More from David Heinemeier Hansson
The new AMD HX370 option in the Framework 13 is a good step forward in performance for developers. It runs our HEY test suite in 2m7s, compared to 2m43s for the 7840U (and 2m49s for a M4 Pro!). It's also about 20% faster in most single-core tasks than the 7840U. But is that enough to warrant the jump in price? AMD's latest, best chips have suddenly gotten pretty expensive. The F13 w/ HX370 now costs $1,992 with 32GB RAM / 1TB. Almost the same an M4 Pro MBP14 w/ 24GB / 1TB ($2,199). I'd pick the Framework any day for its better keyboard, 3:2 matte screen, repairability, and superb Linux compatibility, but it won't be because the top option is "cheaper" any more. Of course you could also just go with the budget 6-core Ryzen AI 5 340 in same spec for $1,362. I'm sure that's a great machine too. But maybe the sweet spot is actually the Ryzen AI 7 350. It "only" has 8 cores (vs 12 on the 370), but four of those are performance cores -- the same as the 370. And it's $300 cheaper. So ~$1,600 gets you out the door. I haven't actually tried the 350, though, so that's just speculation. I've been running the 370 for the last few months. Whichever chip you choose, the rest of the Framework 13 package is as good as it ever was. This remains my favorite laptop of at least the last decade. I've been running one for over a year now, and combined with Omakub + Neovim, it's the first machine in forever where I've actually enjoyed programming on a 13" screen. The 3:2 aspect ratio combined with Linux's superb multiple desktops that switch with 0ms lag and no animations means I barely miss the trusted 6K Apple XDR screen when working away from the desk. The HX370 gives me about 6 hours of battery life in mixed use. About the same as the old 7840U. Though if all I'm doing is writing, I can squeeze that to 8-10 hours. That's good enough for me, but not as good as a Qualcomm machine or an Apple M-chip machine. For some people, those extra hours really make the difference. What does make a difference, of course, is Linux. I've written repeatedly about how much of a joy it's been to rediscover Linux on the desktop, and it's a joy that keeps on giving. For web work, it's so good. And for any work that requires even a minimum of Docker, it's so fast (as the HEY suite run time attests). Apple still has a strong hardware game, but their software story is falling apart. I haven't heard many people sing the praises of new iOS or macOS releases in a long while. It seems like without an asshole in charge, both have move towards more bloat, more ads, more gimmicks, more control. Linux is an incredible antidote to this nonsense these days. It's also just fun! Seeing AMD catch up in outright performance if not efficiency has been a delight. Watching Framework perfect their 13" laptop while remaining 100% backwards compatible in terms of upgrades with the first versions is heartwarming. And getting to test the new Framework Desktop in advance of its Q3 release has only affirmed my commitment to both. But on the new HX370, it's in my opinion the best Linux laptop you can buy today, which by extension makes it the best web developer laptop too. The top spec might have gotten a bit pricey, but there are options all along the budget spectrum, which retains all the key ingredients any way. Hard to go wrong. Forza Framework!
Nearly a quarter of seventeen-year-old boys in America have an ADHD diagnosis. That's crazy. But worse than the diagnosis is that the majority of them end up on amphetamines, like Adderall or Ritalin. These drugs allow especially teenage boys (diagnosed at 2-3x the rate of girls) to do what their mind would otherwise resist: Study subjects they find boring for long stretches of time. Hurray? Except, it doesn't even work. Because taking Adderall or Ritalin doesn't actually help you learn more, it merely makes trying tolerable. The kids might feel like the drugs are helping, but the test scores say they're not. It's Dunning-Kruger — the phenomenon where low-competence individuals overestimate their abilities — in a pill. Furthermore, even this perceived improvement is short-term. The sudden "miraculous" ability to sit still and focus on boring school work wanes in less than a year on the drugs. In three years, pill poppers are doing no better than those who didn't take amphetamines at all. These are all facts presented in a blockbuster story in New York Time Magazine entitled Have We Been Thinking About A.D.H.D. All Wrong?, which unpacks all the latest research on ADHD. It's depressing reading. Not least because the definition of ADHD is so subjective and situational. The NYTM piece is full of anecdotes from kids with an ADHD diagnosis whose symptoms disappeared when they stopped pursuing a school path out of step with their temperament. And just look at these ADHD markers from the DSM-5: Inattention Difficulty staying focused on tasks or play. Frequently losing things needed for tasks (e.g., toys, school supplies). Easily distracted by unrelated stimuli. Forgetting daily activities or instructions. Trouble organizing tasks or completing schoolwork. Avoiding or disliking tasks requiring sustained mental effort. Hyperactivity Fidgeting, squirming, or inability to stay seated. Running or climbing in inappropriate situations. Excessive talking or inability to play quietly. Acting as if “driven by a motor,” always on the go. Impulsivity Blurting out answers before questions are completed. Trouble waiting for their turn. Interrupting others’ conversations or games. The majority of these so-called symptoms are what I'd classify as "normal boyhood". I certainly could have checked off a bunch of them, and you only need six over six months for an official ADHD diagnosis. No wonder a quarter of those seventeen year-old boys in America qualify! Borrowing from Erich Fromm’s The Sane Society, I think we're looking at a pathology of normalcy, where healthy boys are defined as those who can sit still, focus on studies, and suppress kinetic energy. Boys with low intensity and low energy. What a screwy ideal to chase for all. This is all downstream from an obsession with getting as many kids through as much safety-obsessed schooling as possible. While the world still needs electricians, carpenters, welders, soldiers, and a million other occupations that exist outside the narrow educational ideal of today. Now I'm sure there is a small number of really difficult cases where even the short-term break from severe symptoms that amphetamines can provide is welcome. The NYTM piece quotes the doctor that did one of the most consequential studies on ADHD as thinking that's around 3% — a world apart from the quarter of seventeen-year-olds discussed above. But as ever, there is no free lunch in medicine. Long-term use of amphetamines acts as a growth inhibitor, resulting in kids up to an inch shorter than they otherwise would have been. On top of the awful downs that often follow amphetamine highs. And the loss of interest, humor, and spirit that frequently comes with the treatment too. This is all eerily similar to what happened in America when a bad study from the 1990s convinced a generation of doctors that opioids actually weren't addictive. By the time they realized the damage, they'd set in motion an overdose and addiction cascade that's presently killing over a 100,000 Americans a year. The book Empire of Pain chronicles that tragedy well. Or how about the surge in puberty-blocker prescriptions, which has now been arrested in the UK, following the Cass Review, as well as Finland, Norway, Sweden, France, and elsewhere. Doctors are supposed to first do no harm, but they're as liable to be swept up in bad paradigms, social contagions, and ideological echo chambers as the rest of us. And this insane over-diagnosis of ADHD fits that liability to a T.
To be a successful founder, you have to believe that what you're working on is going to work — despite knowing it probably won't! That sounds like an oxymoron, but it's really not. Believing that what you're building is going to work is an essential component of coming to work with the energy, fortitude, and determination it's going to require to even have a shot. Knowing it probably won't is accepting the odds of that shot. It's simply the reality that most things in business don't work out. At least not in the long run. Most businesses fail. If not right away, then eventually. Yet the world economy is full of entrepreneurs who try anyway. Not because they don't know the odds, but because they've chosen to believe they're special. The best way to balance these opposing points — the conviction that you'll make it work, the knowledge that it probably won't — is to do all your work in a manner that'll make you proud either way. If it doesn't work, you still made something you wouldn't be ashamed to put your name on. And if it does work, you'll beam with pride from making it on the basis of something solid. The deep regret from trying and failing only truly hits when you look in the mirror and see Dostoevsky staring back at you with this punch to the gut: "Your worst sin is that you have destroyed and betrayed yourself for nothing." Oof. Believe it's going to work. Build it in a way that makes you proud to sign it. Base your worth on a human on something greater than a business outcome.
We just opened a search for a new junior programmer at 37signals. It's been years since we last hired a junior, but the real reason the listing is turning heads is because we're open about the yearly salary: $145,849*. That's high enough that programmers with lots of experience are asking whether they could apply, even if they aren't technically "junior". The answer is no. The reason we're willing to pay a junior more than most is because we're looking for a junior who's better than most. Not better in "what do they already know", but in "how far could they go". We're hiring for peak promise — and such promise only remains until it's revealed. Maybe it sounds a little harsh, but a programmer who's been working professionally for five years has likely already revealed their potential. What you're going to get is roughly what you see. That doesn't mean that people can't get better after that, but it means that the trajectory by which they improve has already been plotted. Whereas a programmer who's either straight out of school or fresh off their first internship or short-stint job is essentially all potential. So you draw their line on the basis of just a few early dots, but the line can be steep. It's not that different from something like the NFL scouting combine. Teams fight to find the promise of The Next All-Star. These rookies won't have the experience that someone who's already played in the league for years would have, but they have the potential to be the best. Someone who's already played for several seasons will have shown what they have and be weighed accordingly. This is not easy to do! Plenty of rookies, in sports and programming, may show some early potential, then fail to elevate their game to where the buyer is betting it could be. But that's the chance you take to land someone extraordinary. So if you know a junior programmer with less than three years of industry experience who is sparkling with potential, do let them know of our listing. And if you know someone awesome who's already a senior programmer, we also have an opening for them. *It's a funnily precise number because it's pulled directly from the Radford salary database, which we query for the top 10% of San Francisco salaries for junior programmers.
More in programming
I like the job title “Design Engineer”. When required to label myself, I feel partial to that term (I should, I’ve written about it enough). Lately I’ve felt like the term is becoming more mainstream which, don’t get me wrong, is a good thing. I appreciate the diversification of job titles, especially ones that look to stand in the middle between two binaries. But — and I admit this is a me issue — once a title starts becoming mainstream, I want to use it less and less. I was never totally sure why I felt this way. Shouldn’t I be happy a title I prefer is gaining acceptance and understanding? Do I just want to rebel against being labeled? Why do I feel this way? These were the thoughts simmering in the back of my head when I came across an interview with the comedian Brian Regan where he talks about his own penchant for not wanting to be easily defined: I’ve tried over the years to write away from how people are starting to define me. As soon as I start feeling like people are saying “this is what you do” then I would be like “Alright, I don't want to be just that. I want to be more interesting. I want to have more perspectives.” [For example] I used to crouch around on stage all the time and people would go “Oh, he’s the guy who crouches around back and forth.” And I’m like, “I’ll show them, I will stand erect! Now what are you going to say?” And then they would go “You’re the guy who always feels stupid.” So I started [doing other things]. He continues, wondering aloud whether this aversion to not being easily defined has actually hurt his career in terms of commercial growth: I never wanted to be something you could easily define. I think, in some ways, that it’s held me back. I have a nice following, but I’m not huge. There are people who are huge, who are great, and deserve to be huge. I’ve never had that and sometimes I wonder, ”Well maybe it’s because I purposely don’t want to be a particular thing you can advertise or push.” That struck a chord with me. It puts into words my current feelings towards the job title “Design Engineer” — or any job title for that matter. Seven or so years ago, I would’ve enthusiastically said, “I’m a Design Engineer!” To which many folks would’ve said, “What’s that?” But today I hesitate. If I say “I’m a Design Engineer” there are less follow up questions. Now-a-days that title elicits less questions and more (presumed) certainty. I think I enjoy a title that elicits a “What’s that?” response, which allows me to explain myself in more than two or three words, without being put in a box. But once a title becomes mainstream, once people begin to assume they know what it means, I don’t like it anymore (speaking for myself, personally). As Brian says, I like to be difficult to define. I want to have more perspectives. I like a title that befuddles, that doesn’t provide a presumed sense of certainty about who I am and what I do. And I get it, that runs counter to the very purpose of a job title which is why I don’t think it’s good for your career to have the attitude I do, lol. I think my own career evolution has gone something like what Brian describes: Them: “Oh you’re a Designer? So you make mock-ups in Photoshop and somebody else implements them.” Me: “I’ll show them, I’ll implement them myself! Now what are you gonna do?” Them: “Oh, so you’re a Design Engineer? You design and build user interfaces on the front-end.” Me: “I’ll show them, I’ll write a Node server and setup a database that powers my designs and interactions on the front-end. Now what are they gonna do?” Them: “Oh, well, we I’m not sure we have a term for that yet, maybe Full-stack Design Engineer?” Me: “Oh yeah? I’ll frame up a user problem, interface with stakeholders, explore the solution space with static designs and prototypes, implement a high-fidelity solution, and then be involved in testing, measuring, and refining said solution. What are you gonna call that?” [As you can see, I have some personal issues I need to work through…] As Brian says, I want to be more interesting. I want to have more perspectives. I want to be something that’s not so easily definable, something you can’t sum up in two or three words. I’ve felt this tension my whole career making stuff for the web. I think it has led me to work on smaller teams where boundaries are much more permeable and crossing them is encouraged rather than discouraged. All that said, I get it. I get why titles are useful in certain contexts (corporate hierarchies, recruiting, etc.) where you’re trying to take something as complicated and nuanced as an individual human beings and reduce them to labels that can be categorized in a database. I find myself avoiding those contexts where so much emphasis is placed in the usefulness of those labels. “I’ve never wanted to be something you could easily define” stands at odds with the corporate attitude of, “Here’s the job req. for the role (i.e. cog) we’re looking for.” Email · Mastodon · Bluesky
Recently I got a question on formal methods1: how does it help to mathematically model systems when the system requirements are constantly changing? It doesn't make sense to spend a lot of time proving a design works, and then deliver the product and find out it's not at all what the client needs. As the saying goes, the hard part is "building the right thing", not "building the thing right". One possible response: "why write tests"? You shouldn't write tests, especially lots of unit tests ahead of time, if you might just throw them all away when the requirements change. This is a bad response because we all know the difference between writing tests and formal methods: testing is easy and FM is hard. Testing requires low cost for moderate correctness, FM requires high(ish) cost for high correctness. And when requirements are constantly changing, "high(ish) cost" isn't affordable and "high correctness" isn't worthwhile, because a kinda-okay solution that solves a customer's problem is infinitely better than a solid solution that doesn't. But eventually you get something that solves the problem, and what then? Most of us don't work for Google, we can't axe features and products on a whim. If the client is happy with your solution, you are expected to support it. It should work when your customers run into new edge cases, or migrate all their computers to the next OS version, or expand into a market with shoddy internet. It should work when 10x as many customers are using 10x as many features. It should work when you add new features that come into conflict. And just as importantly, it should never stop solving their problem. Canonical example: your feature involves processing requested tasks synchronously. At scale, this doesn't work, so to improve latency you make it asynchronous. Now it's eventually consistent, but your customers were depending on it being always consistent. Now it no longer does what they need, and has stopped solving their problems. Every successful requirement met spawns a new requirement: "keep this working". That requirement is permanent, or close enough to decide our long-term strategy. It takes active investment to keep a feature behaving the same as the world around it changes. (Is this all a pretentious of way of saying "software maintenance is hard?" Maybe!) Phase changes In physics there's a concept of a phase transition. To raise the temperature of a gram of liquid water by 1° C, you have to add 4.184 joules of energy.2 This continues until you raise it to 100°C, then it stops. After you've added two thousand joules to that gram, it suddenly turns into steam. The energy of the system changes continuously but the form, or phase, changes discretely. Software isn't physics but the idea works as a metaphor. A certain architecture handles a certain level of load, and past that you need a new architecture. Or a bunch of similar features are independently hardcoded until the system becomes too messy to understand, you remodel the internals into something unified and extendable. etc etc etc. It's doesn't have to be totally discrete phase transition, but there's definitely a "before" and "after" in the system form. Phase changes tend to lead to more intricacy/complexity in the system, meaning it's likely that a phase change will introduce new bugs into existing behaviors. Take the synchronous vs asynchronous case. A very simple toy model of synchronous updates would be Set(key, val), which updates data[key] to val.3 A model of asynchronous updates would be AsyncSet(key, val, priority) adds a (key, val, priority, server_time()) tuple to a tasks set, and then another process asynchronously pulls a tuple (ordered by highest priority, then earliest time) and calls Set(key, val). Here are some properties the client may need preserved as a requirement: If AsyncSet(key, val, _, _) is called, then eventually db[key] = val (possibly violated if higher-priority tasks keep coming in) If someone calls AsyncSet(key1, val1, low) and then AsyncSet(key2, val2, low), they should see the first update and then the second (linearizability, possibly violated if the requests go to different servers with different clock times) If someone calls AsyncSet(key, val, _) and immediately reads db[key] they should get val (obviously violated, though the client may accept a slightly weaker property) If the new system doesn't satisfy an existing customer requirement, it's prudent to fix the bug before releasing the new system. The customer doesn't notice or care that your system underwent a phase change. They'll just see that one day your product solves their problems, and the next day it suddenly doesn't. This is one of the most common applications of formal methods. Both of those systems, and every one of those properties, is formally specifiable in a specification language. We can then automatically check that the new system satisfies the existing properties, and from there do things like automatically generate test suites. This does take a lot of work, so if your requirements are constantly changing, FM may not be worth the investment. But eventually requirements stop changing, and then you're stuck with them forever. That's where models shine. As always, I'm using formal methods to mean the subdiscipline of formal specification of designs, leaving out the formal verification of code. Mostly because "formal specification" is really awkward to say. ↩ Also called a "calorie". The US "dietary Calorie" is actually a kilocalorie. ↩ This is all directly translatable to a TLA+ specification, I'm just describing it in English to avoid paying the syntax tax ↩
I've been biking in Brooklyn for a few years now! It's hard for me to believe it, but I'm now one of the people other bicyclists ask questions to now. I decided to make a zine that answers the most common of those questions: Bike Brooklyn! is a zine that touches on everything I wish I knew when I started biking in Brooklyn. A lot of this information can be found in other resources, but I wanted to collect it in one place. I hope to update this zine when we get significantly more safe bike infrastructure in Brooklyn and laws change to make streets safer for bicyclists (and everyone) over time, but it's still important to note that each release will reflect a specific snapshot in time of bicycling in Brooklyn. All text and illustrations in the zine are my own. Thank you to Matt Denys, Geoffrey Thomas, Alex Morano, Saskia Haegens, Vishnu Reddy, Ben Turndorf, Thomas Nayem-Huzij, and Ryan Christman for suggestions for content and help with proofreading. This zine is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, so you can copy and distribute this zine for noncommercial purposes in unadapted form as long as you give credit to me. Check out the Bike Brooklyn! zine on the web or download pdfs to read digitally or print here!
We’ve just launched Hotwire Native v1.2 and it’s the biggest update since the initial launch last year. The update has several key improvements, bug fixes, and more API consistency between platforms. And we’ve created all new iOS and Android demo apps to show it off! A web-first framework for building native mobile apps Improvements There are a few significant changes in v1.2 that are worth specifically highlighting. Route decision handlers Hotwire Native apps route internal urls to screens in your app, and route external urls to the device’s browser. Historically, though, it wasn’t straightforward to customize the default behavior for unique app needs. In v1.2, we’ve introduced the RouteDecisionHandler concept to iOS (formerly only on Android). Route decisions handlers offer a flexible way to decide how to route urls in your app. Out-of-the-box, Hotwire Native registers these route decision handlers to control how urls are routed: AppNavigationRouteDecisionHandler: Routes all internal urls on your app’s domain through your app. SafariViewControllerRouteDecisionHandler: (iOS Only) Routes all external http/https urls to a SFSafariViewController in your app. BrowserTabRouteDecisionHandler: (Android Only) Routes all external http/https urls to a Custom Tab in your app. SystemNavigationRouteDecisionHandler: Routes all remaining external urls (such as sms: or mailto:) through device’s system navigation. If you’d like to customize this behavior you can register your own RouteDecisionHandler implementations in your app. See the documentation for details. Server-driven historical location urls If you’re using Ruby on Rails, the turbo-rails gem provides the following historical location routes. You can use these to manipulate the navigation stack in Hotwire Native apps. recede_or_redirect_to(url, **options) — Pops the visible screen off of the navigation stack. refresh_or_redirect_to(url, **options) — Refreshes the visible screen on the navigation stack. resume_or_redirect_to(url, **options) — Resumes the visible screen on the navigation stack with no further action. In v1.2 there is now built-in support to handle these “command” urls with no additional path configuration setup necessary. We’ve also made improvements so they handle dismissing modal screens automatically. See the documentation for details. Bottom tabs When starting with Hotwire Native, one of the most common questions developers ask is how to support native bottom tab navigation in their apps. We finally have an official answer! We’ve introduced a HotwireTabBarController for iOS and a HotwireBottomNavigationController for Android. And we’ve updated the demo apps for both platforms to show you exactly how to set them up. New demo apps To better show off all the features in Hotwire Native, we’ve created new demo apps for iOS and Android. And there’s a brand new Rails web app for the native apps to leverage. Hotwire Native demo app Clone the GitHub repos to build and run the demo apps to try them out: iOS repo Android repo Rails app Huge thanks to Joe Masilotti for all the demo app improvements. If you’re looking for more resources, Joe even wrote a Hotwire Native for Rails Developers book! Release notes v1.2 contains dozens of other improvements and bug fixes across both platforms. See the full release notes to learn about all the additional changes: iOS release notes Android release notes Take a look If you’ve been curious about using Hotwire Native for your mobile apps, now is a great time to take a look. We have documentation and guides available on native.hotwired.dev and we’ve created really great demo apps for iOS and Android to help you get started.