More from wingolog
Earlier this weekGuileWhippet But now I do! Today’s note is about how we can support untagged allocations of a few different kinds in Whippet’s .mostly-marking collector Why bother supporting untagged allocations at all? Well, if I had my way, I wouldn’t; I would just slog through Guile and fix all uses to be tagged. There are only a finite number of use sites and I could get to them all in a month or so. The problem comes for uses of from outside itself, in C extensions and embedding programs. These users are loathe to adapt to any kind of change, and garbage-collection-related changes are the worst. So, somehow, we need to support these users if we are not to break the Guile community.scm_gc_malloclibguile The problem with , though, is that it is missing an expression of intent, notably as regards tagging. You can use it to allocate an object that has a tag and thus can be traced precisely, or you can use it to allocate, well, anything else. I think we will have to add an API for the tagged case and assume that anything that goes through is requesting an untagged, conservatively-scanned block of memory. Similarly for : you could be allocating a tagged object that happens to not contain pointers, or you could be allocating an untagged array of whatever. A new API is needed there too for pointerless untagged allocations.scm_gc_mallocscm_gc_mallocscm_gc_malloc_pointerless Recall that the mostly-marking collector can be built in a number of different ways: it can support conservative and/or precise roots, it can trace the heap precisely or conservatively, it can be generational or not, and the collector can use multiple threads during pauses or not. Consider a basic configuration with precise roots. You can make tagged pointerless allocations just fine: the trace function for that tag is just trivial. You would like to extend the collector with the ability to make pointerless allocations, for raw data. How to do this?untagged Consider first that when the collector goes to trace an object, it can’t use bits inside the object to discriminate between the tagged and untagged cases. Fortunately though . Of those 8 bits, 3 are used for the mark (five different states, allowing for future concurrent tracing), two for the , one to indicate whether the object is pinned or not, and one to indicate the end of the object, so that we can determine object bounds just by scanning the metadata byte array. That leaves 1 bit, and we can use it to indicate untagged pointerless allocations. Hooray!the main space of the mostly-marking collector has one metadata byte for each 16 bytes of payloadprecise field-logging write barrier However there is a wrinkle: when Whippet decides the it should evacuate an object, it tracks the evacuation state in the object itself; the embedder has to provide an implementation of a , allowing the collector to detect whether an object is forwarded or not, to claim an object for forwarding, to commit a forwarding pointer, and so on. We can’t do that for raw data, because all bit states belong to the object, not the collector or the embedder. So, we have to set the “pinned” bit on the object, indicating that these objects can’t move.little state machine We could in theory manage the forwarding state in the metadata byte, but we don’t have the bits to do that currently; maybe some day. For now, untagged pointerless allocations are pinned. You might also want to support untagged allocations that contain pointers to other GC-managed objects. In this case you would want these untagged allocations to be scanned conservatively. We can do this, but if we do, it will pin all objects. Thing is, conservative stack roots is a kind of a sweet spot in language run-time design. You get to avoid constraining your compiler, you avoid a class of bugs related to rooting, but you can still support compaction of the heap. How is this, you ask? Well, consider that you can move any object for which we can precisely enumerate the incoming references. This is trivially the case for precise roots and precise tracing. For conservative roots, we don’t know whether a given edge is really an object reference or not, so we have to conservatively avoid moving those objects. But once you are done tracing conservative edges, any live object that hasn’t yet been traced is fair game for evacuation, because none of its predecessors have yet been visited. But once you add conservatively-traced objects back into the mix, you don’t know when you are done tracing conservative edges; you could always discover another conservatively-traced object later in the trace, so you have to pin everything. The good news, though, is that we have gained an easier migration path. I can now shove Whippet into Guile and get it running even before I have removed untagged allocations. Once I have done so, I will be able to allow for compaction / evacuation; things only get better from here. Also as a side benefit, the mostly-marking collector’s heap-conservative configurations are now faster, because we have metadata attached to objects which allows tracing to skip known-pointerless objects. This regains an optimization that BDW has long had via its , used in Guile since time out of mind.GC_malloc_atomic With support for untagged allocations, I think I am finally ready to start getting Whippet into Guile itself. Happy hacking, and see you on the other side! inside and outside on intent on data on slop fin
Salutations, populations. Today’s note is more of a work-in-progress than usual; I have been finally starting to look at getting into , and there are some open questions.WhippetGuile I started by taking a look at how Guile uses the ‘s API, to make sure I had all my bases covered for an eventual switch to something that was not BDW. I think I have a good overview now, and have divided the parts of BDW-GC used by Guile into seven categories.Boehm-Demers-Weiser collector Firstly there are the ways in which Guile’s run-time and compiler depend on BDW-GC’s behavior, without actually using BDW-GC’s API. By this I mean principally that we assume that any reference to a GC-managed object from any thread’s stack will keep that object alive. The same goes for references originating in global variables, or static data segments more generally. Additionally, we rely on GC objects not to move: references to GC-managed objects in registers or stacks are valid across a GC boundary, even if those references are outside the GC-traced graph: all objects are pinned. Some of these “uses” are internal to Guile’s implementation itself, and thus amenable to being changed, albeit with some effort. However some escape into the wild via Guile’s API, or, as in this case, as implicit behaviors; these are hard to change or evolve, which is why I am putting my hopes on Whippet’s , which allows for conservative roots.mostly-marking collector Then there are the uses of BDW-GC’s API, not to accomplish a task, but to protect the mutator from the collector: , explicitly enabling or disabling GC, calls to that take BDW-GC’s use of POSIX signals into account, and so on. BDW-GC can stop any thread at any time, between any two instructions; for most users is anodyne, but if ever you use weak references, things start to get really gnarly.GC_call_with_alloc_locksigmask Of course a new collector would have its own constraints, but switching to cooperative instead of pre-emptive safepoints would be a welcome relief from this mess. On the other hand, we will require client code to explicitly mark their threads as inactive during calls in more cases, to ensure that all threads can promptly reach safepoints at all times. Swings and roundabouts? Did you know that the Boehm collector allows for precise tracing? It does! It’s slow and truly gnarly, but when you need precision, precise tracing nice to have. (This is the interface.) Guile uses it to mark Scheme stacks, allowing it to avoid treating unboxed locals as roots. When it loads compiled files, Guile also adds some sliced of the mapped files to the root set. These interfaces will need to change a bit in a switch to Whippet but are ultimately internal, so that’s fine.GC_new_kind What is not fine is that Guile allows C users to hook into precise tracing, notably via . This is not only the wrong interface, not allowing for copying collection, but these functions are just truly gnarly. I don’t know know what to do with them yet; are our external users ready to forgo this interface entirely? We have been working on them over time, but I am not sure.scm_smob_set_mark Weak references, weak maps of various kinds: the implementation of these in terms of BDW’s API is incredibly gnarly and ultimately unsatisfying. We will be able to replace all of these with ephemerons and tables of ephemerons, which are natively supported by Whippet. The same goes with finalizers. The same goes for constructs built on top of finalizers, such as ; we’ll get to reimplement these on top of nice Whippet-supplied primitives. Whippet allows for resuscitation of finalized objects, so all is good here.guardians There is a long list of miscellanea: the interfaces to explicitly trigger GC, to get statistics, to control the number of marker threads, to initialize the GC; these will change, but all uses are internal, making it not a terribly big deal. I should mention one API concern, which is that BDW’s state is all implicit. For example, when you go to allocate, you don’t pass the API a handle which you have obtained for your thread, and which might hold some thread-local freelists; BDW will instead load thread-local variables in its API. That’s not as efficient as it could be and Whippet goes the explicit route, so there is some additional plumbing to do. Finally I should mention the true miscellaneous BDW-GC function: . Guile exposes it via an API, . It was already vestigial and we should just remove it, as it has no sensible semantics or implementation.GC_freescm_gc_free That brings me to what I wanted to write about today, but am going to have to finish tomorrow: the actual allocation routines. BDW-GC provides two, essentially: and . The difference is that “atomic” allocations don’t refer to other GC-managed objects, and as such are well-suited to raw data. Otherwise you can think of atomic allocations as a pure optimization, given that BDW-GC mostly traces conservatively anyway.GC_mallocGC_malloc_atomic From the perspective of a user of BDW-GC looking to switch away, there are two broad categories of allocations, tagged and untagged. Tagged objects have attached metadata bits allowing their type to be inspected by the user later on. This is the happy path! We’ll be able to write a function that takes any object, does a switch on, say, some bits in the first word, dispatching to type-specific tracing code. As long as the object is sufficiently initialized by the time the next safepoint comes around, we’re good, and given cooperative safepoints, the compiler should be able to ensure this invariant.gc_trace_object Then there are untagged allocations. Generally speaking, these are of two kinds: temporary and auxiliary. An example of a temporary allocation would be growable storage used by a C run-time routine, perhaps as an unbounded-sized alternative to . Guile uses these a fair amount, as they compose well with non-local control flow as occurring for example in exception handling.alloca An auxiliary allocation on the other hand might be a data structure only referred to by the internals of a tagged object, but which itself never escapes to Scheme, so you never need to inquire about its type; it’s convenient to have the lifetimes of these values managed by the GC, and when desired to have the GC automatically trace their contents. Some of these should just be folded into the allocations of the tagged objects themselves, to avoid pointer-chasing. Others are harder to change, notably for mutable objects. And the trouble is that for external users of , I fear that we won’t be able to migrate them over, as we don’t know whether they are making tagged mallocs or not.scm_gc_malloc One conventional way to handle untagged allocations is to manage to fit your data into other tagged data structures; V8 does this in many places with instances of FixedArray, for example, and Guile should do more of this. Otherwise, you make new tagged data types. In either case, all auxiliary data should be tagged. I think there may be an alternative, which would be just to support the equivalent of untagged and ; but for that, I am out of time today, so type at y’all tomorrow. Happy hacking!GC_mallocGC_malloc_atomic inventory what is to be done? implicit uses defensive uses precise tracing reachability misc allocation
Hey all, quick post today to mention that I added tracing support to the . If the support library for is available when Whippet is compiled, Whippet embedders can visualize the GC process. Like this!Whippet GC libraryLTTng Click above for a full-scale screenshot of the trace explorer processing the with the on a 2.5x heap. Of course no image will have all the information; the nice thing about trace visualizers like is that you can zoom in to sub-microsecond spans to see exactly what is happening, have nice mouseovers and clicky-clickies. Fun times!Perfetto microbenchmarknboyerparallel copying collector Adding tracepoints to a library is not too hard in the end. You need to , which has a file. You need to . Then you have a that includes the header, to generate the code needed to emit tracepoints.pull in the librarylttng-ustdeclare your tracepoints in one of your header filesminimal C filepkg-config Annoyingly, this header file you write needs to be in one of the directories; it can’t be just in the the source directory, because includes it seven times (!!) using (!!!) and because the LTTng file header that does all the computed including isn’t in your directory, GCC won’t find it. It’s pretty ugly. Ugliest part, I would say. But, grit your teeth, because it’s worth it.-Ilttngcomputed includes Finally you pepper your source with tracepoints, which probably you so that you don’t have to require LTTng, and so you can switch to other tracepoint libraries, and so on.wrap in some macro I wrote up a little . It’s not as easy as , which I think is an error. Another ugly point. Buck up, though, you are so close to graphs!guide for Whippet users about how to actually get tracesperf record By which I mean, so close to having to write a Python script to make graphs! Because LTTng writes its logs in so-called Common Trace Format, which as you might guess is not very common. I have a colleague who swears by it, that for him it is the lowest-overhead system, and indeed in my case it has no measurable overhead when trace data is not being collected, but his group uses custom scripts to convert the CTF data that he collects to... (?!?!?!!).GTKWave In my case I wanted to use Perfetto’s UI, so I found a to convert from CTF to the . But, it uses an old version of Babeltrace that wasn’t available on my system, so I had to write a (!!?!?!?!!), probably the most Python I have written in the last 20 years.scriptJSON-based tracing format that Chrome profiling used to usenew script Yes. God I love blinkenlights. As long as it’s low-maintenance going forward, I am satisfied with the tradeoffs. Even the fact that I had to write a script to process the logs isn’t so bad, because it let me get nice nested events, which most stock tracing tools don’t allow you to do. I fixed a small performance bug because of it – a . A win, and one that never would have shown up on a sampling profiler too. I suspect that as I add more tracepoints, more bugs will be found and fixed.worker thread was spinning waiting for a pool to terminate instead of helping out I think the only thing that would be better is if tracepoints were a part of Linux system ABIs – that there would be header files to emit tracepoint metadata in all binaries, that you wouldn’t have to link to any library, and the actual tracing tools would be intermediated by that ABI in such a way that you wouldn’t depend on those tools at build-time or distribution-time. But until then, I will take what I can get. Happy tracing! on adding tracepoints using the thing is it worth it? fin
Usually in this space I like to share interesting things that I find out; you might call it a research-epistle-publish loop. Today, though, I come not with answers, but with questions, or rather one question, but with fractal surface area: what is the value proposition of generational garbage collection? The conventional wisdom is encapsulated in a 2004 Blackburn, Cheng, and McKinley paper, , which compares whole-heap mark-sweep and copying collectors to their generational counterparts, using the Jikes RVM as a test harness. (It also examines a generational reference-counting collector, which is an interesting predecessor to the 2022 work by Zhao, Blackburn, and McKinley.)“Myths and Realities: The Performance Impact of Garbage Collection”LXR The paper finds that generational collectors spend less time than their whole-heap counterparts for a given task. This is mainly due to less time spent collecting, because generational collectors avoid tracing/copying work for older objects that mostly stay in the same place in the live object graph. The paper also notes an improvement for mutator time under generational GC, but only for the generational mark-sweep collector, which it attributes to the locality and allocation speed benefit of bump-pointer allocation in the nursery. However for copying collectors, generational GC tends to slow down the mutator, probably because of the write barrier, but in the end lower collector times still led to lower total times. So, I expected generational collectors to always exhibit lower wall-clock times than whole-heap collectors. In , I have a garbage collector with an abstract API that specializes at compile-time to the mutator’s object and root-set representation and to the collector’s allocator, write barrier, and other interfaces. I embed it in , a simple Scheme-to-C compiler that can run some small multi-threaded benchmarks, for example the classic Gabriel benchmarks. We can then test those benchmarks against different collectors, mutator (thread) counts, and heap sizes. I expect that the generational parallel copying collector takes less time than the whole-heap parallel copying collector.whippetwhiffle So, I ran some benchmarks. Take the splay-tree benchmark, derived from Octane’s . I have a port to Scheme, and the results are... not good!splay.js In this graph the “pcc” series is the whole-heap copying collector, and “generational-pcc” is the generational counterpart, with a nursery sized such that after each collection, its size is 2 MB times the number of active mutator threads in the last collector. So, for this test with eight threads, on my 8-core Ryzen 7 7840U laptop, the nursery is 16MB including the copy reserve, which happens to be the same size as the L3 on this CPU. New objects are kept in the nursery one cycle before being promoted to the old generation. There are also results for , which use an Immix-derived algorithm that allows for bump-pointer allocation but which doesn’t require a copy reserve. There, the generational collectors use a , which has very different performance characteristics as promotion is in-place, and the nursery is as large as the available heap size.“mmc” and “generational-mmc” collectorssticky mark-bit algorithm The salient point is that at all heap sizes, and for these two very different configurations (mmc and pcc), generational collection takes more time than whole-heap collection. It’s not just the splay benchmark either; I see the same thing for the very different . What is the deal?nboyer benchmark I am honestly quite perplexed by this state of affairs. I wish I had a narrative to tie this together, but in lieu of that, voici some propositions and observations. Sometimes people say that the reason generational collection is good is because you get bump-pointer allocation, which has better locality and allocation speed. This is misattribution: it’s bump-pointer allocators that have these benefits. You can have them in whole-heap copying collectors, or you can have them in whole-heap mark-compact or immix collectors that bump-pointer allocate into the holes. Or, true, you can have them in generational collectors with a copying nursery but a freelist-based mark-sweep allocator. But also you can have generational collectors without bump-pointer allocation, for free-list sticky-mark-bit collectors. To simplify this panorama to “generational collectors have good allocators” is incorrect. It’s true, generational GC does lower median pause times: But because a major collection is usually slightly more work under generational GC than in a whole-heap system, because of e.g. the need to reset remembered sets, the maximum pauses are just as big and even a little bigger: I am not even sure that it is meaningful to compare median pause times between generational and non-generational collectors, given that the former perform possibly orders of magnitude more collections than the latter. Doing fewer whole-heap traces is good, though, and in the ideal case, the less frequent major traces under generational collectors allows time for concurrent tracing, which is the true mitigation for long pause times. Could it be that the test harness I am using is in some way unrepresentative? I don’t have more than one test harness for Whippet yet. I will start work on a second Whippet embedder within the next few weeks, so perhaps we will have an answer there. Still, there is ample time spent in GC pauses in these benchmarks, so surely as a GC workload Whiffle has some utility. One reasons that Whiffle might be unrepresentative is that it is an ahead-of-time compiler, whereas nursery addresses are assigned at run-time. Whippet exposes the necessary information to allow a just-in-time compiler to specialize write barriers, for example the inline check that the field being mutated is not in the nursery, and an AOT compiler can’t encode this as an immediate. But it seems a small detail. Also, Whiffle doesn’t do much compiler-side work to elide write barriers. Could the cost of write barriers be over-represented in Whiffle, relative to a production language run-time? Relatedly, Whiffle is just a baseline compiler. It does some partial evaluation but no CFG-level optimization, no contification, no nice closure conversion, no specialization, and so on: is it not representative because it is not an optimizing compiler? How big should the nursery be? I have no idea. As a thought experiment, consider the case of a 1 kilobyte nursery. It is probably too small to allow the time for objects to die young, so the survival rate at each minor collection would be high. Above a certain survival rate, generational GC is probably a lose, because your program violates the weak generational hypothesis: it introduces a needless copy for all survivors, and a synchronization for each minor GC. On the other hand, a 1 GB nursery is probably not great either. It is plenty large enough to allow objects to die young, but the number of survivor objects in a space that large is such that pause times would not be very low, which is one of the things you would like in generational GC. Also, you lose out on locality: a significant fraction of the objects you traverse are probably out of cache and might even incur TLB misses. So there is probably a happy medium somewhere. My instinct is that for a copying nursery, you want to make it about as big as L3 cache, which on my 8-core laptop is 16 megabytes. Systems are different sizes though; in Whippet my current heuristic is to reserve 2 MB of nursery per core that was active in the previous cycle, so if only 4 threads are allocating, you would have a 8 MB nursery. Is this good? I don’t know. I don’t have a very large set of benchmarks that run on Whiffle, and they might not be representative. I mean, they are microbenchmarks. One question I had was about heap sizes. If a benchmark’s maximum heap size fits in L3, which is the case for some of them, then probably generational GC is a wash, because whole-heap collection stays in cache. When I am looking at benchmarks that evaluate generational GC, I make sure to choose those that exceed L3 size by a good factor, for example the 8-mutator splay benchmark in which minimum heap size peaks at 300 MB, or the 8-mutator nboyer-5 which peaks at 1.6 GB. But then, should nursery size scale with total heap size? I don’t know! Incidentally, the way that I scale these benchmarks to multiple mutators is a bit odd: they are serial benchmarks, and I just run some number of threads at a time, and scale the heap size accordingly, assuming that the minimum size when there are 4 threads is four times the minimum size when there is just one thread. However, , in the sense that there is no heap size under which they fail and above which they succeed; I quote:multithreaded programs are unreliable A generational collector partitions objects into old and new sets, and a minor collection starts by visiting all old-to-new edges, called the “remembered set”. As the program runs, mutations to old objects might introduce new old-to-new edges. To maintain the remembered set in a generational collector, the mutator invokes : little bits of code that run when you mutate a field in an object. This is overhead relative to non-generational configurations, where the mutator doesn’t have to invoke collector code when it sets fields.write barriers So, could it be that Whippet’s write barriers or remembered set are somehow so inefficient that my tests are unrepresentative of the state of the art? I used to use card-marking barriers, but I started to suspect they cause too much overhead during minor GC and introduced too much cache contention. I switched to some months back for Whippet’s Immix-derived space, and we use the same kind of barrier in the generational copying (pcc) collector. I think this is state of the art. I need to see if I can find a configuration that allows me to measure the overhead of these barriers, independently of other components of a generational collector.precise field-logging barriers A few months ago, my only generational collector used the algorithm, which is an unconventional configuration: its nursery is not contiguous, non-moving, and can be as large as the heap. This is part of the reason that I implemented generational support for the parallel copying collector, to have a different and more conventional collector to compare against. But generational collection loses on some of these benchmarks in both places!sticky mark-bit On one benchmark which repeatedly constructs some trees and then verifies them, I was seeing terrible results for generational GC, which I realized were because of cooperative safepoints: generational GC collects more often, so it requires that all threads reach safepoints more often, and the non-allocating verification phase wasn’t emitting any safepoints. I had to change the compiler to emit safepoints at regular intervals (in my case, on function entry), and it sped up the generational collector by a significant amount. This is one instance of a general observation, which is that any work that doesn’t depend on survivor size in a GC pause is more expensive with a generational collector, which runs more collections. Synchronization can be a cost. I had one bug in which tracing ephemerons did work proportional to the size of the whole heap, instead of the nursery; I had to specifically add generational support for the way Whippet deals with ephemerons during a collection to reduce this cost. Looking deeper at the data, I have partial answers for the splay benchmark, and they are annoying :) Splay doesn’t actually allocate all that much garbage. At a 2.5x heap, the stock parallel MMC collector (in-place, sticky mark bit) collects... one time. That’s all. Same for the generational MMC collector, because the first collection is always major. So at 2.5x we would expect the generational collector to be slightly slower. The benchmark is simply not very good – or perhaps the most generous interpretation is that it represents tasks that allocate 40 MB or so of long-lived data and not much garbage on top. Also at 2.5x heap, the whole-heap copying collector runs 9 times, and the generational copying collector does 293 minor collections and... 9 major collections. We are not reducing the number of major GCs. It means either the nursery is too small, so objects aren’t dying young when they could, or the benchmark itself doesn’t conform to the weak generational hypothesis. At a 1.5x heap, the copying collector doesn’t have enough space to run. For MMC, the non-generational variant collects 7 times, and generational MMC times out. Timing out indicates a bug, I think. Annoying! I tend to think that if I get results and there were fewer than, like, 5 major collections for a whole-heap collector, that indicates that the benchmark is probably inapplicable at that heap size, and I should somehow surface these anomalies in my analysis scripts. Doing a similar exercise for nboyer at 2.5x heap with 8 threads (4GB for 1.6GB live data), I see that pcc did 20 major collections, whereas generational pcc lowered that to 8 major collections and 3471 minor collections. Could it be that there are still too many fixed costs associated with synchronizing for global stop-the-world minor collections? I am going to have to add some fine-grained tracing to find out. I just don’t know! I want to believe that generational collection was an out-and-out win, but I haven’t yet been able to prove it is true. I do have some homework to do. I need to find a way to test the overhead of my write barrier – probably using the MMC collector and making it only do major collections. I need to fix generational-mmc for splay and a 1.5x heap. And I need to do some fine-grained performance analysis for minor collections in large heaps. Enough for today. Feedback / reactions very welcome. Thanks for reading and happy hacking! hypothesis test workbench results? “generational collection is good because bump-pointer allocation” “generational collection lowers pause times” is it whiffle? is it something about the nursery size? is it something about the benchmarks? is it the write barrier? is it something about the generational mechanism? is it something about collecting more often? is it something about collection frequency? collecting more often redux conclusion?
More in programming
If you manage a team, who are your teammates? If you're a staff software engineer embedded in a product team, who are your teammates? The answer to the question comes down to who your main responsibility lies with. That's not the folks you're managing and leading. Your responsibility lies with your fellow leaders, and they're your teammates. The first team mentality There's a concept in leadership called the first team mentality. If you're a leader, then you're a member of a couple of different teams at the same time. Using myself as an example, I'm a member of the company's leadership team (along with the heads of marketing, sales, product, etc.), and I'm also a member of the engineering department's leadership team (along with the engineering directors and managers and the CTO). I'm also sometimes embedded into a team for a project, and at one point I was running a 3-person platform team day-to-day. So I'm on at least two teams, but often three or more. Which of these is my "first" team, the one which I will prioritize over all the others? For my role, that's ultimately the company leadership. Each department is supposed to work toward the company goals, and so if there's an inter-department conflict you need to do what's best for the company—helping your fellow department heads—rather than what's best for your department. (Ultimately, your job is to get both of these into alignment; more on that later.) This applies across roles. If you're an engineering manager, your teammates are not the people who report to you. Your teammates are the other engineering managers and staff engineers at your level. You all are working together toward department goals, and sometimes the team has to sacrifice to make that happen. Focus on the bigger goals One of the best things about a first team mentality is that it comes with a shift in where your focus is. You have to focus on the broader goals your group is working in service of, instead of focusing on your group's individual work. I don't think you can achieve either without the other. When you zoom out from the team you lead or manage and collaborate with your fellow leaders, you gain context from them. You see what their teams are working on, and you can contextualize your work with theirs. And you also see how your work impacts theirs, both positively and negatively. That broader context gives you a reminder of the bigger, broader goals. It can also show you that those goals are unclear. And if that's the case, then the work you're doing in your individual teams doesn't matter, because no one is going in the same direction! What's more important there is to focus on figuring out what the bigger goals should be. And once those are done, then you can realign each of your groups around them. Conflicts are a lens Sometimes the first team mentality will result in a conflict. There's something your group wants or needs, which will result in a problem for another group. Ultimately, this is your work to resolve, and the conflict is a lens you can use to see misalignment and to improve the greater organization. You have to find a way to make sure that your group is healthy and able to thrive. And you also have to make sure that your group works toward collective success, which means helping all the groups achieve success. Any time you run into a conflict like this, it means that something went wrong in alignment. Either your group was doing something which worked against its own goal, or it was doing something which worked against another group's goal. If the latter, then that means that the goals themselves fundamentally conflicted! So you go and you take that conflict, and you work through it. You work with your first team—and you figure out what the mismatch is, where it came from, and most importantly, what we do to resolve it. Then you take those new goals back to your group. And you do it with humility, since you're going to have to tell them that you made a mistake. Because that alignment is ultimately your job, and you have to own your failures if you expect your team to be able to trust you and trust each other.
We didn’t used to need an explanation for having kids. That was just life. That’s just what you did. But now we do, because now we don’t. So allow me: Having kids means making the most interesting people in the world. Not because toddlers or even teenagers are intellectual oracles — although life through their eyes is often surprising and occasionally even profound — but because your children will become the most interesting people to you. That’s the important part. To you. There are no humans on earth I’m as interested in as my children. Their maturation and growth are the greatest show on the planet. And having a front-seat ticket to this performance is literally the privilege of a lifetime. But giving a review of this incredible show just doesn’t work. I could never convince a stranger that my children are the most interesting people in the world, because they wouldn’t be, to them. So words don’t work. It’s a leap of faith. All I can really say is this: Trust me, bro.
If you give some monkeys a slice of cucumber each, they are all pretty happy. Then you give one monkey a grape, and nobody is happy with their cucumber any more. They might even throw the slices back at the experimenter. He got a god damned grape this is bullshit I don’t want a cucumber anymore! Nobody was in absolute terms worse off, but that doesn’t prevent the monkeys from being upset. And this isn’t unique to monkeys, I see this same behavior on display when I hear about billionaires. It’s not about what I have, they got a grape. The tweet is here. What do you do about this? Of course, you can fire this women, but what percent of people in American society feel the same way? How much of this can you tolerate and still have a functioning society? What’s particularly absurd about the critique in the video is that it hasn’t been thought through very far. If that house and its friends stopped “ordering shit”, the company would stop making money and she wouldn’t have that job. There’s nothing preventing her from quitting today and getting the same outcome for herself. But of course, that isn’t what it’s about, because then somebody else would be delivering the packages. You see, that house got a grape. So how do we get through this? I’ll propose something, but it’s sort of horrible. Bring people to power based on this feeling. Let everyone indulge fully in their resentment. Kill the bourgeois. They got grapes, kill them all! Watch the situation not improve. Realize that this must be because there’s still counterrevolutionaries in the mix, still a few grapefuckers. Some billionaire is trying to hide his billions! Let the purge continue! And still, things are not improving. People are starving. The economy isn’t even tracked anymore. Things are bad. Millions are dead. The demoralization is complete. Starvation and real poverty are more powerful emotions than resentment. It was bad when people were getting grapes, but now there aren’t even cucumbers anymore. In the face of true poverty for all, the resentment fades. Society begins to heal. People are grateful to have food, they are grateful for what they have. Expectations are back in line with market value. You have another way to fix this? Cause this is what seems to happen in history, and it takes a generation. The demoralization is just beginning.
Yesterday, the tj-actions repository, a popular tool used with Github Actions was compromised (for more background read one of these two articles). Watching the infrastructure and security engineering teams at Carta respond, it highlighted to me just how much LLMs can’t meaningfully replace many essential roles of software professionals. However, I’m also reading Jennifer Palkha’s Recoding America, which makes an important point: decision-makers can remain irrational longer than you can remain solvent. (Or, in this context, remain employed.) I’ve been thinking about this a lot lately, as I’ve ended up having more “2025 is not much fun”-themed career discussions with prior colleagues navigating the current job market. I’ve tried to pull together my points from those conversations here: Many people who first entered senior roles in 2010-2020 are finding current roles a lot less fun. There are a number of reasons for this. First, managers were generally evaluated in that period based on their ability to hire, retain and motivate teams. The current market doesn’t value those skills particularly highly, but instead prioritizes a different set of skills: working in the details, pushing pace, and navigating the technology transition to foundational models / LLMs. This means many members of the current crop of senior leaders are either worse at the skills they currently need to succeed, or are less motivated by those activities. Either way, they’re having less fun. Similarly, the would-be senior leaders from 2010-2020 era who excelled at working in the details, pushing pace and so on, are viewed as stagnate in their careers so are still finding it difficult to move into senior roles. This means that many folks feel like the current market has left them behind. This is, of course, not universal. It is a general experience that many people are having. Many people are not having this experience. The technology transition to Foundational models / LLMs as a core product and development tool is causing many senior leaders’ hard-earned playbooks to be invalidated. Many companies that were stable, durable market leaders are now in tenuous positions because foundational models threaten to erode their advantage. Whether or not their advantage is truly eroded is uncertain, but it is clear that usefully adopting foundational models into a product requires more than simply shoving an OpenAI/Anthropic API call in somewhere. Instead, you have to figure out how to design with progressive validation, with critical data validated via human-in-the-loop techniques before it is used in a critical workflow. It also requires designing for a rapidly improving toolkit: many workflows that were laughably bad in 2023 work surprisingly well with the latest reasoning models. Effective product design requires architecting for both massive improvement, and no improvement at all, of models in 2026-2027. This is equally true of writing software itself. There’s so much noise about how to write software, and much of it’s clearly propaganda–this blog’s opening anecdote regarding the tj-actions repository prove that expertise remains essential–but parts of it aren’t. I spent a few weeks in the evenings working on a new side project via Cursor in January, and I was surprised at how much my workflow changed even through Cursor itself was far from perfect. Even since then, Claude has advanced from 3.5 to 3.7 with extended thinking. Again, initial application development might easily be radically different in 2027, or it might be largely unchanged after the scaffolding step in complex codebases. (I’m also curious to see if context window limitations drive another flight from monolithic architectures.) Sitting out this transition, when we are relearning how to develop software, feels like a high risk proposition. Your well-honed skills in team development are already devalued today relative to three years ago, and now your other skills are at risk of being devalued as well. Valuations and funding are relatively less accessible to non-AI companies than they were three years ago. Certainly elite companies are doing alright, whether or not they have a clear AI angle, but the cutoff for remaining elite has risen. Simultaneously, the public markets are challenged, which means less willingness for both individuals and companies to purchase products, which slows revenue growth, further challenging valuations and funding. The consequence of this if you’re at a private, non-AI company, is that you’re likely to hire less, promote less, see less movement in pay bands, and experience a less predictable path to liquidity. It also means fewer open roles at other companies, so there’s more competition when attempting to trade up into a larger, higher compensated role at another company. The major exception to this is joining an AI company, but generally those companies are in extremely competitive markets and are priced more appropriately for investors managing a basket of investments than for employees trying to deliver a predictable return. If you join one of these companies today, you’re probably joining a bit late to experience a big pop, your equity might go to zero, and you’ll be working extremely hard for the next five to seven years. This is the classic startup contract, but not necessarily the contract that folks have expected over the past decade as maximum compensation has generally come from joining a later-stage company or member of the Magnificent Seven. As companies respond to the reduced valuations and funding, they are pushing their teams harder to find growth with their existing team. In the right environment, this can be motivating, but people may have opted into to a more relaxed experience that has become markedly less relaxed without their consent. If you pull all those things together, you’re essentially in a market where profit and pace are fixed, and you have to figure out how you personally want to optimize between people, prestige and learning. Whereas a few years ago, I think these variables were much more decoupled, that is not what I hear from folks today, even if their jobs were quite cozy a few years ago. Going a bit further, I know folks who are good at their jobs, and have been struggling to find something meaningful for six-plus months. I know folks who are exceptionally strong candidates, who can find reasonably good jobs, but even they are finding that the sorts of jobs they want simply don’t exist right now. I know folks who are strong candidates but with some oddities in their profile, maybe too many short stints, who are now being filtered out because hiring managers need some way to filter through the higher volume of candidates. I can’t give advice on what you should do, but if you’re finding this job market difficult, it’s certainly not personal. My sense is that’s basically the experience that everyone is having when searching for new roles right now. If you are in a role today that’s frustrating you, my advice is to try harder than usual to find a way to make it a rewarding experience, even if it’s not perfect. I also wouldn’t personally try to sit this cycle out unless you’re comfortable with a small risk that reentry is quite difficult: I think it’s more likely that the ecosystem is meaningfully different in five years than that it’s largely unchanged. Altogether, this hasn’t really been the advice that anyone wanted when they chatted with me, but it seems to generally have resonated with them as a realistic appraisal of the current markets. Hopefully there’s something useful for you in here as well.