More from wingolog
Hey all, quick post today to mention that I added tracing support to the . If the support library for is available when Whippet is compiled, Whippet embedders can visualize the GC process. Like this!Whippet GC libraryLTTng Click above for a full-scale screenshot of the trace explorer processing the with the on a 2.5x heap. Of course no image will have all the information; the nice thing about trace visualizers like is that you can zoom in to sub-microsecond spans to see exactly what is happening, have nice mouseovers and clicky-clickies. Fun times!Perfetto microbenchmarknboyerparallel copying collector Adding tracepoints to a library is not too hard in the end. You need to , which has a file. You need to . Then you have a that includes the header, to generate the code needed to emit tracepoints.pull in the librarylttng-ustdeclare your tracepoints in one of your header filesminimal C filepkg-config Annoyingly, this header file you write needs to be in one of the directories; it can’t be just in the the source directory, because includes it seven times (!!) using (!!!) and because the LTTng file header that does all the computed including isn’t in your directory, GCC won’t find it. It’s pretty ugly. Ugliest part, I would say. But, grit your teeth, because it’s worth it.-Ilttngcomputed includes Finally you pepper your source with tracepoints, which probably you so that you don’t have to require LTTng, and so you can switch to other tracepoint libraries, and so on.wrap in some macro I wrote up a little . It’s not as easy as , which I think is an error. Another ugly point. Buck up, though, you are so close to graphs!guide for Whippet users about how to actually get tracesperf record By which I mean, so close to having to write a Python script to make graphs! Because LTTng writes its logs in so-called Common Trace Format, which as you might guess is not very common. I have a colleague who swears by it, that for him it is the lowest-overhead system, and indeed in my case it has no measurable overhead when trace data is not being collected, but his group uses custom scripts to convert the CTF data that he collects to... (?!?!?!!).GTKWave In my case I wanted to use Perfetto’s UI, so I found a to convert from CTF to the . But, it uses an old version of Babeltrace that wasn’t available on my system, so I had to write a (!!?!?!?!!), probably the most Python I have written in the last 20 years.scriptJSON-based tracing format that Chrome profiling used to usenew script Yes. God I love blinkenlights. As long as it’s low-maintenance going forward, I am satisfied with the tradeoffs. Even the fact that I had to write a script to process the logs isn’t so bad, because it let me get nice nested events, which most stock tracing tools don’t allow you to do. I fixed a small performance bug because of it – a . A win, and one that never would have shown up on a sampling profiler too. I suspect that as I add more tracepoints, more bugs will be found and fixed.worker thread was spinning waiting for a pool to terminate instead of helping out I think the only thing that would be better is if tracepoints were a part of Linux system ABIs – that there would be header files to emit tracepoint metadata in all binaries, that you wouldn’t have to link to any library, and the actual tracing tools would be intermediated by that ABI in such a way that you wouldn’t depend on those tools at build-time or distribution-time. But until then, I will take what I can get. Happy tracing! on adding tracepoints using the thing is it worth it? fin
Usually in this space I like to share interesting things that I find out; you might call it a research-epistle-publish loop. Today, though, I come not with answers, but with questions, or rather one question, but with fractal surface area: what is the value proposition of generational garbage collection? The conventional wisdom is encapsulated in a 2004 Blackburn, Cheng, and McKinley paper, , which compares whole-heap mark-sweep and copying collectors to their generational counterparts, using the Jikes RVM as a test harness. (It also examines a generational reference-counting collector, which is an interesting predecessor to the 2022 work by Zhao, Blackburn, and McKinley.)“Myths and Realities: The Performance Impact of Garbage Collection”LXR The paper finds that generational collectors spend less time than their whole-heap counterparts for a given task. This is mainly due to less time spent collecting, because generational collectors avoid tracing/copying work for older objects that mostly stay in the same place in the live object graph. The paper also notes an improvement for mutator time under generational GC, but only for the generational mark-sweep collector, which it attributes to the locality and allocation speed benefit of bump-pointer allocation in the nursery. However for copying collectors, generational GC tends to slow down the mutator, probably because of the write barrier, but in the end lower collector times still led to lower total times. So, I expected generational collectors to always exhibit lower wall-clock times than whole-heap collectors. In , I have a garbage collector with an abstract API that specializes at compile-time to the mutator’s object and root-set representation and to the collector’s allocator, write barrier, and other interfaces. I embed it in , a simple Scheme-to-C compiler that can run some small multi-threaded benchmarks, for example the classic Gabriel benchmarks. We can then test those benchmarks against different collectors, mutator (thread) counts, and heap sizes. I expect that the generational parallel copying collector takes less time than the whole-heap parallel copying collector.whippetwhiffle So, I ran some benchmarks. Take the splay-tree benchmark, derived from Octane’s . I have a port to Scheme, and the results are... not good!splay.js In this graph the “pcc” series is the whole-heap copying collector, and “generational-pcc” is the generational counterpart, with a nursery sized such that after each collection, its size is 2 MB times the number of active mutator threads in the last collector. So, for this test with eight threads, on my 8-core Ryzen 7 7840U laptop, the nursery is 16MB including the copy reserve, which happens to be the same size as the L3 on this CPU. New objects are kept in the nursery one cycle before being promoted to the old generation. There are also results for , which use an Immix-derived algorithm that allows for bump-pointer allocation but which doesn’t require a copy reserve. There, the generational collectors use a , which has very different performance characteristics as promotion is in-place, and the nursery is as large as the available heap size.“mmc” and “generational-mmc” collectorssticky mark-bit algorithm The salient point is that at all heap sizes, and for these two very different configurations (mmc and pcc), generational collection takes more time than whole-heap collection. It’s not just the splay benchmark either; I see the same thing for the very different . What is the deal?nboyer benchmark I am honestly quite perplexed by this state of affairs. I wish I had a narrative to tie this together, but in lieu of that, voici some propositions and observations. Sometimes people say that the reason generational collection is good is because you get bump-pointer allocation, which has better locality and allocation speed. This is misattribution: it’s bump-pointer allocators that have these benefits. You can have them in whole-heap copying collectors, or you can have them in whole-heap mark-compact or immix collectors that bump-pointer allocate into the holes. Or, true, you can have them in generational collectors with a copying nursery but a freelist-based mark-sweep allocator. But also you can have generational collectors without bump-pointer allocation, for free-list sticky-mark-bit collectors. To simplify this panorama to “generational collectors have good allocators” is incorrect. It’s true, generational GC does lower median pause times: But because a major collection is usually slightly more work under generational GC than in a whole-heap system, because of e.g. the need to reset remembered sets, the maximum pauses are just as big and even a little bigger: I am not even sure that it is meaningful to compare median pause times between generational and non-generational collectors, given that the former perform possibly orders of magnitude more collections than the latter. Doing fewer whole-heap traces is good, though, and in the ideal case, the less frequent major traces under generational collectors allows time for concurrent tracing, which is the true mitigation for long pause times. Could it be that the test harness I am using is in some way unrepresentative? I don’t have more than one test harness for Whippet yet. I will start work on a second Whippet embedder within the next few weeks, so perhaps we will have an answer there. Still, there is ample time spent in GC pauses in these benchmarks, so surely as a GC workload Whiffle has some utility. One reasons that Whiffle might be unrepresentative is that it is an ahead-of-time compiler, whereas nursery addresses are assigned at run-time. Whippet exposes the necessary information to allow a just-in-time compiler to specialize write barriers, for example the inline check that the field being mutated is not in the nursery, and an AOT compiler can’t encode this as an immediate. But it seems a small detail. Also, Whiffle doesn’t do much compiler-side work to elide write barriers. Could the cost of write barriers be over-represented in Whiffle, relative to a production language run-time? Relatedly, Whiffle is just a baseline compiler. It does some partial evaluation but no CFG-level optimization, no contification, no nice closure conversion, no specialization, and so on: is it not representative because it is not an optimizing compiler? How big should the nursery be? I have no idea. As a thought experiment, consider the case of a 1 kilobyte nursery. It is probably too small to allow the time for objects to die young, so the survival rate at each minor collection would be high. Above a certain survival rate, generational GC is probably a lose, because your program violates the weak generational hypothesis: it introduces a needless copy for all survivors, and a synchronization for each minor GC. On the other hand, a 1 GB nursery is probably not great either. It is plenty large enough to allow objects to die young, but the number of survivor objects in a space that large is such that pause times would not be very low, which is one of the things you would like in generational GC. Also, you lose out on locality: a significant fraction of the objects you traverse are probably out of cache and might even incur TLB misses. So there is probably a happy medium somewhere. My instinct is that for a copying nursery, you want to make it about as big as L3 cache, which on my 8-core laptop is 16 megabytes. Systems are different sizes though; in Whippet my current heuristic is to reserve 2 MB of nursery per core that was active in the previous cycle, so if only 4 threads are allocating, you would have a 8 MB nursery. Is this good? I don’t know. I don’t have a very large set of benchmarks that run on Whiffle, and they might not be representative. I mean, they are microbenchmarks. One question I had was about heap sizes. If a benchmark’s maximum heap size fits in L3, which is the case for some of them, then probably generational GC is a wash, because whole-heap collection stays in cache. When I am looking at benchmarks that evaluate generational GC, I make sure to choose those that exceed L3 size by a good factor, for example the 8-mutator splay benchmark in which minimum heap size peaks at 300 MB, or the 8-mutator nboyer-5 which peaks at 1.6 GB. But then, should nursery size scale with total heap size? I don’t know! Incidentally, the way that I scale these benchmarks to multiple mutators is a bit odd: they are serial benchmarks, and I just run some number of threads at a time, and scale the heap size accordingly, assuming that the minimum size when there are 4 threads is four times the minimum size when there is just one thread. However, , in the sense that there is no heap size under which they fail and above which they succeed; I quote:multithreaded programs are unreliable A generational collector partitions objects into old and new sets, and a minor collection starts by visiting all old-to-new edges, called the “remembered set”. As the program runs, mutations to old objects might introduce new old-to-new edges. To maintain the remembered set in a generational collector, the mutator invokes : little bits of code that run when you mutate a field in an object. This is overhead relative to non-generational configurations, where the mutator doesn’t have to invoke collector code when it sets fields.write barriers So, could it be that Whippet’s write barriers or remembered set are somehow so inefficient that my tests are unrepresentative of the state of the art? I used to use card-marking barriers, but I started to suspect they cause too much overhead during minor GC and introduced too much cache contention. I switched to some months back for Whippet’s Immix-derived space, and we use the same kind of barrier in the generational copying (pcc) collector. I think this is state of the art. I need to see if I can find a configuration that allows me to measure the overhead of these barriers, independently of other components of a generational collector.precise field-logging barriers A few months ago, my only generational collector used the algorithm, which is an unconventional configuration: its nursery is not contiguous, non-moving, and can be as large as the heap. This is part of the reason that I implemented generational support for the parallel copying collector, to have a different and more conventional collector to compare against. But generational collection loses on some of these benchmarks in both places!sticky mark-bit On one benchmark which repeatedly constructs some trees and then verifies them, I was seeing terrible results for generational GC, which I realized were because of cooperative safepoints: generational GC collects more often, so it requires that all threads reach safepoints more often, and the non-allocating verification phase wasn’t emitting any safepoints. I had to change the compiler to emit safepoints at regular intervals (in my case, on function entry), and it sped up the generational collector by a significant amount. This is one instance of a general observation, which is that any work that doesn’t depend on survivor size in a GC pause is more expensive with a generational collector, which runs more collections. Synchronization can be a cost. I had one bug in which tracing ephemerons did work proportional to the size of the whole heap, instead of the nursery; I had to specifically add generational support for the way Whippet deals with ephemerons during a collection to reduce this cost. Looking deeper at the data, I have partial answers for the splay benchmark, and they are annoying :) Splay doesn’t actually allocate all that much garbage. At a 2.5x heap, the stock parallel MMC collector (in-place, sticky mark bit) collects... one time. That’s all. Same for the generational MMC collector, because the first collection is always major. So at 2.5x we would expect the generational collector to be slightly slower. The benchmark is simply not very good – or perhaps the most generous interpretation is that it represents tasks that allocate 40 MB or so of long-lived data and not much garbage on top. Also at 2.5x heap, the whole-heap copying collector runs 9 times, and the generational copying collector does 293 minor collections and... 9 major collections. We are not reducing the number of major GCs. It means either the nursery is too small, so objects aren’t dying young when they could, or the benchmark itself doesn’t conform to the weak generational hypothesis. At a 1.5x heap, the copying collector doesn’t have enough space to run. For MMC, the non-generational variant collects 7 times, and generational MMC times out. Timing out indicates a bug, I think. Annoying! I tend to think that if I get results and there were fewer than, like, 5 major collections for a whole-heap collector, that indicates that the benchmark is probably inapplicable at that heap size, and I should somehow surface these anomalies in my analysis scripts. Doing a similar exercise for nboyer at 2.5x heap with 8 threads (4GB for 1.6GB live data), I see that pcc did 20 major collections, whereas generational pcc lowered that to 8 major collections and 3471 minor collections. Could it be that there are still too many fixed costs associated with synchronizing for global stop-the-world minor collections? I am going to have to add some fine-grained tracing to find out. I just don’t know! I want to believe that generational collection was an out-and-out win, but I haven’t yet been able to prove it is true. I do have some homework to do. I need to find a way to test the overhead of my write barrier – probably using the MMC collector and making it only do major collections. I need to fix generational-mmc for splay and a 1.5x heap. And I need to do some fine-grained performance analysis for minor collections in large heaps. Enough for today. Feedback / reactions very welcome. Thanks for reading and happy hacking! hypothesis test workbench results? “generational collection is good because bump-pointer allocation” “generational collection lowers pause times” is it whiffle? is it something about the nursery size? is it something about the benchmarks? is it the write barrier? is it something about the generational mechanism? is it something about collecting more often? is it something about collection frequency? collecting more often redux conclusion?
Good evening, fey readers. Tonight, a note on human rights and human wrongs. I am in my mid-fourties, and so I have seen some garbage governments in my time; one of the worst was Trump’s election in 2016. My heart ached in so many ways, but most of all for immigrants in the US. It has always been expedient for a politician to blame problems on those outside the polity, and in recent years it has been open season on immigration: there is always a pundit ready to make immigrants out to be the source of a society’s ills, always a publisher ready to distribute their views, always a news channel ready to invite the pundit to discuss these Honest Questions, and never will they actually talk to an immigrant. It gives me a visceral sense of revulsion, as much now as in 2016. What to do? All of what was happening in my country was at a distance. And there is this funny thing that you don’t realize inside the US, in which the weight of the US’s cultural influence is such that the concerns of the US are pushed out into the consciousness of the rest of the world and made out to have a kind of singular, sublime importance, outweighing any concern that people in South Africa or Kosovo or Thailand might be having; and even to the point of outweighing what is happening in your own country of residence. I remember the horror of Europeans upon hearing of Trump’s detention camps—and it is right to be horrified!—but the same people do not know what is happening at and within their own borders, the network of prisons and flophouses and misery created by Europe’s own xenophobic project. The cultural weight of the US is such that it can blind the rest of the world into ignorance of the local, and thus to inaction, there at the place where the rest of us actually have power to act. I could not help immigrants in the US, practically speaking. So I started to help immigrants in France. I joined the local chapter of the , an organization with a human rights focus but whose main activity was a weekly legal and administrative advice clinic. I had gone through the immigration pipeline and could help others.Ligue des droits de l’Homme It has been interesting work. One thing that you learn quickly is that not everything that the government does is legal. Sometimes this observation takes the form of an administrative decision that didn’t respect the details of a law. Sometimes it’s something related to the , for example that a law’s intent was not reflected in the way it was translated to the operational norms used by, say, asylum processing agents. Sometimes it’s that there was no actual higher norm, but that the norms are made by the people who show up, and if it’s only the cops that show up, things get tilted copwards.hierarchy of norms A human-rights approach is essentially liberal, and I don’t know if it is enough in these the end days of a liberal rule of law. It is a tool. But for what I see, it is enough for me right now: there is enough to do, I can make enough meaningful progress for people that the gaping hole in my soul opened by the Trumpocalypse has started to close. I found my balm in this kind of work, but there are as many paths as people, and surely yours will be different. So, friends, here we are in 2025: . These are trying times. Care for yourself and for your loved ones. For some of you, that will be as much as you can do; we all have different situations. But for the rest of us, and especially those who are not really victims of marginalization, we can do things, and it will help people, and what’s more, it will make you feel better. Find some comrades, and reach your capacity gradually; you’re no use if you burn out. I don’t know what is on the other side of this, but in the meantime let’s not make it easy for the bastards.new liver, same eagles
I just found a funny failure mode in the garbage collector and thought readers might be amused.Whippet Say you have a semi-space nursery and a semi-space old generation. Both are block-structured. You are allocating live data, say, a long linked list. Allocation fills the nursery, which triggers a minor GC, which decides to keep everything in the nursery another round, because that’s policy: Whippet gives new objects another cycle in which to potentially become unreachable. This causes a funny situation! Consider that the first minor GC doesn’t actually free anything. But, like, : it’s impossible to allocate anything in the nursery after collection, so you run another minor GC, which promotes everything, and you’re back to the initial situation, wash rinse repeat. Copying generational GC is strictly a pessimization in this case, with the additional insult that it doesn’t preserve object allocation order.nothing Consider also that because , any one of your minor GCs might require more blocks after GC than before. Unlike in the case of a major GC in which this essentially indicates out-of-memory, either because of a mutator bug or because the user didn’t give the program enough heap, for minor GC this is just what we expect when allocating a long linked list.copying collectors with block-structured heaps are unreliable Therefore we either need to allow a minor GC to allocate fresh blocks – very annoying, and we have to give them back at some point to prevent the nursery from growing over time – or we need to maintain some kind of margin, corresponding to the maximum amount of fragmentation. Or, or, we allow evacuation to fail in a minor GC, in which case we fall back to promotion. Anyway, I am annoyed and amused and I thought others might share in one or the other of these feelings. Good day and happy hacking!
More in programming
As well as changing the way I organise my writing, last year I made some cosmetic improvements to this site. I design everything on this site myself, and I write the CSS by hand – I don’t use any third-party styles or frameworks. I don’t have any design training, and I don’t do design professionally, so I use this site as a place to learn and practice my design skills. It’s a continual work-in-progress, but I’d like to think it’s getting better over time. I design this site for readers. I write long, text-heavy posts with the occasional illustration or diagram, so I want something that will be comfortable to read and look good on a wide variety of browsers and devices. I get a lot of that “for free” by using semantic HTML and the default styles – most of my CSS is just cosmetic. Let’s go through some of the changes. Cleaning up the link styles This is what links used to look like: Every page has a tint colour, and then I was deriving different shades to style different links – a darker shade for visited links, a lighter shade for visited links in dark mode, and a background that appears on hover. I’m generating these new colours programatically, and I was so proud of getting that code working that I didn’t stop to think whether it was a good idea. In hindsight, I see several issues. The tint colour is meant to give the page a consistent visual appearance, but the different shades diluted that effect. I don’t think their meaning was especially obvious. How many readers ever worked it out? And the hover styles are actively unhelpful – just as you hover over a link you’re interested in, I’m making it harder to read! (At least in light mode – in dark mode, the hover style is barely legible.) One thing I noticed is that for certain tint colours, the “visited” colour I generated was barely distinguishable from the text colour. So I decided to lean into that in the new link styles: visited links are now the same colour as regular text. This new set of styles feels more coherent. I’m only using one shade of the tint colour, and I think the meaning is a bit clearer – only new-to-you links will get the pop of colour to stand out from the rest of the text. I’m happy to rely on underlines for the links you’ve already visited. And when you hover, the thick underline means you can see where you are, but the link text remains readable. Swapping out the font I swapped out the font, replacing Georgia with Charter. The difference is subtle, so I’d be surprised if anyone noticed: I’ve always used web safe fonts for this site – the fonts that are built into web browsers, and don’t need to be downloaded first. I’ve played with custom fonts from time to time, but there’s no font I like more enough to justify the hassle of loading a custom font. I still like Georgia, but I felt it was showing its age – it was designed in 1993 to look good on low-resolution screens, but looks a little chunky on modern displays. I think Charter looks nicer on high-resolution screens, but if you don’t have it installed then I fall back to Georgia. Making all the roundrects consistent I use a lot of rounded rectangles for components on this site, including article cards, blockquotes, and code blocks. For a long time they had similar but not identical styles, because I designed them all at different times. There were weird inconsistencies. For example, why does one roundrect have a 2px border, but another one is 3px? These are small details that nobody will ever notice directly, but undermine the sense of visual together-ness. I’ve done a complete overhaul of these styles, to make everything look more consistent. I’m leaning heavily on CSS variables, a relatively new CSS feature that I’ve really come to like. Variables make it much easier to use consistent values in different rules. I also tweaked the appearance: I’ve removed another two shades of the tint colour. (Yes, those shades were different from the ones used in links.) Colour draws your attention, so I’m trying to use it more carefully. A link says “click here”. A heading says “start here”. What does a blockquote or code snippet say? It’s just part of the text, so it shouldn’t be grabbing your attention. I think the neutral background also makes the syntax highlighting easier to read, because the tint colour isn’t clashing with the code colours. I could probably consolidate the shades of grey I’m using, but that’s a task for another day. I also removed the left indent on blockquotes and code blocks – I think it looks nicer to have a flush left edge for everything, and it means you can read more text on mobile screens. (That’s where I really felt the issues with the old design.) What’s next? By tidying up the design and reducing the number of unique elements, I’ve got a bit of room to add something new. For a while now I’ve wanted a place at the bottom of posts for common actions, or links to related and follow-up posts. As I do more and more long-form, reflective writing, I want to be able to say “if you liked this, you should read this too”. I want something that catches your eye, but doesn’t distract from the article you’re already reading. Louie Mantia has a version of this that I quite like: I’ve held off designing this because the existing pages felt too busy, but now I feel like I have space to add this – there aren’t as many clashing colours and components to compete for your attention. I’m still sketching out designs – my current idea is my rounded rectangle blocks, but with a coloured border instead of a subtle grey, but when I did a prototype, I feel like it’s missing something. I need to try a few more ideas. Watch this space! [If the formatting of this post looks odd in your feed reader, visit the original article]
One of the biggest mistakes that new startup founders make is trying to get away from the customer-facing roles too early. Whether it's customer support or it's sales, it's an incredible advantage to have the founders doing that work directly, and for much longer than they find comfortable. The absolute worst thing you can do is hire a sales person or a customer service agent too early. You'll miss all the golden nuggets that customers throw at you for free when they're rejecting your pitch or complaining about the product. Seeing these reasons paraphrased or summarized destroy all the nutrients in their insights. You want that whole-grain feedback straight from the customers' mouth! When we launched Basecamp in 2004, Jason was doing all the customer service himself. And he kept doing it like that for three years!! By the time we hired our first customer service agent, Jason was doing 150 emails/day. The business was doing millions of dollars in ARR. And Basecamp got infinitely, better both as a market proposition and as a product, because Jason could funnel all that feedback into decisions and positioning. For a long time after that, we did "Everyone on Support". Frequently rotating programmers, designers, and founders through a day of answering emails directly to customers. The dividends of doing this were almost as high as having Jason run it all in the early years. We fixed an incredible number of minor niggles and annoying bugs because programmers found it easier to solve the problem than to apologize for why it was there. It's not easy doing this! Customers often offer their valuable insights wrapped in rude language, unreasonable demands, and bad suggestions. That's why many founders quit the business of dealing with them at the first opportunity. That's why few companies ever do "Everyone On Support". That's why there's such eagerness to reduce support to an AI-only interaction. But quitting dealing with customers early, not just in support but also in sales, is an incredible handicap for any startup. You don't have to do everything that every customer demands of you, but you should certainly listen to them. And you can't listen well if the sound is being muffled by early layers of indirection.
I’m sitting in a small coffee shop in Brooklyn. I have a warm drink, and it’s just started to snow outside. I’m visiting New York to see Operation Mincemeat on Broadway – I was at the dress rehearsal yesterday, and I’ll be at the opening preview tonight. I’ve seen this show more times than I care to count, and I hope US theater-goers love it as much as Brits. The people who make the show will tell you that it’s about a bunch of misfits who thought they could do something ridiculous, who had the audacity to believe in something unlikely. That’s certainly one way to see it. The musical tells the true story of a group of British spies who tried to fool Hitler with a dead body, fake papers, and an outrageous plan that could easily have failed. Decades later, the show’s creators would mirror that same spirit of unlikely ambition. Four friends, armed with their creativity, determination, and a wardrobe full of hats, created a new musical in a small London theatre. And after a series of transfers, they’re about to open the show under the bright lights of Broadway. But when I watch the show, I see a story about friendship. It’s about how we need our friends to help us, to inspire us, to push us to be the best versions of ourselves. I see the swaggering leader who needs a team to help him truly achieve. The nervous scientist who stands up for himself with the support of his friends. The enthusiastic secretary who learns wisdom and resilience from her elder. And so, I suppose, it’s fitting that I’m not in New York on my own. I’m here with friends – dozens of wonderful people who I met through this ridiculous show. At first, I was just an audience member. I sat in my seat, I watched the show, and I laughed and cried with equal measure. After the show, I waited at stage door to thank the cast. Then I came to see the show a second time. And a third. And a fourth. After a few trips, I started to see familiar faces waiting with me at stage door. So before the cast came out, we started chatting. Those conversations became a Twitter community, then a Discord, then a WhatsApp. We swapped fan art, merch, and stories of our favourite moments. We went to other shows together, and we hung out outside the theatre. I spent New Year’s Eve with a few of these friends, sitting on somebody’s floor and laughing about a bowl of limes like it was the funniest thing in the world. And now we’re together in New York. Meeting this kind, funny, and creative group of people might seem as unlikely as the premise of Mincemeat itself. But I believed it was possible, and here we are. I feel so lucky to have met these people, to take this ridiculous trip, to share these precious days with them. I know what a privilege this is – the time, the money, the ability to say let’s do this and make it happen. How many people can gather a dozen friends for even a single evening, let alone a trip halfway round the world? You might think it’s silly to travel this far for a theatre show, especially one we’ve seen plenty of times in London. Some people would never see the same show twice, and most of us are comfortably into double or triple-figures. Whenever somebody asks why, I don’t have a good answer. Because it’s fun? Because it’s moving? Because I enjoy it? I feel the need to justify it, as if there’s some logical reason that will make all of this okay. But maybe I don’t have to. Maybe joy doesn’t need justification. A theatre show doesn’t happen without people who care. Neither does a friendship. So much of our culture tells us that it’s not cool to care. It’s better to be detached, dismissive, disinterested. Enthusiasm is cringe. Sincerity is weakness. I’ve certainly felt that pressure – the urge to play it cool, to pretend I’m above it all. To act as if I only enjoy something a “normal” amount. Well, fuck that. I don’t know where the drive to be detached comes from. Maybe it’s to protect ourselves, a way to guard against disappointment. Maybe it’s to seem sophisticated, as if having passions makes us childish or less mature. Or perhaps it’s about control – if we stay detached, we never have to depend on others, we never have to trust in something bigger than ourselves. Being detached means you can’t get hurt – but you’ll also miss out on so much joy. I’m a big fan of being a big fan of things. So many of the best things in my life have come from caring, from letting myself be involved, from finding people who are a big fan of the same things as me. If I pretended not to care, I wouldn’t have any of that. Caring – deeply, foolishly, vulnerably – is how I connect with people. My friends and I care about this show, we care about each other, and we care about our joy. That care and love for each other is what brought us together, and without it we wouldn’t be here in this city. I know this is a once-in-a-lifetime trip. So many stars had to align – for us to meet, for the show we love to be successful, for us to be able to travel together. But if we didn’t care, none of those stars would have aligned. I know so many other friends who would have loved to be here but can’t be, for all kinds of reasons. Their absence isn’t for lack of caring, and they want the show to do well whether or not they’re here. I know they care, and that’s the important thing. To butcher Tennyson: I think it’s better to care about something you cannot affect, than to care about nothing at all. In a world that’s full of cynicism and spite and hatred, I feel that now more than ever. I’d recommend you go to the show if you haven’t already, but that’s not really the point of this post. Maybe you’ve already seen Operation Mincemeat, and it wasn’t for you. Maybe you’re not a theatre kid. Maybe you aren’t into musicals, or history, or war stories. That’s okay. I don’t mind if you care about different things to me. (Imagine how boring the world would be if we all cared about the same things!) But I want you to care about something. I want you to find it, find people who care about it too, and hold on to them. Because right now, in this city, with these people, at this show? I’m so glad I did. And I hope you find that sort of happiness too. Some of the people who made this trip special. Photo by Chloe, and taken from her Twitter. Timing note: I wrote this on February 15th, but I delayed posting it because I didn’t want to highlight the fact I was away from home. [If the formatting of this post looks odd in your feed reader, visit the original article]
Humanity's Last Exam by Center for AI Safety (CAIS) and Scale AI
Most of our cultural virtues, celebrated heroes, and catchy slogans align with the idea of "never give up". That's a good default! Most people are inclined to give up too easily, as soon as the going gets hard. But it's also worth remembering that sometimes you really should fold, admit defeat, and accept that your plan didn't work out. But how to distinguish between a bad plan and insufficient effort? It's not easy. Plenty of plans look foolish at first glance, especially to people without skin in the game. That's the essence of a disruptive startup: The idea ought to look a bit daft at first glance or it probably doesn't carry the counter-intuitive kernel needed to really pop. Yet it's also obviously true that not every daft idea holds the potential to be a disruptive startup. That's why even the best venture capital investors in the world are wrong far more than they're right. Not because they aren't smart, but because nobody is smart enough to predict (the disruption of) the future consistently. The best they can do is make long bets, and then hope enough of them pay off to fund the ones that don't. So far, so logical, so conventional. A million words have been written by a million VCs about how their shrewd eyes let them see those hidden disruptive kernels before anyone else could. Good for them. What I'm more interested in knowing more about is how and when you pivot from a promising bet to folding your hand. When do you accept that no amount of additional effort is going to get that turkey to soar? I'm asking because I don't have any great heuristics here, and I'd really like to know! Because the ability to fold your hand, and live to play your remaining chips another day, isn't just about startups. It's also about individual projects. It's about work methods. Hell, it's even about politics and societies at large. I'll give you just one small example. In 2017, Rails 5.1 shipped with new tooling for doing end-to-end system tests, using a headless browser to validate the functionality, as a user would in their own browser. Since then, we've spent an enormous amount of time and effort trying to make this approach work. Far too much time, if you ask me now. This year, we finished our decision to fold, and to give up on using these types of system tests on the scale we had previously thought made sense. In fact, just last week, we deleted 5,000 lines of code from the Basecamp code base by dropping literally all the system tests that we had carried so diligently for all these years. I really like this example, because it draws parallels to investing and entrepreneurship so well. The problem with our approach to system tests wasn't that it didn't work at all. If that had been the case, bailing on the approach would have been a no brainer long ago. The trouble was that it sorta-kinda did work! Some of the time. With great effort. But ultimately wasn't worth the squeeze. I've seen this trap snap on startups time and again. The idea finds some traction. Enough for the founders to muddle through for years and years. Stuck with an idea that sorta-kinda does work, but not well enough to be worth a decade of their life. That's a tragic trap. The only antidote I've found to this on the development side is time boxing. Programmers are just as liable as anyone to believe a flawed design can work if given just a bit more time. And then a bit more. And then just double of what we've already spent. The time box provides a hard stop. In Shape Up, it's six weeks. Do or die. Ship or don't. That works. But what's the right amount of time to give a startup or a methodology or a societal policy? There's obviously no universal answer, but I'd argue that whatever the answer, it's "less than you think, less than you want". Having the grit to stick with the effort when the going gets hard is a key trait of successful people. But having the humility to give up on good bets turned bad might be just as important.