Full Width [alt+shift+f] Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
5
Hello! Today I want to talk about ANSI escape codes. For a long time I was vaguely aware of ANSI escape codes (“that’s how you make text red in the terminal and stuff”) but I had no real understanding of where they were supposed to be defined or whether or not there were standards for them. I just had a kind of vague “there be dragons” feeling around them. While learning about the terminal this year, I’ve learned that: ANSI escape codes are responsible for a lot of usability improvements in the terminal (did you know there’s a way to copy to your system clipboard when SSHed into a remote machine?? It’s an escape code called OSC 52!) They aren’t completely standardized, and because of that they don’t always work reliably. And because they’re also invisible, it’s extremely frustrating to troubleshoot escape code issues. So I wanted to put together a list for myself of some standards that exist around escape codes, because I want to know if they have to feel unreliable and frustrating, or...
5 days ago

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from Julia Evans

How to add a directory to your PATH

I was talking to a friend about how to add a directory to your PATH today. It’s something that feels “obvious” to me since I’ve been using the terminal for a long time, but when I searched for instructions for how to do it, I actually couldn’t find something that explained all of the steps – a lot of them just said “add this to ~/.bashrc”, but what if you’re not using bash? What if your bash config is actually in a different file? And how are you supposed to figure out which directory to add anyway? So I wanted to try to write down some more complete directions and mention some of the gotchas I’ve run into over the years. Here’s a table of contents: step 1: what shell are you using? step 2: find your shell’s config file a note on bash’s config file step 3: figure out which directory to add step 3.1: double check it’s the right directory step 4: edit your shell config step 5: restart your shell problems: problem 1: it ran the wrong program problem 2: the program isn’t being run from your shell notes: a note on source a note on fish_add_path step 1: what shell are you using? If you’re not sure what shell you’re using, here’s a way to find out. Run this: ps -p $$ -o pid,comm= if you’re using bash, it’ll print out 97295 bash if you’re using zsh, it’ll print out 97295 zsh if you’re using fish, it’ll print out an error like “In fish, please use $fish_pid” ($$ isn’t valid syntax in fish, but in any case the error message tells you that you’re using fish, which you probably already knew) Also bash is the default on Linux and zsh is the default on Mac OS (as of 2024). I’ll only cover bash, zsh, and fish in these directions. step 2: find your shell’s config file in zsh, it’s probably ~/.zshrc in bash, it might be ~/.bashrc, but it’s complicated, see the note in the next section in fish, it’s probably ~/.config/fish/config.fish (you can run echo $__fish_config_dir if you want to be 100% sure) a note on bash’s config file Bash has three possible config files: ~/.bashrc, ~/.bash_profile, and ~/.profile. If you’re not sure which one your system is set up to use, I’d recommend testing this way: add echo hi there to your ~/.bashrc Restart your terminal If you see “hi there”, that means ~/.bashrc is being used! Hooray! Otherwise remove it and try the same thing with ~/.bash_profile You can also try ~/.profile if the first two options don’t work. (there are a lot of elaborate flow charts out there that explain how bash decides which config file to use but IMO it’s not worth it and just testing is the fastest way to be sure) step 3: figure out which directory to add Let’s say that you’re trying to install and run a program called http-server and it doesn’t work, like this: $ npm install -g http-server $ http-server bash: http-server: command not found How do you find what directory http-server is in? Honestly in general this is not that easy – often the answer is something like “it depends on how npm is configured”. A few ideas: Often when setting up a new installer (like cargo, npm, homebrew, etc), when you first set it up it’ll print out some directions about how to update your PATH. So if you’re paying attention you can get the directions then. Sometimes installers will automatically update your shell’s config file to update your PATH for you Sometimes just Googling “where does npm install things?” will turn up the answer Some tools have a subcommand that tells you where they’re configured to install things, like: Homebrew: brew --prefix (and then append /bin/ and /sbin/ to what that gives you) Node/npm: npm config get prefix (then append /bin/) Go: go env | grep GOPATH (then append /bin/) asdf: asdf info | grep ASDF_DIR (then append /bin/ and /shims/) step 3.1: double check it’s the right directory Once you’ve found a directory you think might be the right one, make sure it’s actually correct! For example, I found out that on my machine, http-server is in ~/.npm-global/bin. I can make sure that it’s the right directory by trying to run the program http-server in that directory like this: $ ~/.npm-global/bin/http-server Starting up http-server, serving ./public It worked! Now that you know what directory you need to add to your PATH, let’s move to the next step! step 4: edit your shell config Now we have the 2 critical pieces of information we need: Which directory you’re trying to add to your PATH (like ~/.npm-global/bin/) Where your shell’s config is (like ~/.bashrc, ~/.zshrc, or ~/.config/fish/config.fish) Now what you need to add depends on your shell: bash and zsh instructions: Open your shell’s config file, and add a line like this: export PATH=$PATH:~/.npm-global/bin/ (obviously replace ~/.npm-global/bin with the actual directory you’re trying to add) fish instructions: In fish, the syntax is different: set PATH $PATH ~/.npm-global/bin (in fish you can also use fish_add_path, some notes on that further down) step 5: restart your shell Now, an extremely important step: updating your shell’s config won’t take effect if you don’t restart it! Two ways to do this: open a new terminal (or terminal tab), and maybe close the old one so you don’t get confused Run bash to start a new shell (or zsh if you’re using zsh, or fish if you’re using fish) I’ve found that both of these usually work fine. And you should be done! Try running the program you were trying to run and hopefully it works now. If not, here are a couple of problems that you might run into: problem 1: it ran the wrong program If the wrong version of a is program running, you might need to add the directory to the beginning of your PATH instead of the end. For example, on my system I have two versions of python3 installed, which I can see by running which -a: $ which -a python3 /usr/bin/python3 /opt/homebrew/bin/python3 The one your shell will use is the first one listed. If you want to use the Homebrew version, you need to add that directory (/opt/homebrew/bin) to the beginning of your PATH instead, by putting this in your shell’s config file (it’s /opt/homebrew/bin/:$PATH instead of the usual $PATH:/opt/homebrew/bin/) export PATH=/opt/homebrew/bin/:$PATH or in fish: set PATH ~/.cargo/bin $PATH problem 2: the program isn’t being run from your shell All of these directions only work if you’re running the program from your shell. If you’re running the program from an IDE, from a GUI, in a cron job, or some other way, you’ll need to add the directory to your PATH in a different way, and the exact details might depend on the situation. in a cron job Some options: use the full path to the program you’re running, like /home/bork/bin/my-program put the full PATH you want as the first line of your crontab (something like PATH=/bin:/usr/bin:/usr/local/bin:….). You can get the full PATH you’re using in your shell by running echo "PATH=$PATH". I’m honestly not sure how to handle it in an IDE/GUI because I haven’t run into that in a long time, will add directions here if someone points me in the right direction. a note on source When you install cargo (Rust’s installer) for the first time, it gives you these instructions for how to set up your PATH, which don’t mention a specific directory at all. This is usually done by running one of the following (note the leading DOT): . "$HOME/.cargo/env" # For sh/bash/zsh/ash/dash/pdksh source "$HOME/.cargo/env.fish" # For fish The idea is that you add that line to your shell’s config, and their script automatically sets up your PATH (and potentially other things) for you. This is pretty common (Homebrew and asdf have something similar), and there are two ways to approach this: Just do what the tool suggests (add . "$HOME/.cargo/env" to your shell’s config) Figure out which directories the script they’re telling you to run would add to your PATH, and then add those manually. Here’s how I’d do that: Run . "$HOME/.cargo/env" in my shell (or the fish version if using fish) Run echo "$PATH" | tr ':' '\n' | grep cargo to figure out which directories it added See that it says /Users/bork/.cargo/bin and shorten that to ~/.cargo/bin Add the directory ~/.cargo/bin to PATH (with the directions in this post) I don’t think there’s anything wrong with doing what the tool suggests (it might be the “best way”!), but personally I usually use the second approach because I prefer knowing exactly what configuration I’m changing. a note on fish_add_path fish has a handy function called fish_add_path that you can run to add a directory to your PATH like this: fish_add_path /some/directory This will add the directory to your PATH, and automatically update all running fish shells with the new PATH. You don’t have to update your config at all! This is EXTREMELY convenient, but one downside (and the reason I’ve personally stopped using it) is that if you ever need to remove the directory from your PATH a few weeks or months later because maybe you made a mistake, it’s kind of hard to do (there are instructions in this comments of this github issue though). that’s all Hopefully this will help some people. Let me know (on Mastodon or Bluesky) if you there are other major gotchas that have tripped you up when adding a directory to your PATH, or if you have questions about this post!

3 weeks ago 13 votes
Some terminal frustrations

A few weeks ago I ran a terminal survey (you can read the results here) and at the end I asked: What’s the most frustrating thing about using the terminal for you? 1600 people answered, and I decided to spend a few days categorizing all the responses. Along the way I learned that classifying qualitative data is not easy but I gave it my best shot. I ended up building a custom tool to make it faster to categorize everything. As with all of my surveys the methodology isn’t particularly scientific. I just posted the survey to Mastodon and Twitter, ran it for a couple of days, and got answers from whoever happened to see it and felt like responding. Here are the top categories of frustrations! I think it’s worth keeping in mind while reading these comments that 40% of people answering this survey have been using the terminal for 21+ years 95% of people answering the survey have been using the terminal for at least 4 years These comments aren’t coming from total beginners. Here are the categories of frustrations! The number in brackets is the number of people with that frustration. Honestly I don’t how how interesting this is to other people – I’m just writing this up for myself because I’m trying to write a zine about the terminal and I wanted to get a sense for what people are having trouble with. remembering syntax (115) People talked about struggles remembering: the syntax for CLI tools like awk, jq, sed, etc the syntax for redirects keyboard shortcuts for tmux, text editing, etc One example comment: There are just so many little “trivia” details to remember for full functionality. Even after all these years I’ll sometimes forget where it’s 2 or 1 for stderr, or forget which is which for > and >>. switching terminals is hard (91) People talked about struggling with switching systems (for example home/work computer or when SSHing) and running into: OS differences in keyboard shortcuts (like Linux vs Mac) systems which don’t have their preferred text editor (“no vim” or “only vim”) different versions of the same command (like Mac OS grep vs GNU grep) no tab completion a shell they aren’t used to (“the subtle differences between zsh and bash”) as well as differences inside the same system like pagers being not consistent with each other (git diff pagers, other pagers). One example comment: I got used to fish and vi mode which are not available when I ssh into servers, containers. color (85) Lots of problems with color, like: programs setting colors that are unreadable with a light background color finding a colorscheme they like (and getting it to work consistently across different apps) color not working inside several layers of SSH/tmux/etc not liking the defaults not wanting color at all and struggling to turn it off This comment felt relatable to me: Getting my terminal theme configured in a reasonable way between the terminal emulator and fish (I did this years ago and remember it being tedious and fiddly and now feel like I’m locked into my current theme because it works and I dread touching any of that configuration ever again). keyboard shortcuts (84) Half of the comments on keyboard shortcuts were about how on Linux/Windows, the keyboard shortcut to copy/paste in the terminal is different from in the rest of the OS. Some other issues with keyboard shortcuts other than copy/paste: using Ctrl-W in a browser-based terminal and closing the window the terminal only supports a limited set of keyboard shortcuts (no Ctrl-Shift-, no Super, no Hyper, lots of ctrl- shortcuts aren’t possible like Ctrl-,) the OS stopping you from using a terminal keyboard shortcut (like by default Mac OS uses Ctrl+left arrow for something else) issues using emacs in the terminal backspace not working (2) other copy and paste issues (75) Aside from “the keyboard shortcut for copy and paste is different”, there were a lot of OTHER issues with copy and paste, like: copying over SSH how tmux and the terminal emulator both do copy/paste in different ways dealing with many different clipboards (system clipboard, vim clipboard, the “middle click” keyboard on Linux, tmux’s clipboard, etc) and potentially synchronizing them random spaces added when copying from the terminal pasting multiline commands which automatically get run in a terrifying way wanting a way to copy text without using the mouse discoverability (55) There were lots of comments about this, which all came down to the same basic complaint – it’s hard to discover useful tools or features! This comment kind of summed it all up: How difficult it is to learn independently. Most of what I know is an assorted collection of stuff I’ve been told by random people over the years. steep learning curve (44) A lot of comments about it generally having a steep learning curve. A couple of example comments: After 15 years of using it, I’m not much faster than using it than I was 5 or maybe even 10 years ago. and That I know I could make my life easier by learning more about the shortcuts and commands and configuring the terminal but I don’t spend the time because it feels overwhelming. history (42) Some issues with shell history: history not being shared between terminal tabs (16) limits that are too short (4) history not being restored when terminal tabs are restored losing history because the terminal crashed not knowing how to search history One example comment: It wasted a lot of time until I figured it out and still annoys me that “history” on zsh has such a small buffer; I have to type “history 0” to get any useful length of history. bad documentation (37) People talked about: documentation being generally opaque lack of examples in man pages programs which don’t have man pages Here’s a representative comment: Finding good examples and docs. Man pages often not enough, have to wade through stack overflow scrollback (36) A few issues with scrollback: programs printing out too much data making you lose scrollback history resizing the terminal messes up the scrollback lack of timestamps GUI programs that you start in the background printing stuff out that gets in the way of other programs’ outputs One example comment: When resizing the terminal (in particular: making it narrower) leads to broken rewrapping of the scrollback content because the commands formatted their output based on the terminal window width. “it feels outdated” (33) Lots of comments about how the terminal feels hampered by legacy decisions and how users often end up needing to learn implementation details that feel very esoteric. One example comment: Most of the legacy cruft, it would be great to have a green field implementation of the CLI interface. shell scripting (32) Lots of complaints about POSIX shell scripting. There’s a general feeling that shell scripting is difficult but also that switching to a different less standard scripting language (fish, nushell, etc) brings its own problems. Shell scripting. My tolerance to ditch a shell script and go to a scripting language is pretty low. It’s just too messy and powerful. Screwing up can be costly so I don’t even bother. more issues Some more issues that were mentioned at least 10 times: (31) inconsistent command line arguments: is it -h or help or –help? (24) keeping dotfiles in sync across different systems (23) performance (e.g. “my shell takes too long to start”) (20) window management (potentially with some combination of tmux tabs, terminal tabs, and multiple terminal windows. Where did that shell session go?) (17) generally feeling scared/uneasy (“The debilitating fear that I’m going to do some mysterious Bad Thing with a command and I will have absolutely no idea how to fix or undo it or even really figure out what happened”) (16) terminfo issues (“Having to learn about terminfo if/when I try a new terminal emulator and ssh elsewhere.”) (16) lack of image support (sixel etc) (15) SSH issues (like having to start over when you lose the SSH connection) (15) various tmux/screen issues (for example lack of integration between tmux and the terminal emulator) (15) typos & slow typing (13) the terminal getting messed up for various reasons (pressing Ctrl-S, cating a binary, etc) that’s all! I’m not going to make a lot of commentary on these results, but here are a couple of categories that feel related to me: remembering syntax & history (often the thing you need to remember is something you’ve run before!) discoverability & the learning curve (the lack of discoverability is definitely a big part of what makes it hard to learn)

a month ago 15 votes
What's involved in getting a "modern" terminal setup?

Hello! Recently I ran a terminal survey and I asked people what frustrated them. One person commented: There are so many pieces to having a modern terminal experience. I wish it all came out of the box. My immediate reaction was “oh, getting a modern terminal experience isn’t that hard, you just need to….”, but the more I thought about it, the longer the “you just need to…” list got, and I kept thinking about more and more caveats. So I thought I would write down some notes about what it means to me personally to have a “modern” terminal experience and what I think can make it hard for people to get there. what is a “modern terminal experience”? Here are a few things that are important to me, with which part of the system is responsible for them: multiline support for copy and paste: if you paste 3 commands in your shell, it should not immediatly run them all! That’s scary! (shell, terminal emulator) infinite shell history: if I run a command in my shell, it should be saved forever, not deleted after 500 history entries or whatever. Also I want commands to be saved to the history immediately when I run them, not only when I exit the shell session (shell) a useful prompt: I can’t live without having my current directory and current git branch in my prompt (shell) 24-bit colour: this is important to me because I find it MUCH easier to theme neovim with 24-bit colour support than in a terminal with only 256 colours (terminal emulator) clipboard integration between vim and my operating system so that when I copy in Firefox, I can just press p in vim to paste (text editor, maybe the OS/terminal emulator too) good autocomplete: for example commands like git should have command-specific autocomplete (shell) having colours in ls (shell config) a terminal theme I like: I spend a lot of time in my terminal, I want it to look nice and I want its theme to match my terminal editor’s theme. (terminal emulator, text editor) automatic terminal fixing: If a programs prints out some weird escape codes that mess up my terminal, I want that to automatically get reset so that my terminal doesn’t get messed up (shell) keybindings: I want Ctrl+left arrow to work (shell or application) being able to use the scroll wheel in programs like less: (terminal emulator and applications) There are a million other terminal conveniences out there and different people value different things, but those are the ones that I would be really unhappy without. how I achieve a “modern experience” My basic approach is: use the fish shell. Mostly don’t configure it, except to: set the EDITOR environment variable to my favourite terminal editor alias ls to ls --color=auto use any terminal emulator with 24-bit colour support. In the past I’ve used GNOME Terminal, Terminator, and iTerm, but I’m not picky about this. I don’t really configure it other than to choose a font. use neovim, with a configuration that I’ve been very slowly building over the last 9 years or so (the last time I deleted my vim config and started from scratch was 9 years ago) use the base16 framework to theme everything some “out of the box” options for a “modern” experience What if you want a nice experience, but don’t want to spend a lot of time on configuration? Figuring out how to configure vim in a way that I was satisfied with really did take me like ten years, which is a long time! My best ideas for how to get a reasonable terminal experience with minimal config are: shell: either fish or zsh with oh-my-zsh terminal emulator: almost anything with 24-bit colour support, for example all of these are popular: linux: GNOME Terminal, Konsole, Terminator, xfce4-terminal mac: iTerm (Terminal.app doesn’t have 256-colour support) cross-platform: kitty, alacritty, wezterm, or ghostty shell config: set the EDITOR environment variable to your favourite terminal text editor maybe alias ls to ls --color=auto text editor: this is a tough one, maybe micro or helix? I haven’t used either of them seriously but they both seem like very cool projects and I think it’s amazing that you can just use all the usual GUI editor commands (Ctrl-C to copy, Ctrl-V to paste, Ctrl-A to select all) in micro and they do what you’d expect. I would probably try switching to helix except that retraining my vim muscle memory seems way too hard and I have a working vim config already. Personally I wouldn’t use xterm, rxvt, or Terminal.app as a terminal emulator, because I’ve found in the past that they’re missing core features (like 24-bit colour in Terminal.app’s case) that make the terminal harder to use for me. I don’t want to pretend that getting a “modern” terminal experience is easier than it is though – I think there are two issues that make it hard. Let’s talk about them! issue 1 with getting to a “modern” experience: the shell bash and zsh are by far the two most popular shells, and neither of them provide a default experience that I would be happy using out of the box, for example: you need to customize your prompt they don’t come with git completions by default, you have to set them up by default, bash only stores 500 (!) lines of history and (at least on Mac OS) zsh is only configured to store 2000 lines, which is still not a lot I find bash’s tab completion very frustrating, if there’s more than one match then you can’t tab through them And even though I love fish, the fact that it isn’t POSIX does make it hard for a lot of folks to make the switch. Of course it’s totally possible to learn how to customize your prompt in bash or whatever, and it doesn’t even need to be that complicated (in bash I’d probably start with something like export PS1='[\u@\h \W$(__git_ps1 " (%s)")]\$ ', or maybe use starship). But each of these “not complicated” things really does add up and it’s especially tough if you need to keep your config in sync across several systems. An extremely popular solution to getting a “modern” shell experience is oh-my-zsh. It seems like a great project and I know a lot of people use it very happily, but I’ve struggled with configuration systems like that in the past – it looks like right now the base oh-my-zsh adds about 3000 lines of config, and often I find that having an extra configuration system makes it harder to debug what’s happening when things go wrong. I personally have a tendency to use the system to add a lot of extra plugins, make my system slow, get frustrated that it’s slow, and then delete it completely and write a new config from scratch. issue 2 with getting to a “modern” experience: the text editor In the terminal survey I ran recently, the most popular terminal text editors by far were vim, emacs, and nano. I think the main options for terminal text editors are: use vim or emacs and configure it to your liking, you can probably have any feature you want if you put in the work use nano and accept that you’re going to have a pretty limited experience (for example as far as I can tell if you want to copy some text from nano and put it in your system clipboard you just… can’t?) use micro or helix which seem to offer a pretty good out-of-the-box experience, potentially occasionally run into issues with using a less mainstream text editor just avoid using a terminal text editor as much as possible, maybe use VSCode, use VSCode’s terminal for all your terminal needs, and mostly never edit files in the terminal issue 3: individual applications The last issue is that sometimes individual programs that I use are kind of annoying. For example on my Mac OS machine, /usr/bin/sqlite3 doesn’t support the Ctrl+Left Arrow keyboard shortcut. Fixing this to get a reasonable terminal experience in SQLite was a little complicated, I had to: realize why this is happening (Mac OS won’t ship GNU tools, and “Ctrl-Left arrow” support comes from GNU readline) find a workaround (install sqlite from homebrew, which does have readline support) adjust my environment (put Homebrew’s sqlite3 in my PATH) I find that debugging application-specific issues like this is really not easy and often it doesn’t feel “worth it” – often I’ll end up just dealing with various minor inconveniences because I don’t want to spend hours investigating them. The only reason I was even able to figure this one out at all is that I’ve been spending a huge amount of time thinking about the terminal recently. A big part of having a “modern” experience using terminal programs is just using newer terminal programs, for example I can’t be bothered to learn a keyboard shortcut to sort the columns in top, but in htop I can just click on a column heading with my mouse to sort it. So I use htop instead! But discovering new more “modern” command line tools isn’t easy (though I made a list here), finding ones that I actually like using in practice takes time, and if you’re SSHed into another machine, they won’t always be there. everything affects everything else Something I find tricky about configuring my terminal to make everything “nice” is that changing one seemingly small thing about my workflow can really affect everything else. For example right now I don’t use tmux. But if I needed to use tmux again (for example because I was doing a lot of work SSHed into another machine), I’d need to think about a few things, like: if I wanted tmux’s copy to synchronize with my system clipboard over SSH, I’d need to make sure that my terminal emulator has OSC 52 support if I wanted to use iTerm’s tmux integration (which makes tmux tabs into iTerm tabs), I’d need to change how I configure colours – right now I set them with a shell script that I run when my shell starts, but that means the colours get lost when restoring a tmux session. and probably more things I haven’t thought of. “Using tmux means that I have to change how I manage my colours” sounds unlikely, but that really did happen to me and I decided “well, I don’t want to change how I manage colours right now, so I guess I’m not using that feature!”. It’s also hard to remember which features I’m relying on – for example maybe my current terminal does have OSC 52 support and because copying from tmux over SSH has always Just Worked I don’t even realize that that’s something I need, and then it mysteriously stops working when I switch terminals. change things slowly Personally even though I think my setup is not that complicated, it’s taken me 20 years to get to this point! Because terminal config changes are so likely to have unexpected and hard-to-understand consequences, I’ve found that if I change a lot of terminal configuration all at once it makes it much harder to understand what went wrong if there’s a problem, which can be really disorienting. So I prefer to make pretty small changes, and accept that changes can might take me a REALLY long time to get used to. For example I switched from using ls to eza a year or two ago and while I think I like it I’m still not quite sure about it. getting a “modern” terminal is not that easy Trying to explain how “easy” it is to configure your terminal really just made me think that it’s kind of hard and that I still sometimes get confused. I’ve found that there’s never one perfect way to configure things in the terminal that will be compatible with every single other thing. I just need to try stuff, figure out some kind of locally stable state that works for me, and accept that if I start using a new tool it might disrupt the system and I might need to rethink things.

2 months ago 46 votes
"Rules" that terminal programs follow

Recently I’ve been thinking about how everything that happens in the terminal is some combination of: Your operating system’s job Your shell’s job Your terminal emulator’s job The job of whatever program you happen to be running (like top or vim or cat) The first three (your operating system, shell, and terminal emulator) are all kind of known quantities – if you’re using bash in GNOME Terminal on Linux, you can more or less reason about how how all of those things interact, and some of their behaviour is standardized by POSIX. But the fourth one (“whatever program you happen to be running”) feels like it could do ANYTHING. How are you supposed to know how a program is going to behave? This post is kind of long so here’s a quick table of contents: programs behave surprisingly consistently these are meant to be descriptive, not prescriptive it’s not always obvious which “rules” are the program’s responsibility to implement rule 1: noninteractive programs should quit when you press Ctrl-C rule 2: TUIs should quit when you press q rule 3: REPLs should quit when you press Ctrl-D on an empty line rule 4: don’t use more than 16 colours rule 5: vaguely support readline keybindings rule 5.1: Ctrl-W should delete the last word rule 6: disable colours when writing to a pipe rule 7: - means stdin/stdout these “rules” take a long time to learn programs behave surprisingly consistently As far as I know, there are no real standards for how programs in the terminal should behave – the closest things I know of are: POSIX, which mostly dictates how your terminal emulator / OS / shell should work together. It does specify a few things about how core utilities like cp should work but AFAIK it doesn’t have anything to say about how for example htop should behave. these command line interface guidelines But even though there are no standards, in my experience programs in the terminal behave in a pretty consistent way. So I wanted to write down a list of “rules” that in my experience programs mostly follow. these are meant to be descriptive, not prescriptive My goal here isn’t to convince authors of terminal programs that they should follow any of these rules. There are lots of exceptions to these and often there’s a good reason for those exceptions. But it’s very useful for me to know what behaviour to expect from a random new terminal program that I’m using. Instead of “uh, programs could do literally anything”, it’s “ok, here are the basic rules I expect, and then I can keep a short mental list of exceptions”. So I’m just writing down what I’ve observed about how programs behave in my 20 years of using the terminal, why I think they behave that way, and some examples of cases where that rule is “broken”. it’s not always obvious which “rules” are the program’s responsibility to implement There are a bunch of common conventions that I think are pretty clearly the program’s responsibility to implement, like: config files should go in ~/.BLAHrc or ~/.config/BLAH/FILE or /etc/BLAH/ or something --help should print help text programs should print “regular” output to stdout and errors to stderr But in this post I’m going to focus on things that it’s not 100% obvious are the program’s responsibility. For example it feels to me like a “law of nature” that pressing Ctrl-D should quit a REPL (“rule 3” below), but there’s no reason that that has to be always be true. The reason that Ctrl-D almost always works is that interactive REPLs almost all implement that keyboard shortcut. rule 1: noninteractive programs should quit when you press Ctrl-C The main reason for this rule is that noninteractive programs will quit by default on Ctrl-C if they don’t set up a SIGINT signal handler, so this is kind of a “you should act like the default” rule. Something that trips a lot of people up is that this doesn’t apply to interactive programs like python3 or bc or less. This is because in an interactive program, Ctrl-C has a different job – if the program is running an operation (like for example a search in less or some Python code in python3), then Ctrl-C will interrupt that operation but not stop the program. As an example of how this works in an interactive program: here’s the code in prompt-toolkit (the library that iPython uses for handling input) that aborts a search when you press Ctrl-C. rule 2: TUIs should quit when you press q TUI programs (like less or htop) will usually quit when you press q. This rule doesn’t apply to any program where pressing q to quit wouldn’t make sense, like tmux or text editors. rule 3: REPLs should quit when you press Ctrl-D on an empty line REPLs (like python3 or ed) will usually quit when you press Ctrl-D on an empty line. This rule is similar to the Ctrl-C rule – the reason for this is that by default if you’re running a program (like cat) in “cooked mode”, then the operating system will return an EOF when you press Ctrl-D on an empty line. Most of the REPLs I use (sqlite3, python3, fish, bash, etc) don’t actually use cooked mode, but they all implement this keyboard shortcut anyway to mimic the default behaviour. For example, here’s the code in prompt-toolkit that quits when you press Ctrl-D, and here’s the same code in readline. I actually thought that this one was a “Law of Terminal Physics” until very recently because I’ve basically never seen it broken, but you can see that it’s just something that each individual input library has to implement in the links above. Someone pointed out that the Erlang REPL does not quit when you press Ctrl-D, so I guess not every REPL follows this “rule”. rule 4: don’t use more than 16 colours Terminal programs rarely use colours other than the base 16 ANSI colours. This is because if you specify colours with a hex code, it’s very likely to clash with some users’ background colour. For example if I print out some text as #EEEEEE, it would be almost invisible on a white background, though it would look fine on a dark background. But if you stick to the default 16 base colours, you have a much better chance that the user has configured those colours in their terminal emulator so that they work reasonably well with their background color. Another reason to stick to the default base 16 colours is that it makes less assumptions about what colours the terminal emulator supports. The only programs I usually see breaking this “rule” are text editors, for example Helix by default will use a custom colorscheme with this very nice purple background which is not a default ANSI colour. It seems fine for Helix to break this rule since Helix isn’t a “core” program and I assume any Helix user who doesn’t like that colorscheme will just change the theme. rule 5: vaguely support readline keybindings Almost every program I use supports readline keybindings if it would make sense to do so. For example, here are a bunch of different programs and a link to where they define Ctrl-E to go to the end of the line: ipython (Ctrl-E defined here) atuin (Ctrl-E defined here) fzf (Ctrl-E defined here) zsh (Ctrl-E defined here) fish (Ctrl-E defined here) tmux’s command prompt (Ctrl-E defined here) None of those programs actually uses readline directly, they just sort of mimic emacs/readline keybindings. They don’t always mimic them exactly: for example atuin seems to use Ctrl-A as a prefix, so Ctrl-A doesn’t go to the beginning of the line. The exceptions to this are: some programs (like git, cat, and nc) don’t have any line editing support at all (except for backspace, Ctrl-W, and Ctrl-U) as usual text editors are an exception, every text editor has its own approach to editing text I wrote more about this “what keybindings does a program support?” question in entering text in the terminal is complicated. rule 5.1: Ctrl-W should delete the last word I’ve never seen a program (other than a text editor) where Ctrl-W doesn’t delete the last word. This is similar to the Ctrl-C rule – by default if a program is in “cooked mode”, the OS will delete the last word if you press Ctrl-W, and delete the whole line if you press Ctrl-U. So usually programs will imitate that behaviour. I can’t think of any exceptions to this other than text editors but if there are I’d love to hear about them! rule 6: disable colours when writing to a pipe Most programs will disable colours when writing to a pipe. For example: rg blah will highlight all occurrences of blah in the output, but if the output is to a pipe or a file, it’ll turn off the highlighting. ls --color=auto will use colour when writing to a terminal, but not when writing to a pipe Both of those programs will also format their output differently when writing to the terminal: ls will organize files into columns, and ripgrep will group matches with headings. If you want to force the program to use colour (for example because you want to look at the colour), you can use unbuffer to force the program’s output to be a tty like this: unbuffer rg blah | less -R I’m sure that there are some programs that “break” this rule but I can’t think of any examples right now. Some programs have an --color flag that you can use to force colour to be on. rule 7: - means stdin/stdout Usually if you pass - to a program instead of a filename, it’ll read from stdin or write to stdout (whichever is appropriate). For example, if you want to format the Python code that’s on your clipboard with black and then copy it, you could run: pbpaste | black - | pbcopy (pbpaste is a Mac program, you can do something similar on Linux with xclip) My impression is that most programs implement this if it would make sense and I can’t think of any exceptions right now, but I’m sure there are many exceptions. these “rules” take a long time to learn These rules took me a long time for me to learn because I had to: learn that the rule applied anywhere at all ("Ctrl-C will exit programs") notice some exceptions (“okay, Ctrl-C will exit find but not less”) subconsciously figure out what the pattern is ("Ctrl-C will generally quit noninteractive programs, but in interactive programs it might interrupt the current operation instead of quitting the program") eventually maybe formulate it into an explicit rule that I know A lot of my understanding of the terminal is honestly still in the “subconscious pattern recognition” stage. The only reason I’ve been taking the time to make things explicit at all is because I’ve been trying to explain how it works to others. Hopefully writing down these “rules” explicitly will make learning some of this stuff a little bit faster for others.

3 months ago 64 votes

More in programming

The Power of Principles in Web Development Decision-Making (article)

Discover how The Epic Programming Principles can transform your web development decision-making, boost your career, and help you build better software.

16 hours ago 3 votes
Our switch to Kamal is complete

In a fit of frustration, I wrote the first version of Kamal in six weeks at the start of 2023. Our plan to get out of the cloud was getting bogged down in enterprisey pricing and Kubernetes complexity. And I refused to accept that running our own hardware had to be that expensive or that convoluted. So I got busy building a cheap and simple alternative.  Now, just two years later, Kamal is deploying every single application in our entire heritage fleet, and everything in active development. Finalizing a perfectly uniform mode of deployment for every web app we've built over the past two decades and still maintain. See, we have this obsession at 37signals: That the modern build-boost-discard cycle of internet applications is a scourge. That users ought to be able to trust that when they adopt a system like Basecamp or HEY, they don't have to fear eviction from the next executive re-org. We call this obsession Until The End Of The Internet. That obsession isn't free, but it's worth it. It means we're still operating the very first version of Basecamp for thousands of paying customers. That's the OG code base from 2003! Which hasn't seen any updates since 2010, beyond security patches, bug fixes, and performance improvements. But we're still operating it, and, along with every other app in our heritage collection, deploying it with Kamal. That just makes me smile, knowing that we have customers who adopted Basecamp in 2004, and are still able to use the same system some twenty years later. In the meantime, we've relaunched and dramatically improved Basecamp many times since. But for customers happy with what they have, there's no forced migration to the latest version. I very much had all of this in mind when designing Kamal. That's one of the reasons I really love Docker. It allows you to encapsulate an entire system, with all of its dependencies, and run it until the end of time. Kind of how modern gaming emulators can run the original ROM of Pac-Man or Pong to perfection and eternity. Kamal seeks to be but a simple wrapper and workflow around this wondrous simplicity. Complexity is but a bridge — and a fragile one at that. To build something durable, you have to make it simple.

2 hours ago 1 votes
Supa Pecha Kucha

slug: supapechakucha

yesterday 3 votes
Closing the borders alone won't fix the problems

Denmark has been reaping lots of delayed accolades from its relatively strict immigration policy lately. The Swedes and the Germans in particular are now eager to take inspiration from The Danish Model, given their predicaments. The very same countries that until recently condemned the lack of open-arms/open-border policies they would champion as Moral Superpowers.  But even in Denmark, thirty years after the public opposition to mass immigration started getting real political representation, the consequences of culturally-incompatible descendants from MENAPT continue to stress the high-trust societal model. Here are just three major cases that's been covered in the Danish media in 2025 alone: Danish public schools are increasingly struggling with violence and threats against students and teachers, primarily from descendants of MENAPT immigrants. In schools with 30% or more immigrants, violence is twice as prevalent. This is causing a flight to private schools from parents who can afford it (including some Syrians!). Some teachers are quitting the profession as a result, saying "the Quran run the class room". Danish women are increasingly feeling unsafe in the nightlife. The mayor of the country's third largest city, Odense, says he knows why: "It's groups of young men with an immigrant background that's causing it. We might as well be honest about that." But unfortunately, the only suggestion he had to deal with the problem was that "when [the women] meet these groups... they should take a big detour around them". A soccer club from the infamous ghetto area of Vollsmose got national attention because every other team in their league refused to play them. Due to the team's long history of violent assaults and death threats against opposing teams and referees. Bizarrely leading to the situation were the team got to the top of its division because they'd "win" every forfeited match. Problems of this sort have existed in Denmark for well over thirty years. So in a way, none of this should be surprising. But it actually is. Because it shows that long-term assimilation just isn't happening at a scale to tackle these problems. In fact, data shows the opposite: Descendants of MENAPT immigrants are more likely to be violent and troublesome than their parents. That's an explosive point because it blows up the thesis that time will solve these problems. Showing instead that it actually just makes it worse. And then what? This is particularly pertinent in the analysis of Sweden. After the "far right" party of the Swedish Democrats got into government, the new immigrant arrivals have plummeted. But unfortunately, the net share of immigrants is still increasing, in part because of family reunifications, and thus the problems continue. Meaning even if European countries "close the borders", they're still condemned to deal with the damning effects of maladjusted MENAPT immigrant descendants for decades to come. If the intervention stops there. There are no easy answers here. Obviously, if you're in a hole, you should stop digging. And Sweden has done just that. But just because you aren't compounding the problem doesn't mean you've found a way out. Denmark proves to be both a positive example of minimizing the digging while also a cautionary tale that the hole is still there.

yesterday 2 votes
We all lose when art is anonymised

One rabbit hole I can never resist going down is finding the original creator of a piece of art. This sounds simple, but it’s often quite difficult. The Internet is a maze of social media accounts that only exist to repost other people’s art, usually with minimal or non-existent attribution. A popular image spawns a thousand copies, each a little further from the original. Signatures get cropped, creators’ names vanish, and we’re left with meaningless phrases like “no copyright intended”, as if that magically absolves someone of artistic theft. Why do I do this? I’ve always been a bit obsessive, a bit completionist. I’ve worked in cultural heritage for eight years, which has made me more aware of copyright and more curious about provenance. And it’s satisfying to know I’ve found the original source, that I can’t dig any further. This takes time. It’s digital detective work, using tools like Google Lens and TinEye, and it’s not always easy or possible. Sometimes the original pops straight to the top, but other times it takes a lot of digging to find the source of an image. So many of us have become accustomed to art as an endless, anonymous stream of “content”. A beautiful image appears in our feed, we give it a quick heart, and scroll on, with no thought for the human who sweated blood and tears to create it. That original artist feels distant, disconected. Whatever benefit they might get from the “exposure” of your work going viral, they don’t get any if their name has been removed first. I came across two examples recently that remind me it’s not just artists who miss out – it’s everyone who enjoys art. I saw a photo of some traffic lights on Tumblr. I love their misty, nighttime aesthetic, the way the bright colours of the lights cut through the fog, the totality of the surrounding darkness. But there was no name – somebody had just uploaded the image to their Tumblr page, it was reblogged a bunch of times, and then it appeared on my dashboard. Who took it? I used Google Lens to find the original photographer: Lucas Zimmerman. Then I discovered it was part of a series. And there was a sequel. I found interviews. Context. Related work. I found all this cool stuff, but only because I knew Lucas’s name. Traffic Lights, by Lucas Zimmerman. Published on Behance.net under a CC BY‑NC 4.0 license, and reposted here in accordance with that license. The second example was a silent video of somebody making tiny chess pieces, just captioned “wow”. It was clearly an edit of another video, with fast-paced cuts to make it accommodate a short attention span – and again with no attribution. This was a little harder to find – I had to search several frames in Google Lens before I found a summary on a Russian website, which had a link to a YouTube video by metalworker and woodworker Левша (Levsha). This video is four times longer than the cut-up version I found, in higher resolution, and with commentary from the original creator. I don’t speak Russian, but YouTube has auto-translated subtitles. Now I know how this amazing set was made, and I have a much better understanding of the materials and techniques involved. (This includes the delightful name Wenge wood, which I’d never heard before.) https://youtube.com/watch?v=QoKdDK3y-mQ A piece of art is more than just a single image or video. It’s a process, a human story. When art is detached from its context and creator, we lose something fundamental. Creators lose the chance to benefit from their work, and we lose the opportunity to engage with it in a deeper way. We can’t learn how it was made, find their other work, or discover how to make similar art for ourselves. The Internet has done many wonderful things for art, but it’s also a machine for endless copyright infringement. It’s not just about generative AI and content scraping – those are serious issues, but this problem existed long before any of us had heard of ChatGPT. It’s a thousand tiny paper cuts. How many of us have used an image from the Internet because it showed up in a search, without a second thought for its creator? When Google Images says “images may be subject to copyright”, how many of us have really thought about what that means? Next time you want to use an image from the web, look to see if it’s shared under a license that allows reuse, and make sure you include the appropriate attribution – and if not, look for a different image. Finding the original creator is hard, sometimes impossible. The Internet is full of shadows: copies of things that went offline years ago. But when I succeed, it feels worth the effort – both for the original artist and myself. When I read a book or watch a TV show, the credits guide me to the artists, and I can appreciate both them and the rest of their work. I wish the Internet was more like that. I wish the platforms we rely on put more emphasis on credit and attribution, and the people behind art. The next time an image catches your eye, take a moment. Who made this? What does it mean? What’s their story? [If the formatting of this post looks odd in your feed reader, visit the original article]

yesterday 1 votes