More from alexwlchan
I store a lot of data in SQLite databases on remote servers, and I often want to copy them to my local machine for analysis or backup. When I’m starting a new project and the database is near-empty, this is a simple rsync operation: $ rsync --progress username@server:my_remote_database.db my_local_database.db As the project matures and the database grows, this gets slower and less reliable. Downloading a 250MB database from my web server takes about a minute over my home Internet connection, and that’s pretty small – most of my databases are multiple gigabytes in size. I’ve been trying to make these copies go faster, and I recently discovered a neat trick. What really slows me down is my indexes. I have a lot of indexes in my SQLite databases, which dramatically speed up my queries, but also make the database file larger and slower to copy. (In one database, there’s an index which single-handedly accounts for half the size on disk!) The indexes don’t store anything unique – they just duplicate data from other tables to make queries faster. Copying the indexes makes the transfer less efficient, because I’m copying the same data multiple times. I was thinking about ways to skip copying the indexes, and I realised that SQLite has built-in tools to make this easy. Dumping a database as a text file SQLite allows you to dump a database as a text file. If you use the .dump command, it prints the entire database as a series of SQL statements. This text file can often be significantly smaller than the original database. Here’s the command: $ sqlite3 my_database.db .dump > my_database.db.txt And here’s what the beginning of that file looks like: PRAGMA foreign_keys=OFF; BEGIN TRANSACTION; CREATE TABLE IF NOT EXISTS "tags" ( [name] TEXT PRIMARY KEY, [count_uses] INTEGER NOT NULL ); INSERT INTO tags VALUES('carving',260); INSERT INTO tags VALUES('grass',743); … Crucially, this reduces the large and disk-heavy indexes into a single line of text – it’s an instruction to create an index, not the index itself. CREATE INDEX [idx_photo_locations] ON [photos] ([longitude], [latitude]); This means that I’m only storing each value once, rather than the many times it may be stored across the original table and my indexes. This is how the text file can be smaller than the original database. If you want to reconstruct the database, you pipe this text file back to SQLite: $ cat my_database.db.txt | sqlite3 my_reconstructed_database.db Because the SQL statements are very repetitive, this text responds well to compression: $ sqlite3 explorer.db .dump | gzip -c > explorer.db.txt.gz To give you an idea of the potential savings, here’s the relative disk size for one of my databases. File Size on disk original SQLite database 3.4 GB text file (sqlite3 my_database.db .dump) 1.3 GB gzip-compressed text (sqlite3 my_database.db .dump | gzip -c) 240 MB The gzip-compressed text file is 14× smaller than the original SQLite database – that makes downloading the database much faster. My new ssh+rsync command Rather than copying the database directly, now I create a gzip-compressed text file on the server, copy that to my local machine, and reconstruct the database. Like so: # Create a gzip-compressed text file on the server ssh username@server "sqlite3 my_remote_database.db .dump | gzip -c > my_remote_database.db.txt.gz" # Copy the gzip-compressed text file to my local machine rsync --progress username@server:my_remote_database.db.txt.gz my_local_database.db.txt.gz # Remove the gzip-compressed text file from my server ssh username@server "rm my_remote_database.db.txt.gz" # Uncompress the text file gunzip my_local_database.db.txt.gz # Reconstruct the database from the text file cat my_local_database.db.txt | sqlite3 my_local_database.db # Remove the local text file rm my_local_database.db.txt A database dump is a stable copy source This approach fixes another issue I’ve had when copying SQLite databases. If it takes a long time to copy a database and it gets updated midway through, rsync may give me an invalid database file. The first half of the file is pre-update, the second half file is post-update, and they don’t match. When I try to open the database locally, I get an error: database disk image is malformed By creating a text dump before I start the copy operation, I’m giving rsync a stable copy source. That text dump isn’t going to change midway through the copy, so I’ll always get a complete and consistent text file. This approach has saved me hours when working with large databases, and made my downloads both faster and more reliable. If you have to copy around large SQLite databases, give it a try. [If the formatting of this post looks odd in your feed reader, visit the original article]
I support dark mode on this site, and as part of the dark theme, I have a colour-inverted copy of the default background texture. I like giving my website a subtle bit of texture, which I think makes it stand out from a web which is mostly solid-colour backgrounds. Both my textures are based on the “White Waves” pattern made by Stas Pimenov. I was setting these images as my background with two CSS rules, using the prefers-color-scheme: dark media feature to use the alternate image in dark mode: body { background: url('https://alexwlchan.net/theme/white-waves-transparent.png'); } @media (prefers-color-scheme: dark) { body { background: url('https://alexwlchan.net/theme/black-waves-transparent.png'); } } This works, mostly. But I prefer light mode, so while I wrote this CSS and I do some brief testing whenever I make changes, I’m not using the site in dark mode. I know how dark mode works in my local development environment, not how it feels as a day-to-day user. Late last night I was using my phone in dark mode to avoid waking the other people in the house, and I opened my site. I saw a brief flash of white, and then the dark background texture appeared. That flash of bright white is precisely what you don’t want when you’re using dark mode, but it happened anyway. I made a note to work it out in the morning, then I went to bed. Now I’m fully awake, it’s obvious what happened. Because my only background is the image URL, there’s a brief gap between the CSS being parsed and the background image being loaded. In that time, the browser doesn’t have anything to put in the background, so you just get pure white. This was briefly annoying in the moment, but it would be even more worse if the background texture never loaded. I have light text on black in dark mode, but without the background image it’s just light text on white, which is barely readable: I never noticed this in local development, because I’m usually working in a well-lit room where that white flash would be far less obvious. I’m also using a local version of the site, which loads near-instantly and where the background image is almost certainly saved in my browser cache. I’ve made two changes to prevent this happening again. I’ve added a colour to use as a fallback until the image loads. The CSS background property supports adding a colour, which is used until the image loads, or as a fallback if it doesn’t. I already use this in a few places, and now I’ve added it to my body background. body { background: url('https://…/white-waves-transparent.png') #fafafa; } @media (prefers-color-scheme: dark) { body { background: url('https://…/black-waves-transparent.png') #0d0d0d; } } This avoids the flash of unstyled background before the image loads – the browser will use a solid dark background until it gets the texture. I’ve added rel="preload" elements to the head of the page, so the browser will start loading the background textures faster. These elements are a clue to the browser that these resources are going to be useful when it renders the page, so it should start loading them as soon as possible: <link rel="preload" href="https://alexwlchan.net/theme/white-waves-transparent.png" as="image" type="image/png" media="(prefers-color-scheme: light)" /> <link rel="preload" href="https://alexwlchan.net/theme/black-waves-transparent.png" as="image" type="image/png" media="(prefers-color-scheme: dark)" /> This means the browser is downloading the appropriate texture at the same time as it’s downloading the CSS file. Previously it had to download the CSS file, parse it, and only then would it know to start downloading the texture. With the preload, it’s a bit faster! The difference is probably imperceptible if you’re on a fast connection, but it’s a small win and I can’t see any downside (as long as I scope the preload correctly, and don’t preload resources I don’t end up using). I’ve seen a lot of sites using <link rel="preload"> and I’ve only half-understood what it is and why it’s useful – I’m glad to have a chance to use it myself, so I can understand it better. This bug reminds me of a phenomenon called flash of unstyled text. Back when custom fonts were fairly new, you’d often see web pages appear briefly with the default font before custom fonts finished loading. There are well-understood techniques for preventing this, so it’s unusual to see that brief unstyled text on modern web pages – but the same issue is affecting me in dark mode I avoided using custom fonts on the web to avoid tackling this issue, but it got me anyway! In these dark times for the web, old bugs are new again. [If the formatting of this post looks odd in your feed reader, visit the original article]
I’m a big fan of keyring, a Python module made by Jason R. Coombs for storing secrets in the system keyring. It works on multiple operating systems, and it knows what password store to use for each of them. For example, if you’re using macOS it puts secrets in the Keychain, but if you’re on Windows it uses Credential Locker. The keyring module is a safe and portable way to store passwords, more secure than using a plaintext config file or an environment variable. The same code will work on different platforms, because keyring handles the hard work of choosing which password store to use. It has a straightforward API: the keyring.set_password and keyring.get_password functions will handle a lot of use cases. >>> import keyring >>> keyring.set_password("xkcd", "alexwlchan", "correct-horse-battery-staple") >>> keyring.get_password("xkcd", "alexwlchan") "correct-horse-battery-staple" Although this API is simple, it’s not perfect – I have some frustrations with the get_password function. In a lot of my projects, I’m now using a small function that wraps get_password. What do I find frustrating about keyring.get_password? If you look up a password that isn’t in the system keyring, get_password returns None rather than throwing an exception: >>> print(keyring.get_password("xkcd", "the_invisible_man")) None I can see why this makes sense for the library overall – a non-existent password is very normal, and not exceptional behaviour – but in my projects, None is rarely a usable value. I normally use keyring to retrieve secrets that I need to access protected resources – for example, an API key to call an API that requires authentication. If I can’t get the right secrets, I know I can’t continue. Indeed, continuing often leads to more confusing errors when some other function unexpectedly gets None, rather than a string. For a while, I wrapped get_password in a function that would throw an exception if it couldn’t find the password: def get_required_password(service_name: str, username: str) -> str: """ Get password from the specified service. If a matching password is not found in the system keyring, this function will throw an exception. """ password = keyring.get_password(service_name, username) if password is None: raise RuntimeError(f"Could not retrieve password {(service_name, username)}") return password When I use this function, my code will fail as soon as it fails to retrieve a password, rather than when it tries to use None as the password. This worked well enough for my personal projects, but it wasn’t a great fit for shared projects. I could make sense of the error, but not everyone could do the same. What’s that password meant to be? A good error message explains what’s gone wrong, and gives the reader clear steps for fixing the issue. The error message above is only doing half the job. It tells you what’s gone wrong (it couldn’t get the password) but it doesn’t tell you how to fix it. As I started using this snippet in codebases that I work on with other developers, I got questions when other people hit this error. They could guess that they needed to set a password, but the error message doesn’t explain how, or what password they should be setting. For example, is this a secret they should pick themselves? Is it a password in our shared password vault? Or do they need an API key for a third-party service? If so, where do they find it? I still think my initial error was an improvement over letting None be used in the rest of the codebase, but I realised I could go further. This is my extended wrapper: def get_required_password(service_name: str, username: str, explanation: str) -> str: """ Get password from the specified service. If a matching password is not found in the system keyring, this function will throw an exception and explain to the user how to set the required password. """ password = keyring.get_password(service_name, username) if password is None: raise RuntimeError( "Unable to retrieve required password from the system keyring!\n" "\n" "You need to:\n" "\n" f"1/ Get the password. Here's how: {explanation}\n" "\n" "2/ Save the new password in the system keyring:\n" "\n" f" keyring set {service_name} {username}\n" ) return password The explanation argument allows me to explain what the password is for to a future reader, and what value it should have. That information can often be found in a code comment or in documentation, but putting it in an error message makes it more visible. Here’s one example: get_required_password( "flask_app", "secret_key", explanation=( "Pick a random value, e.g. with\n" "\n" " python3 -c 'import secrets; print(secrets.token_hex())'\n" "\n" "This password is used to securely sign the Flask session cookie. " "See https://flask.palletsprojects.com/en/stable/config/#SECRET_KEY" ), ) If you call this function and there’s no keyring entry for flask_app/secret_key, you get the following error: Unable to retrieve required password from the system keyring! You need to: 1/ Get the password. Here's how: Pick a random value, e.g. with python3 -c 'import secrets; print(secrets.token_hex())' This password is used to securely sign the Flask session cookie. See https://flask.palletsprojects.com/en/stable/config/#SECRET_KEY 2/ Save the new password in the system keyring: keyring set flask_app secret_key It’s longer, but this error message is far more informative. It tells you what’s wrong, how to save a password, and what the password should be. This is based on a real example where the previous error message led to a misunderstanding. A co-worker saw a missing password called “secret key” and thought it referred to a secret key for calling an API, and didn’t realise it was actually for signing Flask session cookies. Now I can write a more informative error message, I can prevent that misunderstanding happening again. (We also renamed the secret, for additional clarity.) It takes time to write this explanation, which will only ever be seen by a handful of people, but I think it’s important. If somebody sees it at all, it’ll be when they’re setting up the project for the first time. I want that setup process to be smooth and straightforward. I don’t use this wrapper in all my code, particularly small or throwaway toys that won’t last long enough for this to be an issue. But in larger codebases that will be used by other developers, and which I expect to last a long time, I use it extensively. Writing a good explanation now can avoid frustration later. [If the formatting of this post looks odd in your feed reader, visit the original article]
I’ve been writing some internal dashboards recently, and one hard part is displaying timestamps. Our server does everything in UTC, but the team is split across four different timezones, so the server timestamps aren’t always easy to read. For most people, it’s harder to understand a UTC timestamp than a timestamp in your local timezone. Did that event happen just now, an hour ago, or much further back? Was that at the beginning of your working day? Or at the end? Then I remembered that I tried to solve this five years ago at a previous job. I wrote a JavaScript snippet that converts UTC timestamps into human-friendly text. It displays times in your local time zone, and adds a short suffix if the time happened recently. For example: today @ 12:00 BST (1 hour ago) In my old project, I was using writing timestamps in a <div> and I had to opt into the human-readable text for every date on the page. It worked, but it was a bit fiddly. Doing it again, I thought of a more elegant solution. HTML has a <time> element for expressing datetimes, which is a more meaningful wrapper than a <div>. When I render the dashboard on the server, I don’t know the user’s timezone, so I include the UTC timestamp in the page like so: <time datetime="2025-04-15 19:45:00Z"> Tue, 15 Apr 2025 at 19:45 UTC </time> I put a machine-readable date and time string with a timezone offset string in the datetime attribute, and then a more human-readable string in the text of the element. Then I add this JavaScript snippet to the page: window.addEventListener("DOMContentLoaded", function() { document.querySelectorAll("time").forEach(function(timeElem) { // Set the `title` attribute to the original text, so a user // can hover over a timestamp to see the UTC time. timeElem.setAttribute("title", timeElem.innerText); // Replace the display text with a human-friendly date string // which is localised to the user's timezone. timeElem.innerText = getHumanFriendlyDateString( timeElem.getAttribute("datetime") ); }) }); This updates any <time> element on the page to use a human friendly date string, which is localised to the user’s timezone. For example, I’m in the UK so that becomes: <time datetime="2025-04-15 19:45:00Z" title="Tue, 15 Apr 2025 at 19:45 UTC"> Tue, 15 Apr 2025 at 20:45 BST </time> In my experience, these timestamps are easier and more intuitive for people to read. I always include a timezone string (e.g. BST, EST, PDT) so it’s obvious that I’m showing a localised timestamp. If you really need the UTC timestamp, it’s in the title attribute, so you can see it by hovering over it. (Sorry, mouseless users, but I don’t think any of my team are browsing our dashboards from their phone or tablet.) If the JavaScript doesn’t load, you see the plain old UTC timestamp. It’s not ideal, but the page still loads and you can see all the information – this behaviour is an enhancement, not an essential. To me, this is the unfulfilled promise of the <time> element. In my fantasy world, web page authors would write the time in a machine-readable format, and browsers would show it in a way that makes sense for the reader. They’d take into account their language, locale, and time zone. I understand why that hasn’t happened – it’s much easier said than done. You need so much context to know what’s the “right” thing to do when dealing with datetimes, and guessing without that context is at the heart of many datetime bugs. These sort of human-friendly, localised timestamps are very handy sometimes, and a complete mess at other times. In my staff-only dashboards, I have that context. I know what these timestamps mean, who’s going to be reading them, and I think they’re a helpful addition that makes the data easier to read. [If the formatting of this post looks odd in your feed reader, visit the original article]
More in programming
The first in a series of posts about doing things the right way
A deep dive into the Action Cache, the CAS, and the security issues that arise from using Bazel with a remote cache but without remote execution
(I present to you my stream of consciousness on the topic of casing as it applies to the web platform.) I’m reading about the new command and commandfor attributes — which I’m super excited about, declarative behavior invocation in HTML? YES PLEASE!! — and one thing that strikes me is the casing in these APIs. For example, the command attribute has a variety of values in HTML which correspond to APIs in JavaScript. The show-popover attribute value maps to .showPopover() in JavaScript. hide-popover maps to .hidePopover(), etc. So what we have is: lowercase in attribute names e.g. commandfor="..." kebab-case in attribute values e.g. show-popover camelCase for JS counterparts e.g. showPopover() After thinking about this a little more, I remember that HTML attributes names are case insensitive, so the browser will normalize them to lowercase during parsing. Given that, I suppose you could write commandFor="..." but it’s effectively the same. Ok, lowercase attribute names in HTML makes sense. The related popover attributes follow the same convention: popovertarget popovertargetaction And there are many other attribute names in HTML that are lowercase, e.g.: maxlength novalidate contenteditable autocomplete formenctype So that all makes sense. But wait, there are some attribute names with hyphens in them, like aria-label="..." and data-value="...". So why isn’t it command-for="..."? Well, upon further reflection, I suppose those attributes were named that way for extensibility’s sake: they are essentially wildcard attributes that represent a family of attributes that are all under the same namespace: aria-* and data-*. But wait, isn’t that an argument for doing popover-target and popover-target-action? Or command and command-for? But wait (I keep saying that) there are kebab-case attribute names in HTML — like http-equiv on the <meta> tag, or accept-charset on the form tag — but those seem more like legacy exceptions. It seems like the only answer here is: there is no rule. Naming is driven by convention and decisions are made on a case-by-case basis. But if I had to summarize, it would probably be that the default casing for new APIs tends to follow the rules I outlined at the start (and what’s reflected in the new command APIs): lowercase for HTML attributes names kebab-case for HTML attribute values camelCase for JS counterparts Let’s not even get into SVG attribute names We need one of those “bless this mess” signs that we can hang over the World Wide Web. Email · Mastodon · Bluesky
Greetings everyone! You might have noticed that it's September and I don't have the next version of Logic for Programmers ready. As penance, here's ten free copies of the book. So a few months ago I wrote a newsletter about how we use nondeterminism in formal methods. The overarching idea: Nondeterminism is when multiple paths are possible from a starting state. A system preserves a property if it holds on all possible paths. If even one path violates the property, then we have a bug. An intuitive model of this is that for this is that when faced with a nondeterministic choice, the system always makes the worst possible choice. This is sometimes called demonic nondeterminism and is favored in formal methods because we are paranoid to a fault. The opposite would be angelic nondeterminism, where the system always makes the best possible choice. A property then holds if any possible path satisfies that property.1 This is not as common in FM, but it still has its uses! "Players can access the secret level" or "We can always shut down the computer" are reachability properties, that something is possible even if not actually done. In broader computer science research, I'd say that angelic nondeterminism is more popular, due to its widespread use in complexity analysis and programming languages. Complexity Analysis P is the set of all "decision problems" (basically, boolean functions) can be solved in polynomial time: there's an algorithm that's worst-case in O(n), O(n²), O(n³), etc.2 NP is the set of all problems that can be solved in polynomial time by an algorithm with angelic nondeterminism.3 For example, the question "does list l contain x" can be solved in O(1) time by a nondeterministic algorithm: fun is_member(l: List[T], x: T): bool { if l == [] {return false}; guess i in 0..<(len(l)-1); return l[i] == x; } Say call is_member([a, b, c, d], c). The best possible choice would be to guess i = 2, which would correctly return true. Now call is_member([a, b], d). No matter what we guess, the algorithm correctly returns false. and just return false. Ergo, O(1). NP stands for "Nondeterministic Polynomial". (And I just now realized something pretty cool: you can say that P is the set of all problems solvable in polynomial time under demonic nondeterminism, which is a nice parallel between the two classes.) Computer scientists have proven that angelic nondeterminism doesn't give us any more "power": there are no problems solvable with AN that aren't also solvable deterministically. The big question is whether AN is more efficient: it is widely believed, but not proven, that there are problems in NP but not in P. Most famously, "Is there any variable assignment that makes this boolean formula true?" A polynomial AN algorithm is again easy: fun SAT(f(x1, x2, …: bool): bool): bool { N = num_params(f) for i in 1..=num_params(f) { guess x_i in {true, false} } return f(x_1, x_2, …) } The best deterministic algorithms we have to solve the same problem are worst-case exponential with the number of boolean parameters. This a real frustrating problem because real computers don't have angelic nondeterminism, so problems like SAT remain hard. We can solve most "well-behaved" instances of the problem in reasonable time, but the worst-case instances get intractable real fast. Means of Abstraction We can directly turn an AN algorithm into a (possibly much slower) deterministic algorithm, such as by backtracking. This makes AN a pretty good abstraction over what an algorithm is doing. Does the regex (a+b)\1+ match "abaabaabaab"? Yes, if the regex engine nondeterministically guesses that it needs to start at the third letter and make the group aab. How does my PL's regex implementation find that match? I dunno, backtracking or NFA construction or something, I don't need to know the deterministic specifics in order to use the nondeterministic abstraction. Neel Krishnaswami has a great definition of 'declarative language': "any language with a semantics has some nontrivial existential quantifiers in it". I'm not sure if this is identical to saying "a language with an angelic nondeterministic abstraction", but they must be pretty close, and all of his examples match: SQL's selects and joins Parsing DSLs Logic programming's unification Constraint solving On top of that I'd add CSS selectors and planner's actions; all nondeterministic abstractions over a deterministic implementation. He also says that the things programmers hate most in declarative languages are features that "that expose the operational model": constraint solver search strategies, Prolog cuts, regex backreferences, etc. Which again matches my experiences with angelic nondeterminism: I dread features that force me to understand the deterministic implementation. But they're necessary, since P probably != NP and so we need to worry about operational optimizations. Eldritch Nondeterminism If you need to know the ratio of good/bad paths, the number of good paths, or probability, or anything more than "there is a good path" or "there is a bad path", you are beyond the reach of heaven or hell. Angelic and demonic nondeterminism are duals: angelic returns "yes" if some choice: correct and demonic returns "no" if !all choice: correct, which is the same as some choice: !correct. ↩ Pet peeve about Big-O notation: O(n²) is the set of all algorithms that, for sufficiently large problem sizes, grow no faster that quadratically. "Bubblesort has O(n²) complexity" should be written Bubblesort in O(n²), not Bubblesort = O(n²). ↩ To be precise, solvable in polynomial time by a Nondeterministic Turing Machine, a very particular model of computation. We can broadly talk about P and NP without framing everything in terms of Turing machines, but some details of complexity classes (like the existence "weak NP-hardness") kinda need Turing machines to make sense. ↩
The 2025 edition of the TokyoDev Developer Survey is now live! If you’re a software developer living in Japan, please take a few minutes to participate. All questions are optional, and it should take less than 10 minutes to complete. The survey will remain open until September 30th. Last year, we received over 800 responses. Highlights included: Median compensation remained stable. The pay gap between international and Japanese companies narrowed to 47%. Fewer respondents had the option to work fully remotely. For 2025, we’ve added several new questions, including a dedicated section on one of the most talked-about topics in development today: AI. The survey is completely anonymous, and only aggregated results will be shared—never personally identifiable information. The more responses we get, the deeper and more meaningful our insights will be. Please help by taking the survey and sharing it with your peers!