed is aider. I assume it’s pronounced like the French word, but I could not confirm that. Aider describes itself as a “pair programming” application. Its main job is to pass context to the model, let it write the output to files, run linters, and commit the changes. Getting started It can be installed using the official Python package or via Homebrew if you use Mac. Once it is installed, just navigate to your code repository and launch it: export OLLAMA_API_BASE=http://127.0.0.1:11434 aider --model ollama_chat/qwen3:8b The CLI should automatically create some configuration files and add them to the repo’s .gitignore. Usage Aider isn’t meant to be left alone in complete autonomy. You’ll have to guide the AI through the process of making changes to your repository. To start, use the /add command to add files you want to focus on. Those files will be passed entirely to the model’s context and the model will be able to write in them. You can then ask questions using the /ask command. If you want to generate code, a good strategy can be to starting by requesting a plan of actions. When you want it to actually write to the files, you can prompt it using the /code command. This is also the default mode. There’s no absolute guarantee that it will follow a plan if you agreed on one previously, but it is still a good idea to have one. The /architect command seems to automatically ask for a plan, accept it, and write the code. The specificity of this command is that it lets you use different models to plan and write the changes. Refactoring I tried coding with aider in a few situations to see how it performs in practice. First, I tried making it do a simple refactoring on Itako, which is a project of average complexity. When pointed to the exact part of code where the issues happened, and explained explicitly what to do, the model managed to change the target struct according to the instructions. It did unexpectedly change a function that was outside the scope of what I asked, but this was easy to spot. On paper, this looks like a success. In practice, the time spent crafting a prompt, waiting for the AI to run and fixing the small issue that came up immensely exceeds the 10 minutes it would have taken me to edit the file myself. I don’t think coding that way would lead me to a massive performance improvement for now. Greenfield project For a second scenario, I wanted to see how it would perform on a brand-new project. I quickly set up a Python virtual environment, and asked aider to work with me at building a simple project. We would be opening a file containing Japanese text, parsing it with fugashi, and counting the words. To my surprise, this was a disaster. All I got was a bunch on hallucination riddled python that wouldn’t run under any circumstances. It may be that the lack of context actually made it harder for the model to generate code. Troubleshooting Finally, I went back to Itako, and decided to check how it would perform on common troubleshooting tasks. I introduced a few bugs to my code and gathered some error messages. I then proceeded to simply give aider the files mentioned by the error message and just use /ask to have it explain the errors to me, without requiring it to implement the code. This part did work very well. If I compare it with Googling unknown error messages, I think this can cut the time spent on the issue by half This is not just because Google is getting worse every day, but the model having access to the actual code does give it a massive advantage. I do think this setup is something I can use instead of the occasional frustration of scrolling through StackOverflow threads when something unexpected breaks. What about the Qwen CLI? With everyone jumping on the trend of CLI tools for LLMs, the Qwen team released its own Qwen Code. It can be installed using npm, and connects to a local model if configured like this: export OPENAI_API_KEY="ollama" export OPENAI_BASE_URL="http://localhost:11434/v1/" export OPENAI_MODEL="qwen3:8b" Compared to aider, it aims at being fully autonomous. For example, it will search your repository using grep. However, I didn’t manage to get it to successfully write any code. The tool seems optimized for larger, online models, with context sizes up to 1M tokens. Our local qwen3 context only has a 40k tokens context size, which can get overwhelmed very quickly when browsing entire code repositories. Even when I didn’t run out of context, the tool mysteriously failed when trying to write files. It insists it can only write to absolute paths, which the model doesn’t seem to agree with providing. I did not investigate the issue further.
Ideals are supposed to be unattainable for the great many. If everyone could be the smartest, strongest, prettiest, or best, there would be no need for ideals — we'd all just be perfect. But we're not, so ideals exist to show us the peak of humanity and to point our ambition and appreciation toward it. This is what I always hated about the 90s. It was a decade that made it cool to be a loser. It was the decade of MTV's Beavis and Butt-Head. It was the age of grunge. I'm generationally obliged to like Nirvana, but what a perfectly depressive, suicidal soundtrack to loser culture. Naomi Wolf's The Beauty Myth was published in 1990. It took a critical theory-like lens on beauty ideals, and finding it all so awfully oppressive. Because, actually, seeing beautiful, slim people in advertising or media is bad. Because we don't all look like that! And who's even to say what "beauty" is, anyway? It's all just socially constructed! The final stage of that dead-end argument appeared as an ad here in Copenhagen thirty years later during the 2020 insanity: I passed it every day biking the boys to school for weeks. Next to other slim, fit Danes also riding their bikes. None of whom resembled the grotesque display of obesity towering over them on their commute from Calvin Klein. While this campaign was laughably out of place in Copenhagen, it's possible that it brought recognition and representation in some parts of America. But a celebration of ideals it was not. That's the problem with the whole "representation" narrative. It proposes we're all better off if all we see is a mirror of ourselves, however obese, lazy, ignorant, or incompetent, because at least it won't be "unrealistic". Screw that. The last thing we need is a patronizing message that however little you try, you're perfect just the way you are. No, the beauty of ideals is that they ask more of us. Ask us to pursue knowledge, fitness, and competence by taking inspiration from the best human specimens. Thankfully, no amount of post-modern deconstruction or academic theory babble seems capable of suppressing the intrinsic human yearning for excellence forever. The ideals are finally starting to emerge again.
Some lessons I’ve learned from experience. 1. Install Stuff Indiscriminately From npm Become totally dependent on others, that’s why they call them “dependencies” after all! Lean in to it. Once your dependencies break — and they will, time breaks all things — then you can spend lots of time and energy (which was your goal from the beginning) ripping out those dependencies and replacing them with new dependencies that will break later. Why rip them out? Because you can’t fix them. You don’t even know how they work, that’s why you introduced them in the first place! Repeat ad nauseam (that is, until you decide you don’t want to make websites that require lots of your time and energy, but that’s not your goal if you’re reading this article). 2. Pick a Framework Before You Know You Need One Once you hitch your wagon to a framework (a dependency, see above) then any updates to your site via the framework require that you first understand what changed in the framework. More of your time and energy expended, mission accomplished! 3. Always, Always Require a Compilation Step Put a critical dependency between working on your website and using it in the browser. You know, some mechanism that is required to function before you can even see your website — like a complication step or build process. The bigger and more complex, the better. This is a great way to spend lots of time and energy working on your website. (Well, technically it’s not really working on your website. It’s working on the thing that spits out your website. So you’ll excuse me for recommending something that requires your time and energy that isn’t your website — since that’s not the stated goal — but trust me, this apparent diversion will directly affect the overall amount of time and energy you spend making a website. So, ultimately, it will still help you reach our stated goal.) Requiring that the code you write be transpiled, compiled, parsed, and evaluated before it can be used in your website is a great way to spend extra time and energy making a website (as opposed to, say, writing code as it will be run which would save you time and energy and is not our goal here). More? Do you have more advice on building a website that will require a lot of your time and energy? Share your recommendations with others, in case they’re looking for such advice. Email · Mastodon · Bluesky
Am I a good programmer? The short answer is: I don’t know what that means. I have been programming for 52 years now, having started in a public high school class in 1973, which is pretty rare because few high schools offered such an opportunity back then. I
The world is waking to the fact that talk therapy is neither the only nor the best way to cure a garden-variety petite depression. Something many people will encounter at some point in their lives. Studies have shown that exercise, for example, is a more effective treatment than talk therapy (and pharmaceuticals!) when dealing with such episodes. But I'm just as interested in the role building competence can have in warding off the demons. And partly because of this meme: I've talked about it before, but I keep coming back to the fact that it's exactly backwards. That signing up for an educational quest into Linux, history, or motorcycle repair actually is an incredibly effective alternative to therapy! At least for men who'd prefer to feel useful over being listened to, which, in my experience, is most of them. This is why I find it so misguided when people who undertake those quests sell their journey short with self-effacing jibes about how much an unattractive nerd it makes them to care about their hobby. Mihaly Csikszentmihalyi detailed back in 1990 how peak human happiness arrives exactly in these moments of flow when your competence is stretched by a difficult-but-doable challenge. Don't tell me those endorphins don't also help counter the darkness. But it's just as much about the fact that these pursuits of competence usually offer a great opportunity for community as well that seals the deal. I've found time and again that people are starved for the kind of topic-based connections that, say, learning about Linux offers in spades. You're not just learning, you're learning with others. That is a time-tested antidote to depression: Forming and cultivating meaningful human connections. Yes, doing so over the internet isn't as powerful as doing it in person, but it's still powerful. It still offers community, involvement, and plenty of invitation to carry a meaningful burden. Open source nails this trifecta of motivations to a T. There are endless paths of discovery and mastery available. There are tons of fellow travelers with whom to connect and collaborate. And you'll find an unlimited number of meaningful burdens in maintainerships open for the taking. So next time you see that meme, you should cheer that the talk therapy table is empty. Leave it available for the severe, pathological cases that exercise and the pursuit of competence can't cure. Most people just don't need therapy, they need purpose, they need competence, they need exercise, and they need community.