More from samwho.dev
body { text-wrap: pretty; } @media (prefers-reduced-motion: reduce) { * { transition: none; animation: none; } } turing-machine { width: 100%; display: block; position: relative; padding-bottom: 1em; } turing-machine .program-container { position: relative; display: flex; justify-content: center; } turing-machine table { border: none; font-family: Fira Code; border-collapse: collapse; border-spacing: 0; margin: 1px; margin-top: 0.5em; width: auto; } turing-machine thead td { text-align: center; } turing-machine td { text-align: left; padding-left: 3vw; padding-right: 3vw; padding-top: 0.2em; padding-bottom: 0.2em; border: 1px dashed #bbbbbb; } turing-machine thead td { border: 0; } turing-machine .container { z-index: 1; background-color: white; } turing-machine .svg-container { padding-bottom: 1px; padding-top: 0.5em; line-height: 0; overflow-x: scroll; overflow-y: hidden; position: relative; scrollbar-width: none; cursor: grab; cursor: -webkit-grab; } turing-machine .svg-container::-webkit-scrollbar { display: none; } turing-machine .controls-container { line-height: 1.5; display: flex; align-items: center; justify-content: center; gap: 0.3em; margin-top: 0.2em; padding-bottom: 0.2em; } turing-machine .controls-container button { color: black; background-color: #aaaaaa; border-radius: 30%/50%; padding: 0.3em; height: 2em; min-width: 3em; text-align: center; border: none; cursor: pointer; } turing-machine .controls-container select { color: black; border: 2px solid #aaaaaa; background-color: #ffffff; border-radius: 30%/50%; padding: 0.15em; height: 2em; min-width: 3em; text-align: center; cursor: pointer; font-family: "Fira Code"; } turing-machine .controls-container button:disabled { background-color: #eeeeee; color: #aaaaaa; cursor: auto; } turing-machine .controls-container button:disabled:hover { background-color: #eeeeee; } turing-machine .controls-container button:hover { background-color: #999999; } turing-machine .controls-container button:active { background-color: #888888; } turing-machine .error { width: 80%; margin-top: 0.5em; margin-bottom: 0.5em; border-radius: 10px; background-color: #ffdddd; color: red; font-family: "Fira Code"; font-size: 1.5em; font-weight: bold; text-align: center; margin: auto; } .dragging { cursor: grabbing !important; cursor: -webkit-grabbing !important; } .sticky { position: sticky !important; top: 0; } turing-machine .gradient { content: ""; z-index: 2; position: sticky; top: 0; left: 0; pointer-events: none; background-image: linear-gradient(90deg, rgba(255,255,255,1) 0%, rgba(255,255,255,0) 20%, rgba(255,255,255,0) 80%, rgba(255,255,255,1) 100%); width: 100%; margin-top: -62px; height: 64px; } turing-machine svg { user-select: none; /*touch-action: none;*/ } turing-machine svg text { font-family: "Fira Code"; } turing-machine tr { padding-top: 0.5em; padding-bottom: 0.5em; } turing-machine .instruction { color: black; display: inline-block; border-radius: 0.5em; padding: 0.1em; min-width: 4.5ch; height: 100%; text-align: center; } turing-machine .pointer { display: inline-block; border-radius: 0.5em; position: absolute; z-index: -1; } turing-machine program { display: none; } turing-machine controls { display: none; } turing-machine.heading svg text { font-family: "Lora"; font-weight: bold; } figure.hero { font-family: "Lora"; text-align: center; padding-top: 1em; padding-bottom: 2em; margin-top: 1em; width: 100%; max-width: 100%; } figure.hero turing-machine { padding: 0; margin: 0; } figure.hero turing-machine .svg-container { margin: 0; padding-top: 0; } figure.hero turing-machine .gradient { top: 0; } figure.hero .signature { margin-top: 0.5rem; max-width: 200px; } figure.hero .portrait { margin-top: 1em; width: 250px; max-width: 250px; } figure.hero p { padding: 0; font-size: 0.9em; } figure.hero figcaption { font-family: "Lora"; font-style: small-caps; font-size: 0.8em; } @keyframes pulse { 0% { transform: scale(1); } 50% { transform: scale(1.1); } 100% { transform: scale(1); } } .symbol { display: inline-block; border: 1px solid black; width: 1.5em; height: 1.5em; font-family: "Fira Code"; text-align: center; } .inline-instruction { display: inline-block; font-family: "Fira Code"; background-color: rgba(0, 158, 115, 0.7); color: black; border-radius: 0.5em; padding: 0.1em; min-width: 3ch; padding-left: 0.2em; padding-right: 0.2em; text-align: center; } li:has(.inline-instruction) { margin-top: 0.35em; margin-bottom: 0.35em; } .inline-state { display: inline-block; font-family: "Fira Code"; background-color: rgb(86, 180, 233); color: black; border-radius: 0.5em; padding: 0.1em; min-width: 3ch; padding-left: 0.2em; padding-right: 0.2em; text-align: center; } li:has(.inline-state) { margin-top: 0.35em; margin-bottom: 0.35em; } .inline-value { display: inline-block; font-family: "Fira Code"; background-color: rgb(230, 159, 0); color: black; border-radius: 0.5em; padding: 0.1em; min-width: 3ch; padding-left: 0.2em; padding-right: 0.2em; text-align: center; } li:has(.inline-value) { margin-top: 0.35em; margin-bottom: 0.35em; } figure { margin: auto; margin-top: 2em; margin-bottom: 2em; } figure img { max-width: 400px; } figure figcaption { max-width: 500px; color: #666; font-size: 0.8em; font-style: italic; text-align: center; font-family: "Lora"; text-wrap: pretty; margin: auto; } ALAN M. TURING 23 June 1912 – 7 June 1954 B B | | L P( ) L P( ) L P( ) L P( ) L P( ) L P( ) L P( ) L P( ) L P( ) L P( ) L P( ) L P( ) L P( ) L P( ) L P( ) -> F In 1928, David Hilbert, one of the most influential mathematicians of his time, asked whether it is possible to create an algorithm that could determine the correctness of a mathematical statement. This was called the "decision problem," or "Entscheidungsproblem" in Hilbert's native German. In 1936 both Alan Turing and Alonzo Church independently reached the conclusion, using different methods, that the answer is "no." The way Turing did it was to imagine a "universal machine", a machine that could compute anything that could be computed. This idea, the "Turing machine" as Alonzo Church christened it in 1937, laid the foundations for the device you are using to read this post. If we look hard enough we can see Turing's legacy in today's CPUs. By the end of this post, you will know: What a Turing machine is. What can and cannot be computed. What it means to be Turing complete. How modern computers relate to Turing machines. How to write and run your own programs for a Turing machine. # What is a Turing machine? You might expect a universal machine, capable of computing anything that can be computed, to be a complex device. Nothing could be further from the truth. The machine has just 4 parts, and the language used to program it has just 5 instructions. theoretical machine. It was created as a thought experiment to explore the limits of what can be computed. Some have of course been built, but in 1936 they existed only in the heads of Turing and those who read his paper. The parts are: a !tape, a !head, a !program, and a !state. When you're ready, go ahead and press !play. start What you're seeing here is a program that executes P(0) to print 0 to the tape, moves the head right with the R instruction, then !jumps back to the start. It will go on printing 0s forever. At any point, feel free to !pause, step the machine !forwards or !backwards one instruction at a time, or !restart the program from the beginning. There is also a speed selector on the far right of the controls if you want to speed up the machine. Notice that !state and !value never change. Every time the machine performs a !jump, the current state and value are used to pick the correct next row of instructions to execute. This program only has a single state, start, and every time it jumps, the symbol under the !head is !blank. Let's take a look at a program with multiple states. one one | | P(1) R -> zero This program prints alternating 0s and 1s to the tape. It has 2 states, zero and one, to illustrate what happens when you !jump to a different state. Things moving too fast? The slider below can be used to adjust the speed of all the Turing machines on this page. 100% You can also achieve this same result by using a single !state and alternating the !value. Here's an example of that: start start | 1 | R P(0) -> start start | 0 | R P(1) -> start The !value column always stays up to date with what the current symbol is under the !head, then when we !jump that value is used to know which row of instructions to execute. Combining state and value gives us a surprising amount of control over what our !program does. We've so far seen 3 instructions: P prints a given symbol to the tape. R moves the tape head right. ↪︎ jumps to a given state. There are 2 more: L moves the tape head left. H halts the machine. 1 1 | | P(a) L -> 2 2 | | P(l) L -> 3 3 | | P(A) H This program prints the word "Alan" from right to left then halts. If you can't see the full word, you can drag the !tape left and right. If the machine has halted, you can use !restart to start it again from the beginning. All of it! You're probably not going to get Crysis running at 60fps on a simulated Turing machine, but all of the calculations required to render each frame can be done with just these 5 instructions. Everything you have ever seen a computer do can be done with a Turing machine. We'll see a glimpse of how that can work in practice a little later. The last example I want to show you before we move on is the very first program Alan Turing showed the world. It's the first program featured in his 1936 paper: "On Computable Numbers, with an application to the Entsheidungsproblem." c c | | R -> e e | | P(1) R -> k k | | R -> b Turing liked to leave spaces between symbols, going as far as to even define them as "F-squares" and "E-squares". F for figure, and E for erasable. His algorithms would often make use of E-squares to help the machine remember the location of specific !tape squares. # What does it mean to compute? Something is said to be "computable" if there exists an algorithm that can get from the given input to the expected output. For example, adding together 2 integers is computable. Here I'm giving the machine a !tape that starts out with the values 2 and 6 in binary separated by a !blank. b1 b1 | 1 | R -> b1 b1 | | R -> b2 b2 | 0 | R -> b2 b2 | 1 | R -> b2 b2 | | L -> dec dec | 0 | P(1) L -> dec dec | 1 | P(0) L -> b3 dec | | H b3 | 0 | L -> b3 b3 | 1 | L -> b3 b3 | | L -> inc inc | 0 | P(1) R -> b1 inc | 1 | P(0) L -> inc inc | | P(1) R -> b1 This program adds the two numbers together, arriving at the answer 8. It does this by decrementing from the right number and incrementing the left number until the right number is 0. Here's the purpose of each state: b1 Move right until the first !blank square is found. This is to navigate past the first number. b2 Move right until the second !blank square is found. This is to navigate past the second number. dec Decrement the current number by 1. In practice this will always be the right number. It decrements by flipping bits until it either reaches a 1, where it will navigate back to the left number, or a !blank, which it will interpret as the number having hit 0. b3 Move left until the first !blank square again. This is only ever used after we've decremented the rightmost number. We can't reuse the b1 state here because when we reach the !blank, we want to jump to inc. inc Increment the current number by 1. Similar to decrementing, this will only ever happen on the leftmost number in practice. This is done by flipping bits until we reach a 0, at which point we navigate back to the right number. That we can write this program at all is proof that addition is computable, but it also implies that all integers are computable. If we can add any 2 integers, we can compute any other integer. 1 is 0+1, 2 is 1+1, 3 is 2+1, and so on. # Binary vs Decimal You may have wondered why I'm choosing to work with binary numbers rather than decimal. It's not just because that's how modern computers work. I'm going to show you 2 examples, and from those examples you'll be able to see why modern computers choose to work in binary. The first example is a program that increments a binary number in an endless loop. move move | 0 | R -> move move | | L -> flip flip | 0 | P(1) R -> move flip | 1 | P(0) L -> flip flip | | P(1) R -> move The second example is a program that increments a decimal number in an endless loop. back inc | 1 | P(2) -> back inc | 2 | P(3) -> back inc | 3 | P(4) -> back inc | 4 | P(5) -> back inc | 5 | P(6) -> back inc | 6 | P(7) -> back inc | 7 | P(8) -> back inc | 8 | P(9) -> back inc | 9 | P(0) L -> inc inc | | P(1) -> back back | | L -> inc back | * | R -> back These two programs are doing the same thing, but the program for manipulating decimal numbers is much longer. We've even introduced some new syntax, the * symbol, to handle a !value under the !head that does not match any of the other values for that !state. It's for this reason when programming Turing machines we prefer binary numbers: the programs end up being shorter and easier to reason about. This benefit also translates to the physical world. Components that switch between 2 states are cheaper, smaller, and more reliable than components that switch between 10. It was more practical to build computers that worked in binary than ones that work in decimal, though attempts to build decimal computers were made. # What can't be computed? To approach this question we need to explain the "Halting problem." It goes like this: The answer is no, and this is what Turing essentially proved. The proof is complicated and I'm not ashamed to admit I don't understand it, but there is an example I can give you that can be intuitively understood to be "undecidable." Imagine you write a program that takes as its input the program being used to decide whether it will halt or not. What it then does is run the decider program on itself, and then do the opposite of what the decider program says. function undecidable(willHalt) { if (willHalt(undecidable)) { while (true); } else { return true; } } This program intentionally enters an infinite loop if it is told it will halt, and halts if it is told it will run forever. It seems like a silly example, the kind of answer a cheeky high school student might try to get away with, but it is a legitimate counterexample to the idea that the halting problem can be solved. If you were to imagine encoding the program and input into something that could be represented on the !tape, there would be no !program that could determine whether the program would halt or not. Imagining this encoding becomes quite natural when you realise that modern programs are encoded as binary data to be saved to disk. # What does it mean to be Turing complete? If you've been involved in the world of programming for more than a few years, there's a good chance you've come across the term "Turing complete." Most likely in the context of things that really ought not to be Turing complete, like C++ templates, TypeScript's type system or Microsoft Excel. But what does it mean? Like the Halting problem, the proof is complicated but there's a straightforward test you can apply to something to judge it Turing complete: I've written this post, with the Turing machine simulations, in JavaScript. Therefore JavaScript is Turing complete. The C++ template example given above simulates a Turing machine in C++'s template system. The TypeScript example takes the route of writing an interpreter for a different Turing complete language. You're right, and everyone tends to cheat a bit with the definition. When someone says something is Turing complete, what they mean is it would be Turing complete if it had an infinite amount of memory. The infinite tape limitation means no Turing machine could ever exist in our physical reality, so that requirement tends to get waived. # How does this all relate to modern computers? If you read around the topic of Turing machines outside of this post, you might see it said that modern computers are effectively Turing machines. You would be forgiven for finding it difficult to imagine how you go from adding 2 integers in binary on a !tape to running a web browser, but the line is there. A key difference between our Turing machine and the device you're reading this on is that your device's CPU has "registers." These are small pieces of memory that live directly on the CPU and are used to store values temporarily while they're being operated on. Values are being constantly loaded from memory into registers and saved back again. You can think of registers as variables for your CPU, but they can only store fixed-size numbers. We can create registers in our Turing machine. We can do this by creating a "format" for our tape. Here we define 3 registers: A, B, and C. Each register contains a 3 bits and can store numbers between 0 and 7. Then at the far left we have an H, which stands for "home", which will help us navigate. To increment register C, we can write a program like this: goto_c goto_c | C | R R R -> inc inc | 0 | P(1) -> goto_h goto_h | * | L -> goto_h goto_h | H | H We're making a lot more liberal use of the * symbol here to help us navigate to specific parts of the !tape without having to enumerate all possible values that could be under the !head on the way there. This program is effectively equivalent to the following x86 assembly code, if x86 had a register named c: mov c, 0 ; Load 0 into c inc c ; Increment c by 1 If we wanted to add values in A and B, storing the result in C, we need to do more work. Here's the assembly code we're trying to replicate: mov a, 2 ; Load 2 into a mov b, 3 ; Load 3 into b add c, a ; Add a to c add c, b ; Add b to c Before you scroll down I will warn you that the program is long and complex. It is the last program we will see in this post, and I don't expect you to understand it in full to continue to the end. Its main purpose is to show you that we can implement operations seen in modern assembly code on a Turing machine. initb initb | * | R P(0) R P(1) R P(1) R -> start start | * | L -> start start | H | R -> go_a go_a | * | R -> go_a go_a | A | R R R -> dec_a dec_a | 0 | P(1) L -> cry_a dec_a | 1 | P(0) -> go_c1 cry_a | 0 | P(1) L -> cry_a cry_a | 1 | P(0) -> go_c1 cry_a | * | R P(0) R P(0) R P(0) -> goto_b go_c1 | * | R -> go_c1 go_c1 | C | R R R -> inc_c1 inc_c1 | 0 | P(1) -> h2a inc_c1 | 1 | P(0) L -> cry_ca cry_ca | 0 | P(1) -> h2a cry_ca | 1 | P(0) L -> cry_ca cry_ca | * | R -> h2a h2a | * | L -> h2a h2a | H | R -> go_a goto_b | * | R -> goto_b goto_b | B | R R R -> dec_b dec_b | 0 | P(1) L -> dec_bc dec_b | 1 | P(0) -> go_c2 dec_bc | 0 | P(1) L -> dec_bc dec_bc | 1 | P(0) -> go_c2 dec_bc | * | R P(0) R P(0) R P(0) -> end go_c2 | * | R -> go_c2 go_c2 | C | R R R -> inc_c2 inc_c2 | 0 | P(1) -> go_hb inc_c2 | 1 | P(0) L -> cry_cb cry_cb | 0 | P(1) -> go_hb cry_cb | 1 | P(0) L -> cry_cb cry_cb | * | R -> go_hb go_hb | * | L -> go_hb go_hb | H | R -> goto_b end | * | L -> end end | H | H This is painfully laborious, and it doesn't even precisely match the assembly code. It destroys the values in A and B as it adds them together, and it doesn't handle overflow. But it's a start, and I hope it gives you a glimpse of how this theoretical machine can be built up to operate like a modern CPU. If you watch the program run to completion, something that might strike you is just how much work is required to do something as simple as adding 2 numbers. Turing machines were not designed to be practical, Turing never intended anyone to go out and build one of these machines in the hope it will be useful. Modern machines have circuits within them that can add 2 numbers together by passing 2 electrical signals in and getting the sum as a single signal out. This happens in less than a nanosecond. Modern machines have memory where any byte can be accessed at any time, no tape manipulation required. This memory access takes a few dozen nanoseconds. # Writing and running your own programs I've built a web-based development environment for writing programs that will run on the Turing machine visualisations you've seen throughout the post. You can access the editor here. I encourage you to play around with it. Set a simple goal, like adding together 2 numbers without going back to look at the way I did it in the post. It's a great way to get a feel for how the machine works. # Conclusion To recap, we've covered: What a Turing machine is. What can and cannot be computed. What it means to be Turing complete. How modern computers relate to Turing machines. And you now have access to an environment for writing and running your own Turing machine programs. If you use it to make something neat, please do reach out to me and show me! My email address is hello@samwho.dev. # Further reading Turing's original paper on computable numbers. The Annotated Turing I referenced this throughout the making of this post. It is a fabulous read, strongly recommend. Alan Turing: The Enigma by Andrew Hodges. An excellent biography of Turing, I read this during the writing of this post. Calculating a Mandelbrot Set using a Turing Machine. This was exceptionally useful for me to understand how to get from Turing machines to modern computers. # Acknowledgements These posts are never a solo effort, and this one is no exception. Sincere thanks go to the following people: To my wife, Sophie, who drew the biographical sketches you're seeing at the end here, and for putting up with my incessant talking about this post the last 2 weeks. Everyone who let me watch them read this post in real-time over a video call and gave me feedback: Jaga Santagostino, Robert Aboukhalil, Tarun Verghis, Tyler Sparks. Everyone who came to hang out and help out in the Twitch streams when I was building out the early versions of the Turing machine visualisations. Everyone who supports my work on Patreon. Everyone who works on the tools used to build this post: TypeScript, Bun, Two.js, Tween.js, Monaco, Peggy, Zed, and many other indirect dependencies. We really do stand upon the shoulders of giants. Hut 8, Bletchley Park, where Turing worked during World War II. It was in this hut that Alan worked with his team to break the German Naval Enigma code.
.dog-line { display: flex; flex-wrap: nowrap; flex-direction: row; width: 100%; height: 10rem; margin-top: 2rem; margin-bottom: 2rem; } .dog-line img { flex-grow: 1; height: auto; margin: 0; padding: 0; object-fit: contain; } .dog-grid { display: grid; grid-template-columns: repeat(4, 1fr); grid-gap: 1rem; margin-top: 2rem; margin-bottom: 2rem; } Back in Memory Allocation, I introduced Haskie. The idea behind Haskie was to create a character that could ask questions the reader might have, and to "soften" the posts to make them feel less intimidating. I got some feedback from people that Haskie was a bit too childish, and didn't feel like he belonged in posts about serious topics. This feedback was in the minority, though, and most people liked him. So I kept him and used him again in Hashing. Having a proxy to the reader was useful. I could anticipate areas of confusion and clear them up without creating enormous walls of text. I don't like it when the entire screen is filled with text, I like to break it up with images and interactive elements. And now dogs. Then in Bloom Filters, I found myself needing a character to represent the "adult in the room." If Haskie was my proxy to the reader, this new character would serve as a proxy to all of the material I learned from in the writing of the post. This is Sage. I liked the idea of having a cast of characters, each with their own personality and purpose. But I had a few problems. # Problems Both Haskie and Sage, because I have no artistic ability, were generated by AI. Back when I made them I was making no money from this blog, and I had no idea if I was going to keep them around. I didn't want to invest money in an idea that could flop, so I didn't feel bad about using AI to try it out. Since then, however, I have been paid twice to write posts for companies, and I know that I'm keeping the dogs. It wasn't ethical to continue piggybacking on AI. While ethics were the primary motivation, there were some other smaller problems with the dogs: The visual style of them, while I did like it, never felt like it fit with the rest of my personal brand. It was difficult to get AI to generate consistent dogs. You'll notice differences in coat colouration and features between variants of the same dog. The AI generated images look bad at small sizes. So I worked with the wonderful Andy Carolan to create a new design for my dogs. A design that would be consistent, fit with my brand, and look good at any size. # Haskie, Sage, and Doe The redesigned dogs are consistent, use simple colours and shapes, and use the SVGs file format to look good at any size. Each variant clocks in at around 20kb, which is slightly larger than the small AI-generated images, but I'll be able to use them at any size. Together the dogs represent a family unit: Sage as the dad, Haskie as the youngest child, and Doe as his older sister. They also come in a variety of poses, so I can use them to represent different emotions or actions. We were careful to make the dogs recognisable apart. They differ in colour, ear shape, tail shape, and collar tag. Sage and Doe have further distinguishing features: Sage with his glasses, and Doe with her bandana. Doe's bandana uses the same colours as the transgender flag, to show my support for the trans community and as a nod to her identity. # Going forward I'm so happy with the new dogs, and plan to use them in my posts going forward. I suspect I will, at some point, replace the dogs in my old posts as well. I don't plan to add any more characters, and I want to be careful to avoid overusing them. I don't want them to become a crutch, or to distract from the content of the posts. I also haven't forgotten the many people that pointed out to me that you can't pet the dogs. I'm working on it.
.bf { width: 100%; height: 150px; } @media only screen and (min-width: 320px) and (max-width: 479px) { .bf { height: 200px; } } @media only screen and (min-width: 480px) and (max-width: 676px) { .bf { height: 200px; } } @media only screen and (min-width: 677px) and (max-width: 991px) { .bf { height: 150px; } } form { display: flex; flex-direction: column; align-items: center; justify-content: stretch; } input { border: 1px solid rgb(119, 119, 119); padding: 0.25rem; border-radius: 0.25rem; height: 2em; line-height: 2em; } .aside { padding: 2rem; width: 100vw; position: relative; margin-left: -50vw; left: 50%; background-color: #eeeeee; display: flex; align-items: center; flex-direction: column; } .aside > * { flex-grow: 1; } .aside p { padding-left: 1rem; padding-right: 1rem; max-width: 780px; font-style: italic; font-family: Lora, serif; text-align: center; } Everyone has a set of tools they use to solve problems. Growing this set helps you to solve ever more difficult problems. In this post, I'm going to teach you about a tool you may not have heard of before. It's a niche tool that won't apply to many problems, but when it does you'll find it invaluable. It's called a "bloom filter." Before you continue! This post assumes you know what a hash function is, and if you don't it's going to be tricky to understand. Sam has written a post about hash functions, and recommendeds that you read this first. # What bloom filters can do Bloom filters are similar to the Set data structure. You can add items to them, and check if an item is present. Here's what it might look like to use a bloom filter in JavaScript, using a made-up BloomFilter class: let bf = new BloomFilter(); bf.add("Ant"); bf.add("Rhino"); bf.contains("Ant"); // true bf.contains("Rhino"); // true While this looks almost identical to a Set, there are some key differences. Bloom filters are what's called a probabalistic data structure. Where a Set can give you a concrete "yes" or "no" answer when you call contains, a bloom filter can't. Bloom filters can give definite "no"s, but they can't be certain about "yes." In the example above, when we ask bf if it contains "Ant" and "Rhino", the true that it returns isn't a guarantee that they're present. We know that they're present because we added them just a couple of lines before, but it would be possible for this to happen: let bf = new BloomFilter(); bf.add("Ant"); bf.add("Rhino"); bf.contains("Fox"); // true We'll demonstrate why over the course of this post. For now, we'll say that when bloom filters return true it doesn't mean "yes", it means "maybe". When this happens and the item has never been added before, it's called a false-positive. The opposite, claiming "no" when the answer is "yes," is called a false-negative. A bloom filter will never give a false-negative, and this is what makes them useful. It's not strictly lying, it's just not giving you a definite answer. Let's look at an example where we can use this property to our advantage. # When bloom filters are useful Imagine you're building a web browser, and you want to protect users from malicious links. You could build and maintain a list of all known malicious links and check the list every time a user navigates the browser. If the link they're trying to visit is in the list, you warn the user that they might be about to visit a malicious website. If we assume there are, say, 1,000,000 malicious links on the Internet, and each link is 20 characters long, then the list of malicious links would be 20MB in size. This isn't a huge amount of data, but it's not small either. If you have lots of users and want to keep this list up to date, the bandwidth could add up. However, if you're happy to accept being wrong 0.0001% of the time (1 in a million), you could use a bloom filter which can store the same data in 3.59MB. That's an 82% reduction in size, and all it costs you is showing the user an incorrect warning 1 in every million links visited. If you wanted to take it even further, and you were happy to accept being wrong 0.1% of the time (1 in 1000), the bloom filter would only be 1.8MB. This use-case isn't hypothetical, either. Google Chrome used a bloom filter for this exact purpose until 2012. If you were worried about showing a warning when it wasn't needed, you could always make an API that has the full list of malicious links in a database. When the bloom filter says "maybe," you would then make an API call to check the full list to be sure. No more spurious warnings, and the bloom filter would save you from having to call the API for every link visited. # How bloom filters work At its core, a bloom filter is an array of bits. When it is created, all of the bits are set to 0. We're going to represent this as a grid of circles, with each circle representing 1 bit. Our bloom filters in this post are all going to have 32 bits in total. this one and let me know what you think. Click here to go back to normal. To add an item to the bloom filter, we're going to hash it with 3 different hash functions, then use the 3 resulting values to set 3 bits. If you're not familiar with hashing, I recommend reading my post about it before continuing. For this post I'm choosing to use 3 of the SHA family of hash functions: sha1, sha256, and sha512. Here's what our bloom filter looks like if we add the value "foo" to it: The bits in positions 15, 16 and 27 have been set. Other bits, e.g. 1 have not been set. You can hover or tap the bits in this paragraph to highlight them in the visualisation. We get to this state by taking the hash value of "foo" for each of our 3 hash functions and modulo it by the number of bits in our bloom filter. Modulo gets us the remainder when dividing by 32, so we get 27 with sha1, 15 with sha256 and 16 with sha512. The table below shows what's happening, and you can try inputting your own values to see what bits they would set if added. Go ahead and add a few of your own values to our bloom filter below and see what happens. There's also a check button that will tell you if a value is present within the bloom filter. A value is only considered present if all of the bits checked are set. You can start again by hitting the clear button. You might occasionally notice that only 2, or even 1, bits get set. This happens when 2 or more of our hash functions produce the same value, or we attempt to set a bit that has already been set. Taking that a bit further, have a think about the implications of a bloom filter that has every bit set. bit is set, then won't the bloom filter claim it contains every item you check? That's a false-positive every time! Exactly right. A bloom filter with every bit set is equivalent to a Set that always returns true for contains. It will claim to contain everything you ask it about, even if that thing was never added. # False-positive rates The rate of false-positives in our bloom filter will grow as the percentage of set bits increases. Drag the slider below the graph to see how the false-positive rate changes as the number of set bits increases. It grows slowly at first, but as we get closer to having all bits set the rate increases. This is because we calculate the false-positive rate as x^3, where x is the percentage of set bits and 3 is the number of hash functions used. To give an example of why we calculate it with this formula, imagine we have a bloom filter with half of its bits set, x = 0.5. If we assume that our hash function has an equal chance of setting any of the bits, then the chance that all 3 hash functions set a bit that is already set is 0.5 * 0.5 * 0.5, or x^3. Let's have a look at the false-positive rate of bloom filters that use different numbers of hash functions. The problem that using lots of hash functions introduces is that it makes the bloom filter fill up faster. The more hash functions you use, the more bits get set for each item you add. There's also the cost of hashing itself. Hash functions aren't free, and while the hash functions you'd use in a bloom filter try to be as fast as possible, it's still more expensive to run 100 of them than it is to run 3. It's possible to calculate how full a bloom filter will be after inserting a number of items, based on the number of hash functions used. The graph below assumes a bloom filter with 1000 bits. The more hash functions we use, the faster we set all of the bits. You'll notice that the curve tails off as more items are added. This is because the more bits that are set, the more likely it is that we'all attempt to set a bit that has already been set. In practice, 1000 bits is a very small bloom filter, occupying only 125 bytes of memory. Modern computers have a lot of memory, so let's crank this up to 100,000 bits (12.5kB) and see what happens. The lines barely leave the bottom of the graph, meaning the bloom filter will be very empty and the false-positive rate will be low. All this cost us was 12.5kB of memory, which is still a very small amount by 2024 standards. # Tuning a bloom filter Picking the correct number of hash functions and bits for a bloom filter is a fine balance. Fortunately for us, if we know up-front how many unique items we want to store, and what our desired false-positive rate is, we can calculate the optimal number of hash functions, and the required number of bits. The bloom filter page on Wikipedia covers the mathematics involved, which I'm going to translate into JavaScript functions for us to use. I want to stress that you don't need to understand the maths to use a bloom filter or read this post. I'm including the link to it only for completeness. # Optimal number of bits The following JavaScript function, which might look a bit scary but bear with me, takes the number of items you want to store (items) and the desired false-positive rate (fpr, where 1% == 0.01), and returns how many bits you will need to achieve that false-positive rate. function bits(items, fpr) { const n = -items * Math.log(fpr); const d = Math.log(2) ** 2; return Math.ceil(n / d); } We can see how this grows for a variety of fpr values in the graph below. # Optimal number of hash functions After we've used the JavaScript above to calculate how many bits we need, we can use the following function to calculate the optimal number of hash functions to use: function hashFunctions(bits, items) { return Math.ceil((bits / items) * Math.log(2)); } Pause for a second here and have a think about how the number of hash functions might grow based on the size of the bloom filter and the number of items you expect to add. Do you think you'll use more hash functions, or fewer, as the bloom filter gets larger? What about as the number of items increases? The more items you plan to add, the fewer hash functions you should use. Yet, a larger bloom filter means you can use more hash functions. More hash functions keep the false-positive rate lower for longer, but more items fills up the bloom filter faster. It's a complex balancing act, and I am thankful that mathematicians have done the hard work of figuring it out for us. # Caution While we can stand on the shoulders of giants and pick the optimal number of bits and hash functions for our bloom filter, it's important to remember that these rely on you giving good estimates of the number of items you expect to add, and choosing a false-positive rate that's acceptable for your use-case. These numbers might be difficult to come up with, and I recommend erring on the side of caution. If you're not sure, it's likely better to use a larger bloom filter than you think you need. # Removing items from a bloom filter We've spent the whole post talking about adding things to a bloom filter, and the optimal parameters to use. We haven't spoken at all about removing items. And that's because you can't! In a bloom filter, we're using bits, individual 1s and 0s, to track the presence of items. If we were to remove an item by setting its bits to 0, we might also be removing other items by accident. There's no way of knowing. Click the buttons of the bloom filter below to see this in action. First we will add "foo", then "baz", and then we will remove "baz". Hit "clear" if you want to start again. The end result of this sequence is a bloom filter that doesn't contain "baz", but doesn't contain "foo" either. Because both "foo" and "baz" set bit 27, we accidentally clobber the presence of "foo" while removing "baz". Something else you might have noticed playing with the above example is that if you add "foo" and then attempt to remove "baz" before having added it, nothing happens. Even though 27 is set, bits 18 and 23 are not, so the bloom filter cannot contain "baz". Because of this, it won't unset 27. # Counting bloom filters While you can't remove items from a standard bloom filter, there are variants that allow you to do so. One of these variants is called a "counting bloom filter," which uses an array of counters instead of bits to keep track of items. Now when you go through the sequence, the end result is that the bloom filter still contains "foo." It solves the problem. The trade-off, though, is that counters are bigger than bits. With 4 bits per counter you can increment up to 15. With 8 bits per counter you can increment up to 255. You'll need to pick a counter size sufficient to never reach the maximum value, otherwise you risk corrupting the bloom filter. Using 8x more memory than a standard bloom filter could be a big deal, especially if you're using a bloom filter to save memory in the first place. Think hard about whether you really need to be able to remove items from your bloom filter. Counting bloom filters also introduce the possibility of false-negatives, which are impossible in standard bloom filters. Consider the following example. Because "loved" and "response" both hash to the bits 5, 22, and 26, when we remove "response" we also remove "loved". If we write this as JavaScript the problem becomes more clear: let bf = new CountingBloomFilter(); bf.add("loved"); bf.add("your"); bf.remove("response"); bf.contains("loved"); // false Even though we know for sure we've added "loved" in this snippet, the call to contains will return false. This sort of false-negative can't happen in a standard bloom filter, and it removes one of the key benefits of using a bloom filter in the first place: the guarantee of no false-negatives. # Bloom filters in the real-world Real-world users of bloom filters include Akamai, who use them to avoid caching web pages that are accessed once and never again. They do this by storing all page accesses in a bloom filter, and only writing them into cache if the bloom filter says they've been seen before. This does result in some pages being cached on the first access, but that's fine because it's still an improvement. It would be impractical for them to store all page accesses in a Set, so they accept the small false-positive rate in favour of the significantly smaller bloom filter. Akamai released a paper about this that goes into the full details if you're interested. Google's BigTable is a distributed key-value store, and uses bloom filters internally to know what keys are stored within. When a read request for a key comes in, a bloom filter in memory is first checked to see if the key is in the database. If not, BigTable can respond with "not found" without ever needing to read from disk. Sometimes the bloom filter will claim a key is in the database when it isn't, but this is fine because when that happens a disk access will confirm the key in fact isn't in the database. # Conclusion Bloom filters, while niche, can be a huge optimisation in the right situation. They're a wonderful application of hash functions, and a great example of making a deliberate trade-off to achieve a specific goal. Trade-offs, and combining simpler building blocks to create more complex, purpose-built data structures, are present everywhere in software engineering. Being able to spot where a data structure could net a big win can separate you from the pack, and take your career to the next level. I hope you've enjoyed this post, and that you find a way to apply bloom filters to a problem you're working on. # Acknowledgements Enormous thank you to my reviewers, without whom this post would be a shadow of what you read today. In no particular order: rylon, Indy, Aaron, Sophie, Davis, ed, Michael Drury, Anton Zhiyanov, Christoph Berger.
.memory { width: 100%; margin-bottom: 1.5em; margin-top: 0.5em; } input[type=range]:focus { outline: none; } a[simulation] { cursor: pointer; } .size { color: #0072B2 !important; font-weight: bold; } .free { color: #009E73 !important; font-weight: bold; } .allocated { color: #D55E00 !important; font-weight: bold; } .usable-memory { color: #E69F00 !important; font-weight: bold; } One thing that all programs on your computer have in common is a need for memory. Programs need to be loaded from your hard drive into memory before they can be run. While running, the majority of what programs do is load values from memory, do some computation on them, and then store the result back in memory. In this post I'm going to introduce you to the basics of memory allocation. Allocators exist because it's not enough to have memory available, you need to use it effectively. We will visually explore how simple allocators work. We'll see some of the problems that they try to solve, and some of the techniques used to solve them. At the end of this post, you should know everything you need to know to write your own allocator. › malloc and free To understand the job of a memory allocator, it's essential to understand how programs request and return memory. malloc and free are functions that were first introduced in a recognisable form in UNIX v7 in 1979(!). Let's take a look at a short C program demonstrating their use. If you have beginner-level familiarity with another language, e.g. JavaScript, Python, or C#, you should have no problem following along. You don't need to understand every word, as long as you get the overall idea. This is the only C code in the article, I promise. #include <stdlib.h> int main() { void *ptr = malloc(4); free(ptr); return 0; } In the above program we ask for 4 bytes of memory by calling malloc(4), we store the value returned in a variable called ptr, then we indicate that we're done with the memory by calling free(ptr). These two functions are how almost all programs manage the memory they use. Even when you're not writing C, the code that is executing your Java, Python, Ruby, JavaScript, and so on make use of malloc and free. › What is memory? The smallest unit of memory that allocators work with is called a "byte." A byte can store any number between 0 and 255. You can think of memory as being a long sequence of bytes. We're going to represent this sequence as a grid of squares, with each square representing a byte of memory. In the C code from before, malloc(4) allocates 4 bytes of memory. We're going to represent memory that has been allocated as darker squares. Then free(ptr) tells the allocator we're done with that memory. It is returned back to the pool of available memory. Here's what 4 malloc calls followed by 4 free calls looks like. You'll notice there's now a slider. Dragging the slider to the right advances time forward, and dragging it left rewinds. You can also click anywhere on the grid and then use the arrow keys on your keyboard, or you can use the left and right buttons. The ticks along the slider represent calls to malloc and free. Wait a sec... What is malloc actually returning as a value? What does it mean to "give" memory to a program? What malloc returns is called a "pointer" or a "memory address." It's a number that identifies a byte in memory. We typically write addresses in a form called "hexadecimal." Hexadecimal numbers are written with a 0x prefix to distinguish them from decimal numbers. Move the slider below to see a comparison between decimal numbers and hexadecimal numbers. 0 == 0x0 Here's our familiar grid of memory. Each byte is annotated with its address in hexadecimal form. For space reasons, I've omitted the 0x prefix. The examples we use in this article pretend that your computer only has a very small amount of memory, but in real life you have billions of bytes to work with. Real addresses are much larger than what we're using here, but the idea is exactly the same. Memory addresses are numbers that refer to a specific byte in memory. › The simplest malloc The "hello world" of malloc implementations would hand out blocks of memory by keeping track of where the previous block ended and starting the next block right after. Below we represent where the next block should start with a grey square. You'll notice no memory is freed. If we're only keeping track of where the next block should start, and we don't know where previous blocks start or end, free doesn't have enough information to do anything. So it doesn't. This is called a "memory leak" because, once allocated, the memory can never be used again. Believe it or not, this isn't a completely useless implementation. For programs that use a known amount of memory, this can be a very efficient strategy. It's extremely fast and extremely simple. As a general-purpose memory allocator, though, we can't get away with having no free implementation. › The simplest general-purpose malloc In order to free memory, we need to keep better track of memory. We can do this by saving the address and size of all allocations, and the address and size of blocks of free memory. We'll call these an "allocation list" and a "free list" respectively. We're representing free list entries as 2 grey squares linked together with a line. You can imagine this entry being represented in code as address=0 and size=32. When our program starts, all of memory is marked as free. When malloc is called, we loop through our free list until we find a block large enough to accommodate it. When we find one, we save the address and size of the allocation in our allocation list, and shrink the free list entry accordingly. Where do we save allocations and free list entries? Aren't we pretending our computer only has 32 bytes of memory? You caught me. One of the benefits of being a memory allocator is that you're in charge of memory. You could store your allocation/free list in a reserved area that's just for you. Or you could store it inline, in a few bytes immediately preceding each allocation. For now, assume we have reserved some unseen memory for ourselves and we're using it to store our allocation and free lists. So what about free? Because we've saved the address and size of the allocation in our allocation list, we can search that list and move the allocation back in to the free list. Without the size information, we wouldn't be able to do this. Our free list now has 2 entries. This might look harmless, but actually represents a significant problem. Let's see that problem in action. We allocated 8 blocks of memory, each 4 bytes in size. Then we freed them all, resulting in 8 free list entries. The problem we have now is that if we tried to do a malloc(8), there are no items in our free list that can hold 8 bytes and the malloc(8) will fail. To solve this, we need to do a bit more work. When we free memory, we should make sure that if the block we return to the free list is next to any other free blocks, we combine them together. This is called "coalescing." Much better. › Fragmentation A perfectly coalesced free list doesn't solve all of our problems. The following example shows a longer sequence of allocations. Have a look at the state memory is in at the end. We end this sequence with 6 of our 32 bytes free, but they're split into 2 blocks of 3 bytes. If we had to service a malloc(6), while we have enough free memory in theory, we wouldn't be able to. This is called "fragmentation." Sadly not. Remember earlier we talked about how the return value of malloc is the address of a byte in memory? Moving allocations won't change the pointers we have already returned from malloc. We would change the value those pointers are pointed at, effectively breaking them. This is one of the downsides of the malloc/free API. If we can't move allocations after creating them, we need to be more careful about where we put them to begin with. One way to combat fragmentation is, confusingly, to overallocate. If we always allocate a minimum of 4 bytes, even when the request is for 1 byte, watch what happens. This is the exact same sequence of allocations as above. Now we can service a malloc(6). It's worth keeping in mind that this is just one example. Programs will call malloc and free in very different patterns depending on what they do, which makes it challenging to design an allocator that always performs well. malloc, the start of the free list seems to fall out of sync with allocated memory. Is that a bug in the visualisation? No, that's a side-effect of overallocating. The visualisation shows "true" memory use, whereas the free list is updated from the allocator's perspective. So when the first malloc happens, 1 byte of memory is allocated but the free list entry is moved forward 4 bytes. We trade some wasted space in return for less fragmentation. It's worth noting that this unused space that results from overallocation is another form of fragmentation. It's memory that cannot be used until the allocation that created it is freed. As a result, we wouldn't want to go too wild with overallocation. If our program only ever allocated 1 byte at a time, for example, we'd be wasting 75% of all memory. Another way to combat fragmentation is to segment memory into a space for small allocations and a space for big ones. In this next visualisation we start with two free lists. The lighter grey one is for allocations 3 bytes or smaller, and the darker grey one is for allocations 4 bytes or larger. Again, this is the exact same sequence of allocations as before. Nice! This also reduces fragmentation. If we're strictly only allowing allocations of 3 bytes or less in the first segment, though, then we can't service that malloc(6). The trade-off here is that reserving a segment of memory for smaller allocations gives you less memory to work with for bigger ones. the first allocation in the dark grey free list is 3 bytes! You said this was for allocations 4 bytes and up. What gives? Got me again. This implementation I've written will put small allocations in the dark grey space when the light grey space is full. It will overallocate when it does this, otherwise we'd end up with avoidable fragmentation in the dark grey space thanks to small allocations. Allocators that split memory up based on the size of allocation are called "buddy allocators." In practice they have many more size classes than the 2 in our example. › A quick malloc puzzle What happens if you malloc(0)? Have a think about this before playing with the slider below. This is using our free list implementation that mandates a minimum size of 4 bytes for allocations. All memory gets allocated, but none is actually used. Do you think this is correct behaviour? It turns out that what happens when you malloc(0) differs between implementations. Some of them behave as above, allocating space they probably didn't have to. Others will return what's called a "null pointer", a special pointer that will crash your program if you try to read or write the memory it points to. Others pick one specific location in memory and return that same location for all calls to malloc(0), regardless how many times it is called. Moral of the story? Don't malloc(0). › Inline bookkeeping Remember earlier on when you asked about where allocation list and free list information gets stored, and I gave an unsatisfying answer about how it's stored in some other area of memory we've reserved for ourselves? This isn't the only way to do it. Lots of allocators store information right next to the blocks of memory they relate to. Have a look at this. What we have here is memory with no allocations, but free list information stored inline in that memory. Each block of memory, free or used, gets 3 additional bytes of bookkeeping information. If address is the address of the first byte of the allocation, here's the layout of a block: address + 0 is the size of the block address + 1 is whether the block is free (1) or used (2) address + 2 is where the usable memory starts address + 2 + size -- the size of the block again So in this above example, the byte at 0x0 is storing the value 29. This means it's a block containing 29 bytes of memory. The value 1 at 0x1 indicates that the block is free memory. size twice? Isn't that wasteful? It seems wasteful at first, but it is necessary if we want to do any form of coalescing. Let's take a look at an example. Here we've allocated 4 bytes of memory. To do this, our malloc implementation starts at the beginning of memory and checks to see if the block there is used. It knows that at address + 1 it will find either a 1 or a 2. If it finds a 1, it can check the value at address for how big the block is. If it is big enough, it can allocate into it. If it's not big enough, it knows it can add the value it finds in address to address to get to the start of the next block of memory. This has resulted in the creation of a used block (notice the 2 stored in the 2nd byte), and it has pushed start of the free block forward by 7 bytes. Let's do the same again and allocate another 4 bytes. Next, let's free our first malloc(4). The implementation of free is where storing information inline starts to shine. In our previous allocators, we had to search the allocation list to know the size of the block being freed. Now we know we'll find it at address. What's better than that is that for this free, we don't even need to know how big the allocation is. We can just set address + 1 to 1! How great is that? Simple, fast. What if we wanted to free the 2nd block of used memory? We know that we want to coalesce to avoid fragmentation, but how do we do that? This is where the seemingly wasteful bookkeeping comes into play. When we coalesce, we check to see the state of the blocks immediately before and immediately after the block we're freeing. We know that we can get to the next block by adding the value at address to address, but how do we get to the previous block? We take the value at address - 1 and subtract that from address. Without this duplicated size information at the end of the block, it would be impossible to find the previous block and impossible to coalesce properly. Allocators that store bookkeeping information like this alongside allocations are called "boundary tag allocators." Surprisingly, nothing truly prevents this. We rely heavily, as an industry, on the correctness of code. You might have heard of "buffer overrun" or "use after free" bugs before. These are when a program modifies memory past the end of an allocated block, or accidentally uses a block of memory after freeing it. These are indeed catastrophic. They can result in your program immediately crashing, they can result in your program crashing in several minutes, hours, or days time. They can even result in hackers using the bug to gain access to systems they shouldn't have access to. We're seeing a rise in popularity of "memory safe" languages, for example Rust. These languages invest a lot in making sure it's not possible to make these types of mistake in the first place. Exactly how they do that is outside of the scope of this article, but if this interests you I highly recommend giving Rust a try. You might have also realised that calling free on a pointer that's in the middle of a block of memory could also have disastrous consequences. Depending on what values are in memory, the allocator could be tricked into thinking it's freeing something but what it's really doing is modifying memory it shouldn't be. To get around this, some allocators inject "magic" values as part of the bookkeeping information. They store, say, 0x55 at address + 2. This would waste an extra byte of memory per allocation, but would allow them to know when a mistake has been made. To reduce the impact of this, allocators often disable this behaviour by default and allow you to enable it only when you're debugging. › Playground If you're keen to take your new found knowledge and try your hand at writing your own allocators, you can click here to go to my allocator playground. You'll be able to write JavaScript code that implements the malloc/free API and visualise how it works! › Conclusion We've covered a lot in this post, and if it has left you yearning for more you won't be disappointed. I've specifically avoided the topics of virtual memory, brk vs mmap, the role of CPU caches, and the endless tricks real malloc implementations pull out of their sleeves. There's no shortage of information about memory allocators on the Internet, and if you've read this far you should be well-placed to dive in to it. Got feedback? Join the discussion on Hacker News! › Acknowledgments Special thanks to the following people: Chris Down for lending me his extensive knowledge of real-world memory allocators. Anton Verinov for lending me his extensive knowledge of the web, browser developer tools, and user experience. Blake Becker, Matt Kaspar, Krista Horn, Jason Peddle, and Josh W. Comeau for their insight and constructive reviews.
More in programming
To be a successful founder, you have to believe that what you're working on is going to work — despite knowing it probably won't! That sounds like an oxymoron, but it's really not. Believing that what you're building is going to work is an essential component of coming to work with the energy, fortitude, and determination it's going to require to even have a shot. Knowing it probably won't is accepting the odds of that shot. It's simply the reality that most things in business don't work out. At least not in the long run. Most businesses fail. If not right away, then eventually. Yet the world economy is full of entrepreneurs who try anyway. Not because they don't know the odds, but because they've chosen to believe they're special. The best way to balance these opposing points — the conviction that you'll make it work, the knowledge that it probably won't — is to do all your work in a manner that'll make you proud either way. If it doesn't work, you still made something you wouldn't be ashamed to put your name on. And if it does work, you'll beam with pride from making it on the basis of something solid. The deep regret from trying and failing only truly hits when you look in the mirror and see Dostoevsky staring back at you with this punch to the gut: "Your worst sin is that you have destroyed and betrayed yourself for nothing." Oof. Believe it's going to work. Build it in a way that makes you proud to sign it. Base your worth on a human on something greater than a business outcome.
I recently went into a deep dive on “UART” and will publish a much longer article on the topic. This is just a recap of the basics to help put things in context. Many tutorials focus on using UART over USB, which adds many layers of abstraction, hiding what it actually is. Here, I deliberately … Continue reading How to use “real” UART → The post How to use “real” UART appeared first on Quentin Santos.
You know about Critical Race Theory, right? It says that if there’s an imbalance in, say, income between races, it must be due to discrimination. This is what wokism seems to be, and it’s moronic and false. The right wing has invented something equally stupid. Introducing Critical Trade Theory, stolen from this tweet. If there’s an imbalance in trade between countries, it must be due to unfair practices. (not due to the obvious, like one country is 10x richer than the other) There’s really only one way the trade deficits will go away, and that’s if trade goes to zero (or maybe if all these countries become richer than America). Same thing with the race deficits, no amount of “leg up” bullshit will change them. Why are all the politicians in America anti-growth anti-reality idiots who want to drive us into the poor house? The way this tariff shit is being done is another stupid form of anti-merit benefits to chosen groups of people, with a whole lot of grift to go along with it. Makes me just not want to play.
One of the most memorable quotes in Arthur Miller’s The Death of a Salesman comes from Uncle Ben, who describes his path to becoming wealthy as, “When I was seventeen, I walked into the jungle, and when I was twenty-one I walked out. And by God I was rich.” I wish I could describe the path to learning engineering strategy in similar terms, but by all accounts it’s a much slower path. Two decades in, I am still learning more from each project I work on. This book has aimed to accelerate your learning path, but my experience is that there’s still a great deal left to learn, despite what this book has hoped to accomplish. This final chapter is focused on the remaining advice I have to give on how you can continue to improve at strategy long after reading this book’s final page. Inescapably, this chapter has become advice on writing your own strategy for improving at strategy. You are already familiar with my general suggestions on creating strategy, so this chapter provides focused advice on creating your own plan to get better at strategy. It covers: Exploring strategy creation to find strategies you can learn from via public and private resources, and through creating learning communities How to diagnose the strategies you’ve found, to ensure you learn the right lessons from each one Policies that will help you find ways to perform and practice strategy within your organization, whether or not you have organizational authority Operational mechanisms to hold yourself accountable to developing a strategy practice My final benediction to you as a strategy practitioner who has finished reading this book With that preamble, let’s write this book’s final strategy: your personal strategy for developing your strategy practice. This is an exploratory, draft chapter for a book on engineering strategy that I’m brainstorming in #eng-strategy-book. As such, some of the links go to other draft chapters, both published drafts and very early, unpublished drafts. Exploring strategy creation Ideally, we’d start our exploration of how to improve at engineering strategy by reading broadly from the many publicly available examples. Unfortunately, there simply aren’t many easily available works to learn from others’ experience. Nonetheless, resources do exist, and we’ll discuss the three categories that I’ve found most useful: Public resources on engineering strategy, such as companies’ engineering blogs Private and undocumented strategies available through your professional network Learning communities that you build together, including ongoing learning circles Each of these is explored in its own section below. Public resources While there aren’t as many public engineering strategy resources as I’d like, I’ve found that there are still a reasonable number available. This book collects a number of such resources in the appendix of engineering strategy resources. That appendix also includes some individuals’ blog posts that are adjacent to this topic. You can go a long way by searching and prompting your way into these resources. As you read them, it’s important to recognize that public strategies are often misleading, as discussed previously in evaluating strategies. Everyone writing in public has an agenda, and that agenda often means that they’ll omit important details to make themselves, or their company, come off well. Make sure you read through the lines rather than taking things too literally. Private resources Ironically, where public resources are hard to find, I’ve found it much easier to find privately held strategy resources. While private recollections are still prone to inaccuracies, the incentives to massage the truth are less pronounced. The most useful sources I’ve found are: peers’ stories – strategies are often oral histories, and they are shared freely among peers within and across companies. As you build out your professional network, you can usually get access to any company’s engineering strategy on any topic by just asking. There are brief exceptions. Even a close peer won’t share a sensitive strategy before its existence becomes obvious externally, but they’ll be glad to after it does. People tend to over-estimate how much information companies can keep private anyway: even reading recent job postings can usually expose a surprising amount about a company. internal strategy archaeologists – while surprisingly few companies formally collect their strategies into a repository, the stories are informally collected by the tenured members of the organization. These folks are the company’s strategy archaeologists, and you can learn a great deal by explicitly consulting them becoming a strategy archaeologist yourself – whether or not you’re a tenured member of your company, you can learn a tremendous amount by starting to build your own strategy repository. As you start collecting them, you’ll interest others in contributing their strategies as well. As discussed in Staff Engineer’s section on the Write five then synthesize approach to strategy, over time you can foster a culture of documentation where one didn’t exist before. Even better, building that culture doesn’t require any explicit authority, just an ongoing show of excitement. There are other sources as well, ranging from attending the hallway track in conferences to organizing dinners where stories are shared with a commitment to privacy. Working in community My final suggestion for seeing how others work on strategy is to form a learning circle. I formed a learning circle when I first moved into an executive role, and at this point have been running it for more than five years. What’s surprised me the most is how much I’ve learned from it. There are a few reasons why ongoing learning circles are exceptional for sharing strategy: Bi-directional discussion allows so much more learning and understanding than mono-directional communication like conference talks or documents. Groups allow you to learn from others’ experiences and others’ questions, rather than having to guide the entire learning yourself. Continuity allows you to see the strategy at inception, during the rollout, and after it’s been in practice for some time. Trust is built slowly, and you only get the full details about a problem when you’ve already successfully held trust about smaller things. An ongoing group makes this sort of sharing feasible where a transient group does not. Although putting one of these communities together requires a commitment, they are the best mechanism I’ve found. As a final secret, many people get stuck on how they can get invited to an existing learning circle, but that’s almost always the wrong question to be asking. If you want to join a learning circle, make one. That’s how I got invited to mine. Diagnosing your prior and current strategy work Collecting strategies to learn from is a valuable part of learning. You also have to determine what lessons to learn from each strategy. For example, you have to determine whether Calm’s approach to resourcing Engineering-driven projects is something to copy or something to avoid. What I’ve found effective is to apply the strategy rubric we developed in the “Is this strategy any good?” chapter to each of the strategies you’ve collected. Even by splitting a strategy into its various phases, you’ll learn a lot. Applying the rubric to each phase will teach you more. Each time you do this to another strategy, you’ll get a bit faster at applying the rubric, and you’ll start to see interesting, recurring patterns. As you dig into a strategy that you’ve split into phases and applied the evaluation rubric to, here are a handful of questions that I’ve found interesting to ask myself: How long did it take to determine a strategy’s initial phase could be improved? How high was the cost to fund that initial phase’s discovery? Why did the strategy reach its final stage and get repealed or replaced? How long did that take to get there? If you had to pick only one, did this strategy fail in its approach to exploration, diagnosis, policy or operations? To what extent did the strategy outlive the tenure of its primary author? Did it get repealed quickly after their departure, did it endure, or was it perhaps replaced during their tenure? Would you generally repeat this strategy, or would you strive to avoid repeating it? If you did repeat it, what conditions seem necessary to make it a success? How might you apply this strategy to your current opportunities and challenges? It’s not necessary to work through all of these questions for every strategy you’re learning from. I often try to pick the two that I think might be most interesting for a given strategy. Policy for improving at strategy At a high level, there are just a few key policies to consider for improving your strategic abilities. The first is implementing strategy, and the second is practicing implementing strategy. While those are indeed the starting points, there are a few more detailed options worth consideration: If your company has existing strategies that are not working, debug one and work to fix it. If you lack the authority to work at the company scope, then decrease altitude until you find an altitude you can work at. Perhaps setting Engineering organizational strategies is beyond your circumstances, but strategy for your team is entirely accessible. If your company has no documented strategies, document one to make it debuggable. Again, if operating at a high altitude isn’t attainable for some reason, operate at a lower altitude that is within reach. If your company’s or team’s strategies are effective but have low adoption, see if you can iterate on operational mechanisms to increase adoption. Many such mechanisms require no authority at all, such as low-noise nudges or the model-document-share approach. If existing strategies are effective and have high adoption, see if you can build excitement for a new strategy. Start by mining for which problems Staff-plus engineers and senior managers believe are important. Once you find one, you have a valuable strategy vein to start mining. If you don’t feel comfortable sharing your work internally, then try writing proposals while only sharing them to a few trusted peers. You can even go further to only share proposals with trusted external peers, perhaps within a learning circle that you create or join. Trying all of these at once would be overwhelming, so I recommend picking one in any given phase. If you aren’t able to make traction, then try another until something works. It’s particularly important to recognize in your diagnosis where things are not working–perhaps you simply don’t have the sponsorship you need to enforce strategy so you need to switch towards suggesting strategies instead–and you’ll find something that works. What if you’re not allowed to do strategy? If you’re looking to find one, you’ll always unearth a reason why it’s not possible to do strategy in your current environment. If you’ve convinced yourself that there’s simply no policy that would allow you to do strategy in your current role, then the two most useful levers I’ve found are: Lower your altitude – there’s always a scale where you can perform strategy, even if it’s just your team or even just yourself. Only you can forbid yourself from developing personal strategies. Practice rather than perform – organizations can only absorb so much strategy development at a given time, so sometimes they won’t be open to you doing more strategy. In that case, you should focus on practicing strategy work rather than directly performing it. Only you can stop yourself from practice. Don’t believe the hype: you can always do strategy work. Operating your strategy improvement policies As the refrain goes, even the best policies don’t accomplish much if they aren’t paired with operational mechanisms to ensure the policies actually happen, and debug why they aren’t happening. Although it’s tempting to ignore operations when it comes to our personal habits, I think that would be a mistake: our personal habits have the most significant long-term impact on ourselves, and are the easiest habits to ignore since others generally won’t ask about them. The mechanisms I’d recommend: Explicitly track the strategies that you’ve implemented, refined, documented, or read. This should be in a document, spreadsheet or folder where you can explicitly see if you have or haven’t done the work. Review your tracked strategies every quarter: are you working on the expected number and in the expected way? If not, why not? Ideally, your review should be done in community with a peer or a learning circle. It’s too easy to deceive yourself, it’s much harder to trick someone else. If your periodic review ever discovers that you’re simply not doing the work you expected, sit down for an hour with someone that you trust–ideally someone equally or more experienced than you–and debug what’s going wrong. Commit to doing this before your next periodic review. Tracking your personal habits can feel a bit odd, but it’s something I highly recommend. I’ve been setting and tracking personal goals for some time now—for example, in my 2024 year in review—and have benefited greatly from it. Too busy for strategy Many companies convince themselves that they’re too much in a rush to make good decisions. I’ve certainly gotten stuck in this view at times myself, although at this point in my career I find it increasingly difficult to not recognize that I have a number of tools to create time for strategy, and an obligation to do strategy rather than inflict poor decisions on the organizations I work in. Here’s my advice for creating time: If you’re not tracking how often you’re creating strategies, then start there. If you’ve not worked on a single strategy in the past six months, then start with one. If implementing a strategy has been prohibitively time consuming, then focus on practicing a strategy instead. If you do try all those things and still aren’t making progress, then accept your reality: you don’t view doing strategy as particularly important. Spend some time thinking about why that is, and if you’re comfortable with your answer, then maybe this is a practice you should come back to later. Final words At this point, you’ve read everything I have to offer on drafting engineering strategy. I hope this has refined your view on what strategy can be in your organization, and has given you the tools to draft a more thoughtful future for your corner of the software engineering industry. What I’d never ask is for you to wholly agree with my ideas here. They are my best thinking on this topic, but strategy is a topic where I’m certain Hegel’s world view is the correct one: even the best ideas here are wrong in interesting ways, and will be surpassed by better ones.
From 1995 to 2019, I ran my own mail server. It began with a UUCP link, an expensive long-distance call for me then. Later, I ran a mail server in my apartment, then ran it as a VPS at various places. But running an email server got difficult. You can’t just run it on a … Continue reading Announcing the NNCPNET Email Network →