More from On Test Automation
Last weekend, I wrote a more or less casual post on LinkedIn containing the ‘rules’ (it’s more of a list of terms and conditions, really) I set for myself when it comes to using AI. That post received some interesting comments that made me think and refine my thoughts on when (not) to use AI to support me in my work. Thank you to all of you who commented for doing so, and for showing me that there still is value in being active on LinkedIn in between all the AI-generated ‘content’. I really appreciate it. Now, AI and LLMs like ChatGPT or Claude can be very useful, that is, when used prudently. I think it is very important to be conscious and cautious when it comes to using AI, though, which is why I wrote that post. I wrote it mostly for myself, to structure my thoughts around AI, but also because I think it is important that others are at least conscious of what they’re doing and working with. That doesn’t mean you have to adhere to or even agree with my views and the way I use these tools, by the way. Different strokes for different folks. Because of the ephemeral nature of these LinkedIn posts, and the importance of the topic to me, I want to repeat the ‘rules’ (again, more of a T&C list) I wrote down here. This is the original, unchanged list from the post I wrote on February 15: I only use it to support me in completing tasks I understand. I need to be able to scrutinize the output the AI system produces and see if it is both sound and fit for the purpose I want to use it for. I never use it to explain to me something I don’t know yet or don’t understand enough. I have seen and read about too many hallucinations to trust them to teach me what I don’t understand. Instead, I use books, articles, and other content from authors and sources I do trust if I’m looking to learn something new. I never EVER use it for creative work. I don’t use AI-generated images anywhere, and all of my blogs, LinkedIn posts, comments, course material and other written text are 100% my own, warts and all. My views, my ideas, my voice. Interestingly, most of the comments were written in reaction to the first two bullet points at the time I wrote this blog post. I don’t know exactly why this is the case, it might be because the people who read it agree (which I doubt seeing the tsunami of AI-generated content that’s around these days), or maybe because there’s a bit of stigma around admitting to use AI for content generation. I don’t know. What I do know is that it is an important principle to me. I wrote about the reasons for that in an earlier blog post, so I won’t repeat myself here. Like so many terms and conditions, the list I wrote down in this post will probably evolve over time, but what will not change is me remaining very careful around where I use and where I don’t use AI to help me in my work. Especially now that the speed with which new developments in the AI space are presented to us and the claims around what it can and will do only get bigger, I think it is wise to remain cautious and look at these developments with a critical and very much human view.
When I build and release new features or bug fixes for RestAssured.Net, I rely heavily on the acceptance tests that I wrote over time. Next to serving as living documentation for the library, I run these tests both locally and on every push to GitHub to see if I didn’t accidentally break something, for different versions of .NET. But how reliable are these tests really? Can I trust them to pass and fail when they should? Did I cover all the things that are important? I speak, write and teach about the importance of testing your tests on a regular basis, so it makes sense to start walking the talk and get more insight into the quality of the RestAssured.Net test suite. One approach to learning more about the quality of your tests is through a technique called mutation testing. I speak about and demo testing your tests and using mutation testing to do so on a regular basis (you can watch a recent talk here), but until now, I’ve pretty much exclusively used PITest for Java. As RestAssured.Net is a C# library, I can’t use PITest, but I’d heard many good things about Stryker.NET, so this would be a perfect opportunity to finally use it. Adding Stryker.NET to the RestAssured.Net project The first step was to add Stryker.Net to the RestAssured.Net project. Stryker.NET is a dotnet tool, so installing it is straightforward: run dotnet new tool-manifest to create a new, project-specific tool manifest (this was the first local dotnet tool for this project) and then dotnet tool install dotnet-stryker to add Stryker.NET as a dotnet tool to the project. Running mutation tests for the first time Running mutation tests with Stryker.NET is just as straightforward: dotnet stryker --project RestAssured.Net.csproj from the tests project folder is all it takes. Because both my test suite (about 200 tests) and the project itself are relatively small code bases, and because my test suite runs quickly, running mutation tests for my entire project works for me. It still took around five minutes for the process to complete. If you have a larger code base, and longer-running test suites, you’ll see that mutation testing will take much, much longer. In that case, it’s probably best to start on a subset of your code base and a subset of your test suite. After five minutes and change, the results are in: Stryker.NET created 538 mutants from my application code base. Of these: 390 were killed, that is, at least one test failed because of this mutation, 117 survived, that is, the change did not make any of the tests fail, and 31 resulted in a timeout, which I’ll need to investigate further, but I suspect it has something to do with HTTP timeouts (RestAssured.Net is an HTTP API testing library, and all acceptance tests perform actual HTTP requests) This leads to an overall mutation testing score of 59.97%. Is that good? Is that bad? In all honesty, I don’t know, and I don’t care. Just like with code coverage, I am not a fan of setting fixed targets for this type of metric, as these will typically lead to writing tests for the sake of improving a score rather than for actual improvement of the code. What I am much more interested in is the information that Stryker.NET produced during the mutation testing process. Opening the HTML report I was surprised to see that out of the box, Stryker.NET produces a very good-looking and incredibly helpful HTML report. It provides both a high-level overview of the results: as well as in-depth detail for every mutant that was killed or that survived. It offers a breakdown of the results per namespace and per class, and it is the starting point for further drilling down into results for individual mutants. Let’s have a look and see if the report provides some useful, actionable information for us to improve the RestAssured.Net test suite. Missing coverage Like many other mutation testing tools, Stryker.NET provides code coverage information along with mutation coverage information. That is, if there is code in the application code base that was mutated, but that is not covered by any of the tests, Stryker.NET will inform you about it. Here’s an example: Stryker.NET changed the message of an exception thrown when RestAssured.Net is asked to deserialize a response body that is either null or empty. Apparently, there is no test in the test suite that covers this path in the code. As this particular code path deals with exception handling, it’s probably a good idea to add a test for it: [Test] public void EmptyResponseBodyThrowsTheExpectedException() { var de = Assert.Throws<DeserializationException>(() => { Location responseLocation = (Location)Given() .When() .Get($"{MOCK_SERVER_BASE_URL}/empty-response-body") .DeserializeTo(typeof(Location)); }); Assert.That(de?.Message, Is.EqualTo("Response content is null or empty.")); } I added the corresponding test in this commit. Removed code blocks Another type of mutant that Stryker.NET generates is the removal of a code block. Going by the mutation testing report, it seems like there are a few of these mutants that are not detected by any of the tests. Here’s an example: The return statement for the Put() method body, which is used to perform an HTTP PUT operation, is replaced with an empty method body, but this is not picked up by any of the tests. The same applies to the methods for HTTP PATCH, DELETE, HEAD and OPTIONS. Looking at the tests that cover the different HTTP verbs, this makes sense. While I do call each of these HTTP methods in a test, I don’t assert on the result for the aforementioned HTTP verbs. I am basically relying on the fact that no exception is thrown when I call Put() when I say ‘it works’. Let’s change that by at least asserting on a property of the response that is returned when these HTTP verbs are used: [Test] public void HttpPutCanBeUsed() { Given() .When() .Put($"{MOCK_SERVER_BASE_URL}/http-put") .Then() .StatusCode(200); } These assertions were added to the RestAssured.Net test suite in this commit. Improving testability The next signal I received from this initial mutation testing run is an interesting one. It tells me that even though I have acceptance tests that add cookies to the request and that only pass when the request contains the cookies I set, I’m not properly covering some logic that I added: To understand what is going on here, it is useful to know that a Cookie in C# offers a constructor that creates a Cookie specifying only a name and a value, but that a cookie has to have a domain value set. To enforce that, I added the logic you see in the screenshot. However, Stryker.NET tells me I’m not properly testing this logic, because changing its implementation doesn’t cause any tests to fail. Now, I might be able to test this specific logic with a few added acceptance tests, but it really is only a small piece of logic, and I should be able to test that logic in isolation, right? Well, not with the code written in the way it currently is… So, time to extract that piece of logic into a class of its own, which will improve both the modularity of the code and allow me to test it in isolation. First, let’s extract the logic into a CookieUtils class: internal class CookieUtils { internal Cookie SetDomainFor(Cookie cookie, string hostname) { if (string.IsNullOrEmpty(cookie.Domain)) { cookie.Domain = hostname; } return cookie; } } I deliberately made this class internal as I don’t want it to be directly accessible to RestAssured.Net users. However, as I do need to access it in the tests, I have to add this little snippet to the RestAssured.Net.csproj file: <ItemGroup> <InternalsVisibleTo Include="$(MSBuildProjectName).Tests" /> </ItemGroup> Now, I can add unit tests that should cover both paths in the SetDomainFor() logic: [Test] public void CookieDomainIsSetToDefaultValueWhenNotSpecified() { Cookie cookie = new Cookie("cookie_name", "cookie_value"); CookieUtils cookieUtils = new CookieUtils(); cookie = cookieUtils.SetDomainFor(cookie, "localhost"); Assert.That(cookie.Domain, Is.EqualTo("localhost")); } [Test] public void CookieDomainIsUnchangedWhenSpecifiedAlready() { Cookie cookie = new Cookie("cookie_name", "cookie_value", "/my_path", "strawberry.com"); CookieUtils cookieUtils = new CookieUtils(); cookie = cookieUtils.SetDomainFor(cookie, "localhost"); Assert.That(cookie.Domain, Is.EqualTo("strawberry.com")); } These changes were added to the RestAssured.Net source and test code in this commit. An interesting mutation So far, all the signals that appeared in the mutation testing report generated by Stryker.NET have been valuable, as in: they have pointed me at code that isn’t covered by any tests yet, to tests that could be improved, and they have led to code refactoring to improve testability. Using Stryker.NET (and mutation testing in general) does sometimes lead to some, well, interesting mutations, like this one: I’m checking that a certain string is either null or an empty string, and if either condition is true, RestAssured.Net throws an exception. Perfectly valid. However, Stryker.NET changes the logical OR to a logical AND (a common mutation), which makes it impossible for the condition to evaluate to true. Is that even a useful mutation to make? Well, to some extent, it is. Even if the code doesn’t make sense anymore after it has been mutated, it does tell you that your tests for this logical condition probably need some improvement. In this case, I don’t have to add more tests, as we discussed this exact statement earlier (remember that it had no test coverage at all). It did make me look at this statement once again, though, and I only then realized that I could simplify this code snippet to if (string.IsNullOrEmpty(responseBodyAsString)) { throw new DeserializationException("Response content is null or empty."); } Instead of a custom-built logical OR, I am now using a construct built into C#, which is arguably the safer choice. In general, if your mutation testing tool generates several (or even many) mutants for the same code statement or block, it might be a good idea to have another look at that code and see if it can be simplified. This was just a very small example, but I think this observation holds true in general. This change was added to the RestAssured.Net source and test code in this commit. Running mutation tests again and inspecting the results Now that several (supposed) improvements to the tests and the code have been made, let’s run the mutation tests another time to see if the changes improved our score. In short: 397 mutants were killed now, up from 390 (that’s good) 111 mutants survived, down from 117 (that’s also good) there were 32 timeouts, up from 31 (that needs some further investigation) Overall, the mutation testing score went up from 59,97% to 61,11%. This might not seem like much, but it is definitely a step in the right direction. The most important thing for me right now is that my tests for RestAssured.Net have improved, my code has improved and I learned a lot about mutation testing and Stryker.NET in the process. Am I going to run mutation tests every time I make a change? Probably not. There is quite a lot of information to go through, and that takes time, time that I don’t want to spend for every build. For that reason, I’m also not going to make these mutation tests part of the build and test pipeline for RestAssured.Net, at least not any time soon. This was nonetheless both a very valuable and a very enjoyable exercise, and I’ll definitely keep improving the tests and the code for RestAssured.Net using the suggestions that Stryker.NET presents.
As is the case every year, 2025 is starting off relatively slowly. There’s not a lot of training courses to run yet, and since a few of the projects I worked on wrapped up in December, I find myself with a little bit of extra time and headspace on my hands. I actually enjoy these slower moments, because they give me some time to think about where my professional career is going, if I’m still happy with the direction it is going on, and what I would like to see changed. Last year, I quit doing full time projects as an individual contributor to development teams in favour of part-time consultancy work and more focus on my training services. 2024 has been a great year overall, and I would be happy to continue working in this way in 2025. However, as a thought experiment, I took some time to think about what it would take for me to go back to full time roles, or maybe (maybe!) even consider joining a company on a permanent basis. Please note that this post is not intended as an ‘I need a job!’ cry for help. My pipeline for 2025 is slowly but surely filling up, and again, I am very happy with the direction my career is going at the moment. However, I have learned that it never hurts to leave your options open, and even though I love the variety in my working days these days, I think I would enjoy working with one team, on one goal, for an extended amount of time, too, under the right conditions. If nothing else, this post might serve as a reference post to send to people and companies that reach out to me with a full time contract opportunity or even a permanent job opening. This is also not a list of requirements that is set in stone. As my views on what would make a great job change (and they will), I will update this post to reflect those views. So, to even consider joining a company on a full-time contract or even a permanent basis, there are basically three things I will and should consider: What does the job look like? What will I be doing on a day-to-day basis? What are the must-haves regarding terms and conditions? What are the nice to haves that would provide the icing on the cake for me? Let’s take a closer look at each of these things. What I look for in a job As I mentioned before, I am not looking for a job as an individual contributor to a development team. I have done that for many years, and it does not really give me the energy that it used to. On the other hand, I am definitely not looking for a hands-off, managerial kind of role, as I’d like to think I would make an atrocious manager. Plus, I simply enjoy being hands-on and writing code way too much to let that go. I would like to be responsible for designing and implementing the testing and automation strategy for a product I believe in. It would be a lead role, but, as mentioned, with plenty (as in daily) opportunities to get hands-on and contribute to the code. The work would have to be technically and mentally challenging enough to keep me motivated in the long term. Getting bored quickly is something I suffer from, which is the main driver behind only doing part-time projects and working on multiple different things in parallel right now. I don’t want to work for a consultancy and be ‘farmed out’ to their clients. I’ve done that pretty much my entire career, and if that’s what the job will look like, I’d rather keep working the way I’m working now. The must-haves There are (quite) a few things that are non-negotiable for me to even consider joining a company full time, no matter if it’s on a contract or a permanent basis. The pay must be excellent. Let’s not beat around the bush here: people work to make money. I do, too. I’m doing very well right now, and I don’t want that to change. The company should be output-focused, as in they don’t care when I work, how many hours I put in and where I work from, as long as the job gets done. I am sort of spoiled by my current way of working, I fully realise that, but I’ve grown to love the flexibility. By the way, please don’t read ‘flexible’ as ‘working willy-nilly’. Most work is not done in a vacuum, and you will have to coordinate with others. The key word here is ‘balance’. Collaboration should be part of the company culture. I enjoy working in pair programming and pair testing setups. What I do not like are pointless meetings, and that includes having Scrum ceremonies ‘just because’. The company should be a remote-first company. I don’t mind the occasional office day, but I value my time too much to spend hours per week on commuting. I’ve done that for years, and it is time I’ll never get back. The company should actively stimulate me contributing to conferences and meetups. Public speaking is an important part of my career at the moment, and I get a lot of value from it. I don’t want to give that up. There should be plenty of opportunities for teaching others. This is what I do for a living right now, I really enjoy it, and I’d like to think I’m pretty good at it, too. Just like with the public speaking, I don’t want to give that up. This teaching can take many forms, though. Running workshops and regular pairing with others are just two examples. The job should scratch my travel itch. I travel abroad for work on average about 5-6 times per year these days, and I would like to keep doing that, as I get a lot of energy from seeing different places and meeting people. Please note that ‘traveling’ and ‘commuting’ are two completely different things. Yes, I realize this is quite a long list, but I really enjoy my career at the moment, and there are a lot of aspects to it that I’m not ready to give up. The nice to haves There are also some things that are not strictly necessary, but would be very nice to have in a job or full time contract: The opportunity to continue working on side gigs. I have a few returning customers that I’ve been working with for years, and I would really appreciate the opportunity to continue doing that. I realise that I would have to give up some things, but there are a few clients that I would really like to keep working with. By the way, this is only a nice to have for permanent jobs. For contracting gigs, it is a must-have. It would be very nice if the technology stack that the company is using is based on C#. I’ve been doing quite a bit of work in this stack over the years and I would like to go even deeper. If the travel itch I mentioned under the must-haves could be scratched with regular travel to Canada, Norway or South Africa, three of my favourite destinations in the world, that would be a very big plus. I realize that the list of requirements above is a long one. I don’t think there is a single job out there that ticks all the boxes. But, again, I really like what I’m doing at the moment, and most of the boxes are ticked at the moment. I would absolutely consider going full time with a client or even an employer, but I want it to be a step forward, not a step back. After all, this is mostly a thought experiment at the moment, and until that perfect contract or job comes along, I’ll happily continue what I’m doing right now.
As a (sort of) follow-up post to my yearly review for 2024, in this post, I would like to go over the changes, bug fixes and new features that have been introduced in RestAssured .NET in 2024. This year, I released 7 new versions of the library, and while none of the versions included changes that were worthy of a blog post on its own, I thought it would be a good idea to wrap them all up in a single overview. Basically, this blog post is an extended version of the library’s CHANGELOG. I’ll go through the new versions chronologically, starting with the first release of 2024. Version 4.2.2 - released April 23 RestAssured .NET 4.2.2 fixes a bug that prevented JSON responses that are an array to be properly verified. In other words, if the JSON response body looks like this: [ { "id": 1, "text": "Do the dishes" }, { "id": 2, "text": "Clean out the trash" }, { "id": 3, "text": "Read the newspaper" } ] I would expect this test to pass: [Test] public void JsonArrayResponseBodyElementCanBeVerifiedUsingNHamcrestMatcher() { Given() .When() .Get("http://localhost:9876/json-array-response-body") .Then() .StatusCode(200) .Body("$[1].text", NHamcrest.Is.EqualTo("Clean out the trash")); } but prior to this version, it threw a Newtonsoft.Json.JsonReaderException. The solution? Adding a try-catch that first tries to parse the JSON response as a JObject (equal to existing behaviour), catch the JsonReaderException and try again, now parsing the JSON response into a JArray. That made the newly added test pass without failing any other tests. Another demonstration of the added value of having a decent set of tests. RestAssured .NET is slowly growing and becoming more complex, and having a test suite I can run locally, and that always runs when I push code to GitHub is an invaluable safety net for me. These tests run in a few seconds, yet they give me invaluable feedback on the effect of new features, bug fixes and code refactoring efforts. I haven’t heard back from the person submitting the original issue, but I assume that this fixed their issue. Version 4.3.0 - released August 16 I love learning about how people use RestAssured .NET, because invariably they will use it in ways I haven’t foreseen. I was unfamiliar with the concept of server-sent events (SSE) in APIs, for example, yet there are people looking to test these kinds of APIs using RestAssured .NET. It turned out that what this user was looking for was a way to set the HttpCompletionOption value on the System.Net.Http.HttpClient that is wrapped by RestAssured .NET. To enable this, I added a method to the DSL that looks like this: Given() .UseHttpCompletionOption(HttpCompletionOption.ResponseHeadersRead) I also added the option to specify the HttpCompletionOption to be used in a RequestSpecification as well as in the global config. A straightforward fix that solved the problem for this specific user. The only thing I don’t like here is that I don’t know of a way to test this locally. Do you? I would love to hear it. Version 4.3.1 - release August 22 Another user pointed out to me that trying to verify that the value of a JSON response body element is an empty array also threw an exception. So, if the JSON response body looks like this: { "success": true, "errors": [] } this test should pass, but instead it threw a Newtonsoft.Json.JsonSerializationException: [Test] public void JsonResponseBodyElementEmptyArrayValueCanBeVerifiedUsingNHamcrestMatcher() { Given() .When() .Get("http://localhost:9876/json-empty-array-response-body") .Then() .StatusCode(200) .Body("$.errors", NHamcrest.Is.OfLength(0)); } The fix? Adding some code that checks if the element returned when evaluating the JsonPath expression is a JArray or a JObject and using the right matching logic accordingly. I used my preferred procedure here: first, write a failing test that reproduces the issue then, make the test pass without breaking any other tests refactor the code, document and release Does this procedure sound familiar to you? Version 4.4.0 - released October 21 As you can probably tell from the semantic versioning, this version introduced a new feature to RestAssured .NET: the ability to use NTLM authentication when making an HTTP call. To enable this, I added a new method to the DSL: Given() .NtlmAuth() // This one uses default NTLM credentials for the current user .NtlmAuth("username", "password", "domain") // This one uses custom NTLM credentials As I had no idea how to write a proper test for this, even though I had tested it before releasing using Fiddler, I released a beta version first that the person submitting the issue could use to verify the solution. I’m happy to say that it worked for them and that the solution could be released properly. Again, if someone can think of a way to add a proper test for NTLM authentication to the test suite, I would love to hear it. All that the current tests do is run the code and see if no exception is thrown. Not a good test, but until I find a better way, it will have to do. Version 4.5.0 - released November 19 This version introduced not one, but two changes. First, since .NET 9 was officially released earlier that week (or maybe the week before, I forgot), I needed to release a RestAssured .NET version that targets .NET 9, so I did. Just like with .NET 8, I didn’t really have to change anything to the code other than adding net9.0 to the TargetFrameworks and add .NET 9 to the build pipeline for the library to make sure that every change is tested on .NET 9, too. Happy to say it all ‘just worked’. The other change took more effort: a user reported that they could not override the ResponseLogLevel set in a RequestSpecification at the individual test level. The reason? In the existing code, the response was logged directly after the HTTP call completed, so before any calls to Log() for the response. When Log() is called on the response, it was then logged again. I have no idea how I completely overlooked this until now, but I did. Rewriting the code to make this work took longer than I expected, but I managed in the end, through quite a bit of trial and error and lots of humand-centered testing (again, no idea how to write automated tests for this). The logging functionality of RestAssured .NET is something I intend to rewrite in the future, for a couple of reasons: It’s impossible to write automated tests for it (or at least I don’t know how to do this) Ideally, I want the logging to be more configurable and extensible to give users more flexibility than they have at the moment Version 4.5.1 - released November 20 As one does, I found an issue with the updated logging logic almost immediately after releasing 4.5.0 to the public: masking of sensitive headers and cookies didn’t work anymore when specified as part of a RequestSpecification. Lucky for me, this was a quick fix, but a bit embarrassing nonetheless. Had I had proper automated tests for the logging in place, I probably would have caught this before releasing 4.5.0…. Anyway, it’s fixed now, as far as I can tell. Version 4.6.0 - released December 9 The final RestAssured .NET release of 2024 added the capability to strip the ; charset=<some_charset> from the Content-Type header in a request. It turns out, some APIs explicitly expect this header to not contain the charset suffix, but the way I create a request, or rather, the way .NET creates a StringContent object, will add it by default. This issue was a great example of one of the main reasons why I started this project: there is so much I don’t know yet about HTTP, APIs, C#/.NET and other technologies, and working on these issues and improving RestAssured .NET gives me an opportunity to learn them. I make a habit of writing what I learned down in the issue on GitHub, so I can review it later, and so I can point others to these links and thoughts, too. So, if you’re looking for a way to strip the charset identifier from the Content-Type header in the request, you can now do that by passing an optional second boolean argument to Body() (defaults to false): Given() .Body(your_body_goes_here, stripCharset: true) That’s it! As you can see, lots of small changes, bug fixes and new features have been added to RestAssured .NET this year. Oh, and before I forget: with every release, I also made sure to update the dependencies I use to create and test RestAssured .NET to their latest versions. I consider that good housekeeping, and it’s all part of keeping a library up to date. I am looking forward to seeing the library evolve and improve further in 2025.
More in programming
Japan already stipulates that employers must offer the option of reduced working hours to employees with children under three. However, the Child Care and Family Care Leave Act was amended in May 2024, with some of the new provisions coming into effect April 1 or October 1, 2025. The updates to the law address: Remote work Flexible start and end times Reduced hours On-site childcare facilities Compensation for lost salary And more Legal changes are one thing, of course, and social changes are another. Though employers are mandated to offer these options, how many employees in Japan actually avail themselves of these benefits? Does doing so create any stigma or resentment? Recent studies reveal an unsurprising gender disparity in accepting a modified work schedule, but generally positive attitudes toward these accommodations overall. The current reduced work options Reduced work schedules for employees with children under three years old are currently regulated by Article 23(1) of the Child Care and Family Care Leave Act. This Article stipulates that employers are required to offer accommodations to employees with children under three years old. Those accommodations must include the opportunity for a reduced work schedule of six hours a day. However, if the company is prepared to provide alternatives, and if the parent would prefer, this benefit can take other forms—for example, working seven hours a day or working fewer days per week. Eligible employees for the reduced work schedule are those who: Have children under three years old Normally work more than six hours a day Are not employed as day laborers Are not on childcare leave during the period to which the reduced work schedule applies Are not one of the following, which are exempted from the labor-management agreement Employees who have been employed by the company for less than one year Employees whose prescribed working days per week are two days or less Although the law requires employers to provide reduced work schedules only while the child is under three years old, some companies allow their employees with older children to work shorter hours as well. According to a 2020 survey by the Ministry of Health, Labor and Welfare, 15.8% of companies permit their employees to use the system until their children enter primary school, while 5.7% allow it until their children turn nine years old or enter third grade. Around 4% offer reduced hours until children graduate from elementary school, and 15.4% of companies give the option even after children have entered middle school. If, considering the nature or conditions of the work, it is difficult to give a reduced work schedule to employees, the law stipulates other measures such as flexible working hours. This law has now been altered, though, to include other accommodations. Updates to The Child Care and Family Care Leave Act Previously, remote work was not an option for employees with young children. Now, from April 1, 2025, employers must make an effort to allow employees with children under the age of three to work remotely if they choose. From October 1, 2025, employers are also obligated to provide two or more of the following measures to employees with children between the ages of three and the time they enter elementary school. An altered start time without changing the daily working hours, either by using a flex time system or by changing both the start and finish time for the workday The option to work remotely without changing daily working hours, which can be used 10 or more days per month Company-sponsored childcare, by providing childcare facilities or other equivalent benefits (e.g., arranging for babysitters and covering the cost) 10 days of leave per year to support employees’ childcare without changing daily working hours A reduced work schedule, which must include the option of 6-hour days How much it’s used in practice Of course, there’s always a gap between what the law specifies, and what actually happens in practice. How many parents typically make use of these legally-mandated accommodations, and for how long? The numbers A survey conducted by the Ministry of Health, Labor and Welfare in 2020 studied uptake of the reduced work schedule among employees with children under three years old. In this category, 40.8% of female permanent employees (正社員, seishain) and 21.6% of women who were not permanent employees answered that they use, or had used, the reduced work schedule. Only 12.3% of male permanent employees said the same. The same survey was conducted in 2022, and researchers found that the gap between female and male employees had actually widened. According to this second survey, 51.2% of female permanent employees and 24.3% of female non-permanent employees had reduced their hours, compared to only 7.6% of male permanent employees. Not only were fewer male employees using reduced work programs, but 41.2% of them said they did not intend to make use of them. By contrast, a mere 15.6% of female permanent employees answered they didn’t wish to claim the benefit. Of those employees who prefer the shorter schedule, how long do they typically use the benefit? The following charts, using data from the 2022 survey, show at what point those employees stop reducing their hours and return to a full-time schedule. Female permanent employees Female non-permanent employees Male permanent employees Male non-permanent employees Until youngest child turns 1 13.7% 17.9% 50.0% 25.9% Until youngest child turns 2 11.5% 7.9% 14.5% 29.6% Until youngest child turns 3 23.0% 16.3% 10.5% 11.1% Until youngest child enters primary school 18.9% 10.5% 6.6% 11.1% Sometime after the youngest child enters primary school 22.8% 16.9% 6.5% 11.1% Not sure 10% 30.5% 11.8% 11.1% From the companies’ perspectives, according to a survey conducted by the Cabinet Office in 2023, 65.9% of employers answered that their reduced work schedule system is fully used by their employees. What’s the public perception? Some fear that the number of people using the reduced work program—and, especially, the number of women—has created an impression of unfairness for those employees who work full-time. This is a natural concern, but statistics paint a different picture. In a survey of 300 people conducted in 2024, 49% actually expressed a favorable opinion of people who work shorter hours. Also, 38% had “no opinion” toward colleagues with reduced work schedules, indicating that 87% total don’t negatively view those parents who work shorter hours. While attitudes may vary from company to company, the public overall doesn’t seem to attach any stigma to parents who reduce their work schedules. Is this “the Mommy Track”? Others are concerned that working shorter hours will detour their career path. According to this report by the Ministry of Health, Labour and Welfare, 47.6% of male permanent employees indicated that, as the result of working fewer hours, they had been changed to a position with less responsibility. The same thing happened to 65.6% of male non-permanent employees, and 22.7% of female permanent employees. Therefore, it’s possible that using the reduced work schedule can affect one’s immediate chances for advancement. However, while 25% of male permanent employees and 15.5% of female permanent employees said the quality and importance of the work they were assigned had gone down, 21.4% of male and 18.1% of female permanent employees said the quality had gone up. Considering 53.6% of male and 66.4% of female permanent employees said it stayed the same, there seems to be no strong correlation between reducing one’s working hours, and being given less interesting or important tasks. Reduced work means reduced salary These reduced work schedules usually entail dropping below the originally-contracted work hours, which means the employer does not have to pay the employee for the time they did not work. For example, consider a person who normally works 8 hours a day reducing their work time to 6 hours a day (a 25% reduction). If their monthly salary is 300,000 yen, it would also decrease accordingly by 25% to 225,000 yen. Previously, both men and women have avoided reduced work schedules, because they do not want to lose income. As more mothers than fathers choose to work shorter hours, this financial burden tends to fall more heavily on women. To address this issue, childcare short-time employment benefits (育児時短就業給付) will start from April 2025. These benefits cover both male and female employees who work shorter hours to care for a child under two years old, and pay a stipend equivalent to 10% of their adjusted monthly salary during the reduced work schedule. Returning to the previous example, this stipend would grant 10% of the reduced salary, or 22,500 yen per month, bringing the total monthly paycheck to 247,500 yen, or 82.5% of the normal salary. This additional stipend, while helpful, may not be enough to persuade some families to accept shorter hours. The childcare short-time employment benefits are available to employees who meet the following criteria: The person is insured, and is working shorter hours to care for a child under two years old. The person started a reduced work schedule immediately after using the childcare leave covered by childcare leave benefits, or the person has been insured for 12 months in the two years prior to the reduced work schedule. Conclusion Japan’s newly-mandated options for reduced schedules, remote work, financial benefits, and other childcare accommodations could help many families in Japan. However, these programs will only prove beneficial if enough employees take advantage of them. As of now, there’s some concern that parents who accept shorter schedules could look bad or end up damaging their careers in the long run. Statistically speaking, some of the news is good: most people view parents who reduce their hours either positively or neutrally, not negatively. But other surveys indicate that a reduction in work hours often equates to a reduction in responsibility, which could indeed have long-term effects. That’s why it’s important for more parents to use these accommodations freely. Not only will doing so directly benefit the children, but it will also lessen any negative stigma associated with claiming them. This is particularly true for fathers, who can help even the playing field for their female colleagues by using these perks just as much as the mothers in their offices. And since the state is now offering a stipend to help compensate for lost income, there’s less and less reason not to take full advantage of these programs.
The night is dark and full of errors—and durable Rust software is not only ready for them, but handles them sensibly. Let’s see how, by returning to our line-counter project.
Every time I run into endianness, I have to look it up. Which way do the bytes go, and what does that mean? Something about it breaks my brain, and makes me feel like I can't tell which way is up and down, left and right. This is the blog post I've needed every time I run into this. I hope it'll be the post you need, too. What is endianness? The term comes from Gulliver's travels, referring to a conflict over cracking boiled eggs on the big end or the little end[1]. In computers, the term refers to the order of bytes within a segment of data, or a word. Specifically, it only refers to the order of bytes, as those are the smallest unit of addressable data: bits are not individually addressable. The two main orderings are big-endian and little-endian. Big-endian means you store the "big" end first: the most-significant byte (highest value) goes into the smallest memory address. Little-endian means you store the "little" end first: the least-significant byte (smallest value) goes into the smallest memory address. Let's look at the number 168496141 as an example. This is 0x0A0B0C0D in hex. If we store 0x0A at address a, 0x0B at a+1, 0x0C at a+2, and 0x0D at a+3, then this is big-endian. And then if we store it in the other order, with 0x0D at a and 0x0A at a+3, it's little-endian. And... there's also mixed-endianness, where you use one kind within a word (say, little-endian) and a different ordering for words themselves (say, big-endian). If our example is on a system that has 2-byte words (for the sake of illustration), then we could order these bytes in a mixed-endian fashion. One possibility would be to put 0x0B in a, 0x0A in a+1, 0x0D in a+2, and 0x0C in a+3. There are certainly reasons to do this, and it comes up on some ARM processors, but... it feels so utterly cursed. Let's ignore it for the rest of this! For me, the intuitive ordering is big-ending, because it feels like it matches how we read and write numbers in English[2]. If lower memory addresses are on the left, and higher on the right, then this is the left-to-right ordering, just like digits in a written number. So... which do I have? Given some number, how do I know which endianness it uses? You don't, at least not from the number entirely by itself. Each integer that's valid in one endianness is still a valid integer in another endianness, it just is a different value. You have to see how things are used to figure it out. Or you can figure it out from the system you're using (or which wrote the data). If you're using an x86 or x64 system, it's mostly little-endian. (There are some instructions which enable fetching/writing in a big-endian format.) ARM systems are bi-endian, allowing either. But perhaps the most popular ARM chips today, Apple silicon, are little-endian. And the major microcontrollers I checked (AVR, ESP32, ATmega) are little-endian. It's thoroughly dominant commercially! Big-endian systems used to be more common. They're not really in most of the systems I'm likely to run into as a software engineer now, though. You are likely to run into it for some things, though. Even though we don't use big-endianness for processor math most of the time, we use it constantly to represent data. It comes back in networking! Most of the Internet protocols we know and love, like TCP and IP, use "network order" which means big-endian. This is mentioned in RFC 1700, among others. Other protocols do also use little-endianness again, though, so you can't always assume that it's big-endian just because it's coming over the wire. So... which you have? For your processor, probably little-endian. For data written to the disk or to the wire: who knows, check the protocol! Why do we do this??? I mean, ultimately, it's somewhat arbitrary. We have an endianness in the way we write, and we could pick either right-to-left or left-to-right. Both exist, but we need to pick one. Given that, it makes sense that both would arise over time, since there's no single entity controlling all computer usage[3]. There are advantages of each, though. One of the more interesting advantages is that little-endianness lets us pretend integers are whatever size we like, within bounds. If you write the number 26[4] into memory on a big-endian system, then read bytes from that memory address, it will represent different values depending on how many bytes you read. The length matters for reading in and interpreting the data. If you write it into memory on a little-endian system, though, and read bytes from the address (with the remaining ones zero, very important!), then it is the same value no matter how many bytes you read. As long as you don't truncate the value, at least; 0x0A0B read as an 8-bit int would not be equal to being read as a 16-bit ints, since an 8-bit int can't hold the entire thing. This lets you read a value in the size of integer you need for your calculation without conversion. On the other hand, big-endian values are easier to read and reason about as a human. If you dump out the raw bytes that you're working with, a big-endian number can be easier to spot since it matches the numbers we use in English. This makes it pretty convenient to store values as big-endian, even if that's not the native format, so you can spot things in a hex dump more easily. Ultimately, it's all kind of arbitrary. And it's a pile of standards where everything is made up, nothing matters, and the big-end is obviously the right end of the egg to crack. You monster. The correct answer is obviously the big end. That's where the little air pocket goes. But some people are monsters... ↩ Please, please, someone make a conlang that uses mixed-endian inspired numbers. ↩ If ever there were, maybe different endianness would be a contentious issue. Maybe some of our systems would be using big-endian but eventually realize their design was better suited to little-endian, and then spend a long time making that change. And then the government would become authoritarian on the promise of eradicating endianness-affirming care and—Oops, this became a metaphor. ↩ 26 in hex is 0x1A, which is purely a coincidence and not a reference to the First Amendment. This is a tech blog, not political, and I definitely stay in my lane. If it were a reference, though, I'd remind you to exercise their 1A rights[5] now and call your elected officials to ensure that we keep these rights. I'm scared, and I'm staring down the barrel of potential life-threatening circumstances if things get worse. I expect you're scared, too. And you know what? Bravery is doing things in spite of your fear. ↩ If you live somewhere other than the US, please interpret this as it applies to your own country's political process! There's a lot of authoritarian movement going on in the world, and we all need to work together for humanity's best, most free[6] future. ↩ I originally wrote "freest" which, while spelled correctly, looks so weird that I decided to replace it with "most free" instead. ↩
A tiny tool to calculate when your baby might arrive
Intel is sitting on a huge amount of card inventory they can’t move, largely because of bad software. Most of this is a summary of the public #intel-hardware channel in the tinygrad discord. Intel currently is sitting on: 15,000 Gaudi 2 cards (with baseboards) 5,100 Intel Data Center GPU Max 1450s (without baseboards) If you were Intel, what would you do with them? First, starting with the Gaudi cards. The open source repo needed to control them was archived on Feb 4, 2025. There’s a closed source version of this that’s maybe still maintained, but eww closed source and do you think it’s really maintained? The architecture is kind of tragic, and that’s likely why they didn’t open source it. Unlike every other accelerator I have seen, the MMEs, which is where all the FLOPS are, are not controllable by the TPCs. While the TPCs have an LLVM port, the MME is not documented. After some poking around, I found the spec: It’s highly fixed function, looks very similar to the Apple ANE. But that’s not even the real problem with it. The problem is that it is controlled by queues, not by the TPCs. Unpacking habanalabs-dkms-1.19.2-32.all.deb you can find the queues. There is some way to push a command stream to the device so you don’t actually have to deal with the host itself for the queues. But that doesn’t prevent you having to decompose the network you are trying to run into something you can put on this fixed function block. Programmability is on a spectrum, ranging from CPUs being the easiest, to GPUs, to things like the Qualcomm DSP / Google TPU (where at least you drive the MME from the program), to this and the Apple ANE being the hardest. While it’s impressive that they actually got on MLPerf Training v4.0 training GPT3, I suspect it’s all hand coded, and if you even can deviate off the trodden path you’ll get almost no perf. Accelerators like this are okay for low power inference where you can adjust the model architecture for the target, Apple does a great job of this. But this will never be acceptable for a training chip. Then there’s the Data Center GPU Max 1450. Intel actually sent us a few of these. You quickly run into a problem…how do you plug them in? They need OAM sockets, 48V power, and a cooling solution that can sink 600W. As far as I can tell, they were only ever deployed in two systems, the Aurora Supercomputer and the Dell XE9640. It’s hard to know, but I really doubt many of these Dell systems were sold. Intel then sent us this carrier board. In some ways it’s helpful, but in other ways it’s not at all. It still doesn’t solve cooling or power, and you need to buy 16x MCIO cables (cheap in quantity, but expensive and hard to find off the shelf). Also, I never got a straight answer, but I really doubt Intel has many of these boards. And that board doesn’t look cheap to manufacturer more of. The connectors alone, which you need two of per GPU, cost $26 each. That’s $104 for just the OAM connectors. tiny corp was in discussions to buy these GPUs. How much would you pay for one of these on a PCIe card? The specs look great. 839 TFLOPS, 128 GB of ram, 3.3 TB/s of bandwidth. However…read this article. Even in simple synthetic benchmarks, the chip doesn’t get anywhere near its max performance, and it looks to be for fundamental reasons like memory latency. We estimate we could sell PCIe versions of these GPUs for $1,000; I don’t think most people know how hard it is to move non NVIDIA hardware. Before you say you’d pay more, ask yourself, do you really want to deal with the software? An adapter card has four pieces. A PCB for the card, a 12->48V voltage converter, a heatsink, and a fan. My quote from the guy who makes an OAM adapter board was $310 for 10+ PCBs and $75 for the voltage converter. A heatsink that can handle 600W (heat pipes + vapor chamber) is going to cost $100, then maybe $20 more for the fan. That’s $505, and you still need to assemble and test them, oh and now there’s tariffs. Maybe you can get this down to $400 in ~1000 quantity. So $200 for the GPU, $400 for the adapter, $100 for shipping/fulfillment/returns (more if you use Amazon), and 30% profit if you sell at $1k. tiny would net $1M on this, which has to cover NRE and you have risk of unsold inventory. We offered Intel $200 per GPU (a $680k wire) and they said no. They wanted $600. I suspect that unless a supercomputer person who already uses these GPUs wants to buy more, they will ride it to zero. tl;dr: there’s 5100 of these GPUs with no simple way to plug them in. It’s unclear if they worth the cost of the slot they go in. I bet they end up shredded, or maybe dumped on eBay for $50 each in a year like the Xeon Phi cards. If you buy one, good luck plugging it in! The reason Meta and friends buy some AMD is as a hedge against NVIDIA. Even if it’s not usable, AMD has progressed on a solid steady roadmap, with a clear continuation from the 2018 MI50 (which you can now buy for 99% off), to the MI325X which is a super exciting chip (AMD is king of chiplets). They are even showing signs of finally investing in software, which makes me bullish. If NVIDIA stumbles for a generation, this is AMD’s game. The ROCm “copy each NVIDIA repo” strategy actually works if your competition stumbles. They can win GPUs with slow and steady improvement + competition stumbling, that’s how AMD won server CPUs. With these Intel chips, I’m not sure who they would appeal to. Ponte Vecchio is cancelled. There’s no point in investing in the platform if there’s not going to be a next generation, and therefore nobody can justify the cost of developing software, therefore there won’t be software, therefore they aren’t worth plugging in. Where does this leave Intel’s AI roadmap? The successor to Ponte Vecchio was Rialto Bridge, but that was cancelled. The successor to that was Falcon Shores, but that was also cancelled. Intel claims the next GPU will be “Jaguar Shores”, but fool me once… To quote JazzLord1234 from reddit “No point even bothering to listen to their roadmaps anymore. They have squandered all their credibility.” Gaudi 3 is a flop due to “unbaked software”, but as much as I usually do blame software, nothing has changed from Gaudi 2 and it’s just a really hard chip to program for. So there’s no future there either. I can’t say that “Jaguar Shores” square instills confidence. It didn’t inspire confidence for “Joseph B.” on LinkedIn either. From my interactions with Intel people, it seems there’s no individuals with power there, it’s all committee like leadership. The problem with this is there’s nobody who can say yes, just many people who can say no. Hence all the cancellations and the nonsense strategy. AMD’s dysfunction is different. from the beginning they had leadership that can do things (Lisa Su replied to my first e-mail), they just didn’t see the value in investing in software until recently. They sort of had a point if they were only targeting hyperscalars. but it seems like SemiAnalysis got through to them that hyperscalars aren’t going to deal with bad software either. It remains to be seem if they can shift culture to actually deliver good software, but there’s movement in that direction, and if they succeed AMD is so undervalued. Their hardware is good. With Intel, until that committee style leadership is gone, there’s 0 chance for success. Committee leadership is fine if you are trying to maintain, but Intel’s AI situation is even more hopeless than AMDs, and you’d need something major to turn it around. At least with AMD, you can try installing ROCm and be frustrated when there are bugs. Every time I have tried Intel’s software I can’t even recall getting the import to work, and the card wasn’t powerful enough that I cared. Intel needs actual leadership to turn this around, or there’s 0 future in Intel AI.