More from Founder's blog
TL;DR The "build vs. buy" equation has flipped. Businesses used to buy SaaS because it was cheaper than building their own. AI has changed that—building your own is now more affordable than ever. The discovery problem. AI recommendations default to well-established solutions. Think SEO is a long game? Try LLM SEO. Everyone worries about AI taking developer jobs, but what if AI wipes out the entire off-the-shelf software industry? The "Why Buy?" Problem Six months ago, we needed an AI-powered code review tool. We explored several options and ultimately "vibe-coded" our own GitHub Action—a simple Bash script that takes a git log, sends it to Claude via curl, and posts the results to Slack. Done. The best part? AI wrote the entire thing faster than it would take to sign up for a SaaS. How long until every company realizes they can do this? Need a simple "CRUD" CRM with JIRA-style tasks? Done. Need a mobile time-tracking app for remote employees? AI will spit out a React Native iOS build in minutes. Why pay for yet another SaaS when you can "vibe-code" something in a week? And mark my words, LLM providers are one step away from actually hosting the code they generate. Who needs to spawn an AWS server if you can just ask OpenAI to host the code it just wrote? - "Hey Siri! build me a Basecamp, but with green buttons, also register a domain, spawn a server and host it all there, charge this credit card when you're done" - "Absolutely, that'd be $1.17 per hour" The Discovery Problem AI doesn’t just make it easier to build software—it makes it harder for new SaaS products to get discovered. When you ask AI for recommendations, it defaults to the biggest names. And not just in SaaS, by the way, in open source too. Imagine launching a killer new JS framework today. AI coding assistants and tools like Cursor will just default to React anyway. And not even the latest version of it! In a recent tweet Adam Wathan, the creator of Tailwind, asked: "Has anyone migrated to Tailwind 4.0 yet?" The most popular response was "Nah! we're still waiting for LLMs to learn it." AI isn’t just "the next internet moment." It’s more like "the social network moment." Echo chambers get louder, big names get bigger, and smaller ones disappear into the noise. What Can SaaS Companies Do? 1. Become an Industry Standard Or at least a "go-to" product in a niche. If your app becomes something people mention on their CVs or job descriptions, you win. Examples: Slack. HubSpot. Salesforce etc. A salesperson moving to a new company simply expects Salesforce to be there. That kind of lock-in ensures survival. 2. Build Moats: Infrastructure & Vendor Lock-In SaaS products that are just CRUD apps will die. The ones that survive will own infrastructure or at least some part of it. Instead of building another AI voice assistant, create one with built-in VoIP and provide landline numbers to customers. Examples: Transistor.fm – Not just a SaaS, but also a podcast hosting and publishing pipeline. Postmark (or any transactional email service really) – yes, AI can code an email-sending app, but it can't get you a 10-year old high-reputation sender IP address trusted by Gmail and Outlook. SignWell, SavvyCal and similar "inter-business" file-sharing, communication & escrow apps that own the communication part (and frankly, are literally easier to use than vibe-code your own). But prepare for tthousands of clones. Which SaaS Will Die First? Side-project-scale, "one simple tool" SaaS products that used to be easy wins—form builders, schedulers, basic dashboards, simple workflow apps—those days are over. If AI can generate it in an afternoon, no one is paying a subscription for it. Oh, and "no code" is toasted too. The SaaS graveyard is about to get a lot more crowded. I give it 4 years. Software consulting is making a comeback though. Someone has to clean up the vibe-coded chaos.
TL;DR The "build vs. buy" equation has flipped. Businesses used to buy SaaS because it was cheaper than building their own. AI has changed that—building your own is now more affordable than ever. The discovery problem. AI recommendations default to well-established solutions. Think SEO is a long game? Try LLM SEO. Everyone worries about AI taking developer jobs, but what if AI wipes out the entire off-the-shelf software industry? The "Why Buy?" Problem Six months ago, we needed an AI-powered code review tool. We explored several options, tested them all, and ultimately "vibe-coded" our own GitHub Action—a simple Bash script that takes a git log, sends it to Claude via curl, and posts the results to Slack. Done. The best part? AI wrote the entire thing—faster than it took to sign up for another SaaS. How long until every company realizes they can do this? Need a simple CRM with JIRA-style tasks? Done. Need a mobile time-tracking app for remote employees? AI will spit out a React Native iOS build in minutes. Why pay for yet another SaaS when you can "vibe-code" something in a week? The Discovery Problem AI doesn’t just make it easier to build software—it makes it harder for new SaaS products to get discovered. When you ask AI for recommendations, it defaults to the biggest names. Here’s an open-source analogy: imagine launching a game-changing JS framework today. AI coding assistants and tools like Cursor will still default to React. And not even the latest version! Adam Wathan recently asked on Twitter, "Has anyone migrated to Tailwind 4.0 yet?" The most popular response was "Nah! we're still waiting for LLMs to learn it." AI isn’t just "the next internet moment." It’s more like "the social network moment." Echo chambers get louder, big names get bigger, and smaller ones disappear into the noise. What Can SaaS Companies Do? 1. Become an Industry Standard Or at least a "go-to" product in a niche. If your app becomes something people mention on their CVs or job descriptions, you win. Examples: Slack. HubSpot. Salesforce etc. A salesperson moving to a new company simply expects Salesforce to be there. That kind of lock-in ensures survival. 2. Build Moats: Infrastructure & Vendor Lock-In SaaS products that are just CRUD apps will die. The ones that survive will own infrastructure. Examples: Transistor.fm – Not just a SaaS, but also a podcast hosting and distribution pipeline. Postmark (or any transactional email service really) – AI can code an email-sending app, but it can't get you a 10-year old high-reputation sender IP address trusted by Gmail and Outlook. SignWell and similar B2B file-sharing apps (literally easier to use then code your own). Don't just build another CRUD sales CRM, build a CRM with an inbound VoIP number – because AI can’t replace telco infrastructure (yet). Which SaaS Will Die First? Side-project-scale, "one simple tool" SaaS products that used to be easy wins—Calendly replacements, form builders, schedulers, basic dashboards, simple workflow apps—those days are over. If AI can generate it in an afternoon, no one is paying a subscription for it. Oh, and "no code" is toasted too. The SaaS graveyard is about to get a lot more crowded. I give it 4 years. Software consulting is making a comeback though. Someone has to clean up the vibe-coded chaos.
I'm looking for a new daily driver browser on my Mac. Chrome is a non-starter for me due to privacy concerns (Google's tracking empire is alive and well), and Edge is just... too much. Every update shoves another set of “features” down my throat — Copilot, discount coupons, Bing nonsense — things I have to disable again and again. No thanks. I currently use Brave and I really want to like it, but something about it doesn't sit right with me. The constant crypto integration, some of the decisions around their search engine — it just feels like it's got an agenda. Arc? Well, Arc is dying now, so that's out. Someone suggested Zen, which is a Firefox-based browser aiming to be an Arc-like alternative. That got me curious. And since I already had all these browsers installed, I figured: why not run some benchmarks and see how they stack up? Benchmark Setup All tests were run using Speedometer 3.0 on a MacBook M3 Pro. I tested in incognito/private mode with no extensions, except where the browser had built-in blockers enabled: Chrome: Running uBlock Origin Brave: Default built-in ad/privacy blocker enabled Safari: Clean Firefox: Clean Zen: Clean Results Chrome 132.0.6834.160 - 37.7 Brave 1.74.51 - 37.6 Safari 18.2 - 37.6 Firefox 134.0.2 - 34.8 Zen Browser 1.7.3b - 31.6 Browser benchSpeedometer score (higher is better)ChomeBraveSafariFirefoxZen Browser0510152025303540 A few takeaways: Chrome is (unsurprisingly) the fastest. Brave is essentially Chrome with a privacy skin, Leo AI, some Crypto stuff etc, and the Speedometer score reflects that. Firefox holds up well but is still behind Chromium-based browsers. Not awful, but not amazing either. Zen, being Firefox-based, lags a bit further behind. If you want a Firefox alternative that looks different but runs about the same, it's an option. Otherwise, it's just Firefox with extra UI features (see below). Side Note: 1Password Is a Performance Killer One of the most surprising findings was how much 1Password's extension destroys Speedometer scores. Across all browsers, enabling it dropped my score by 10 points. No clue what it's doing under the hood, but it's heavy. Probably scans all inputs to shove a password into. A (tiny) Zen review no one asked for Zen is a very, very nice browser, but it has some rough edges: (nitpicking) Lacks standard macOS keyboard shortcuts — for example, Cmd+W should close a window when no tabs are left. There's a hidden setting to fix this, but seriously, just follow macOS conventions by default. No built-in adblocker, have to install uBlock Origin like it's 2023 again (kidding). The dev tools are Firefox-based, and that says it all. JavaScript debugging is flaky (unreliable variable watch list, breakpoints sometimes get skipped), and reverse-engineering complex CSS can be a nightmare. That said, Zen a very solid contender, and some of its UI design choices are genuinely great! If you'd like to learn more watch Theo's review
After years of working with the "big" Visual Studio, I've had enough. It's buggy, slow, and frustrating, and I've decided to make the switch to Visual Studio Code. While as a C# developer I'm still unsure if I can replicate every aspect of my workflow in VS Code, I'm willing to give it a shot—and so far, I'm really impressed. 1. Performance Visual Studio 2022 performance has been a constant issue. It's sluggish and feels increasingly bloated with every new update. It's like watching paint dry every time I open a project. In contrast, Visual Studio Code feels lightweight and incredibly fast. The first time I opened my large project in VS Code, I was shocked — it loaded in lees than a second, literally, even with extensions like "C#" and "C# Dev Kit" installed. 2. Better Developer Experience Running dotnet watch run in VS Code's terminal has been a revelation. It's fast, responsive, and actually works consistently. Visual Studio's "hot reload" feature, on the other hand, has been a constant source of frustration for me. Half the time it doesn't work, and I'm left restarting debugging sessions over and over again. I can't tell you how many hours I've lost to that unreliable feature. 3. Fewer Bugs, Less Frustration The minor editor bugs in Visual Studio have been endless and exhausting. I remember one particularly infuriating bug where syntax highlighting would break in Razor and .cshtml files whenever I used certain HTML tags or even just adjusted the indentation. It drove me up the wall! Not to mention the bizarre issues with JavaScript formatting that never seemed to get fixed. Since switching to VS Code, I've encountered far fewer bugs. It just feels like an environment that respects my time and sanity. 4. A Thriving Ecosystem The VS Code extension ecosystem is alive and thriving. Need Tailwind CSS IntelliSense? There's an extension for that, and it works beautifully. Want to visualize your Git history for a particular line (better version of git-blame)? The Git History extension has got you covered. In "big" Visual Studio, I'd report issues through the "feedback hub" and wait months — or even years — for a response. With VS Code, the community is constantly contributing new tools and improvements. It's energizing (and sometimes exhausting) to be part of such an active ecosystem. 5. Cross-Platform Flexibility One of the biggest advantages I've found with Visual Studio Code is its true cross-platform support. Whether I'm on my Windows PC gaming rig at home or my MacBook while traveling, VS Code runs smoothly and keeps my workflow consistent. Visual Studio's limited macOS version just doesn't cut it for me. Being able to switch between machines without missing a beat has been a game-changer. I have to admit, I was skeptical at first. I've always had a bit of a grudge against Electron-based apps — they've often felt sluggish and bloated. But VS Code has completely changed my perspective. It's fast, responsive, and flexible enough to let me build the development environment that works best for me. Switching to VS Code has rekindled my passion for coding; it reminds me why I fell in love with development in the first place. While Visual Studio will always have its strengths, I need a tool that evolves with me—not one that holds me back.
More in programming
One of the first types we learn about is the boolean. It's pretty natural to use, because boolean logic underpins much of modern computing. And yet, it's one of the types we should probably be using a lot less of. In almost every single instance when you use a boolean, it should be something else. The trick is figuring out what "something else" is. Doing this is worth the effort. It tells you a lot about your system, and it will improve your design (even if you end up using a boolean). There are a few possible types that come up often, hiding as booleans. Let's take a look at each of these, as well as the case where using a boolean does make sense. This isn't exhaustive—[1]there are surely other types that can make sense, too. Datetimes A lot of boolean data is representing a temporal event having happened. For example, websites often have you confirm your email. This may be stored as a boolean column, is_confirmed, in the database. It makes a lot of sense. But, you're throwing away data: when the confirmation happened. You can instead store when the user confirmed their email in a nullable column. You can still get the same information by checking whether the column is null. But you also get richer data for other purposes. Maybe you find out down the road that there was a bug in your confirmation process. You can use these timestamps to check which users would be affected by that, based on when their confirmation was stored. This is the one I've seen discussed the most of all these. We run into it with almost every database we design, after all. You can detect it by asking if an action has to occur for the boolean to change values, and if values can only change one time. If you have both of these, then it really looks like it is a datetime being transformed into a boolean. Store the datetime! Enums Much of the remaining boolean data indicates either what type something is, or its status. Is a user an admin or not? Check the is_admin column! Did that job fail? Check the failed column! Is the user allowed to take this action? Return a boolean for that, yes or no! These usually make more sense as an enum. Consider the admin case: this is really a user role, and you should have an enum for it. If it's a boolean, you're going to eventually need more columns, and you'll keep adding on other statuses. Oh, we had users and admins, but now we also need guest users and we need super-admins. With an enum, you can add those easily. enum UserRole { User, Admin, Guest, SuperAdmin, } And then you can usually use your tooling to make sure that all the new cases are covered in your code. With a boolean, you have to add more booleans, and then you have to make sure you find all the places where the old booleans were used and make sure they handle these new cases, too. Enums help you avoid these bugs. Job status is one that's pretty clearly an enum as well. If you use booleans, you'll have is_failed, is_started, is_queued, and on and on. Or you could just have one single field, status, which is an enum with the various statuses. (Note, though, that you probably do want timestamp fields for each of these events—but you're still best having the status stored explicitly as well.) This begins to resemble a state machine once you store the status, and it means that you can make much cleaner code and analyze things along state transition lines. And it's not just for storing in a database, either. If you're checking a user's permissions, you often return a boolean for that. fn check_permissions(user: User) -> bool { false // no one is allowed to do anything i guess } In this case, true means the user can do it and false means they can't. Usually. I think. But you can really start to have doubts here, and with any boolean, because the application logic meaning of the value cannot be inferred from the type. Instead, this can be represented as an enum, even when there are just two choices. enum PermissionCheck { Allowed, NotPermitted(reason: String), } As a bonus, though, if you use an enum? You can end up with richer information, like returning a reason for a permission check failing. And you are safe for future expansions of the enum, just like with roles. You can detect when something should be an enum a proliferation of booleans which are mutually exclusive or depend on one another. You'll see multiple columns which are all changed at the same time. Or you'll see a boolean which is returned and used for a long time. It's important to use enums here to keep your program maintainable and understandable. Conditionals But when should we use a boolean? I've mainly run into one case where it makes sense: when you're (temporarily) storing the result of a conditional expression for evaluation. This is in some ways an optimization, either for the computer (reuse a variable[2]) or for the programmer (make it more comprehensible by giving a name to a big conditional) by storing an intermediate value. Here's a contrived example where using a boolean as an intermediate value. fn calculate_user_data(user: User, records: RecordStore) { // this would be some nice long conditional, // but I don't have one. So variables it is! let user_can_do_this: bool = (a && b) && (c || !d); if user_can_do_this && records.ready() { // do the thing } else if user_can_do_this && records.in_progress() { // do another thing } else { // and something else! } } But even here in this contrived example, some enums would make more sense. I'd keep the boolean, probably, simply to give a name to what we're calculating. But the rest of it should be a match on an enum! * * * Sure, not every boolean should go away. There's probably no single rule in software design that is always true. But, we should be paying a lot more attention to booleans. They're sneaky. They feel like they make sense for our data, but they make sense for our logic. The data is usually something different underneath. By storing a boolean as our data, we're coupling that data tightly to our application logic. Instead, we should remain critical and ask what data the boolean depends on, and should we maybe store that instead? It comes easier with practice. Really, all good design does. A little thinking up front saves you a lot of time in the long run. I know that using an em-dash is treated as a sign of using LLMs. LLMs are never used for my writing. I just really like em-dashes and have a dedicated key for them on one of my keyboard layers. ↩ This one is probably best left to the compiler. ↩
As I slowly but surely work towards the next release of my setcmd project for the Amiga (see the 68k branch for the gory details and my total noob-like C flailing around), I’ve made heavy use of documentation in the AmigaGuide format. Despite it’s age, it’s a great Amiga-native format and there’s a wealth of great information out there for things like the C API, as well as language guides and tutorials for tools like the Installer utility - and the AmigaGuide markup syntax itself. The only snag is, I had to have access to an Amiga (real or emulated), or install one of the various viewer programs on my laptops. Because like many, I spend a lot of time in a web browser and occasionally want to check something on my mobile phone, this is less than convenient. Fortunately, there’s a great AmigaGuideJS online viewer which renders AmigaGuide format documents using Javascript. I’ve started building up a collection of useful developer guides and other files in my own reference library so that I can access this documentation whenever I’m not at my Amiga or am coding in my “modern” dev environment. It’s really just for my own personal use, but I’ll be adding to it whenever I come across a useful piece of documentation so I hope it’s of some use to others as well! And on a related note, I now have a “unified” code-base so that SetCmd now builds and runs on 68k-based OS 3.x systems as well as OS 4.x PPC systems like my X5000. I need to: Tidy up my code and fix all the “TODO” stuff Update the Installer to run on OS 3.x systems Update the documentation Build a new package and upload to Aminet/OS4Depot Hopefully I’ll get that done in the next month or so. With the pressures of work and family life (and my other hobbies), progress has been a lot slower these last few years but I’m still really enjoying working on Amiga code and it’s great to have a fun personal project that’s there for me whenever I want to hack away at something for the sheer hell of it. I’ve learned a lot along the way and the AmigaOS is still an absolute joy to develop for. I even brought my X5000 to the most recent Kickstart Amiga User Group BBQ/meetup and had a fun day working on the code with fellow Amigans and enjoying some classic gaming & demos - there was also a MorphOS machine there, which I think will be my next target as the codebase is slowly becoming more portable. Just got to find some room in the “retro cave” now… This stuff is addictive :)
A little while back I heard about the White House launching their version of a Drudge Report style website called White House Wire. According to Axios, a White House official said the site’s purpose was to serve as “a place for supporters of the president’s agenda to get the real news all in one place”. So a link blog, if you will. As a self-professed connoisseur of websites and link blogs, this got me thinking: “I wonder what kind of links they’re considering as ‘real news’ and what they’re linking to?” So I decided to do quick analysis using Quadratic, a programmable spreadsheet where you can write code and return values to a 2d interface of rows and columns. I wrote some JavaScript to: Fetch the HTML page at whitehouse.gov/wire Parse it with cheerio Select all the external links on the page Return a list of links and their headline text In a few minutes I had a quick analysis of what kind of links were on the page: This immediately sparked my curiosity to know more about the meta information around the links, like: If you grouped all the links together, which sites get linked to the most? What kind of interesting data could you pull from the headlines they’re writing, like the most frequently used words? What if you did this analysis, but with snapshots of the website over time (rather than just the current moment)? So I got to building. Quadratic today doesn’t yet have the ability for your spreadsheet to run in the background on a schedule and append data. So I had to look elsewhere for a little extra functionality. My mind went to val.town which lets you write little scripts that can 1) run on a schedule (cron), 2) store information (blobs), and 3) retrieve stored information via their API. After a quick read of their docs, I figured out how to write a little script that’ll run once a day, scrape the site, and save the resulting HTML page in their key/value storage. From there, I was back to Quadratic writing code to talk to val.town’s API and retrieve my HTML, parse it, and turn it into good, structured data. There were some things I had to do, like: Fine-tune how I select all the editorial links on the page from the source HTML (I didn’t want, for example, to include external links to the White House’s social pages which appear on every page). This required a little finessing, but I eventually got a collection of links that corresponded to what I was seeing on the page. Parse the links and pull out the top-level domains so I could group links by domain occurrence. Create charts and graphs to visualize the structured data I had created. Selfish plug: Quadratic made this all super easy, as I could program in JavaScript and use third-party tools like tldts to do the analysis, all while visualizing my output on a 2d grid in real-time which made for a super fast feedback loop! Once I got all that done, I just had to sit back and wait for the HTML snapshots to begin accumulating! It’s been about a month and a half since I started this and I have about fifty days worth of data. The results? Here’s the top 10 domains that the White House Wire links to (by occurrence), from May 8 to June 24, 2025: youtube.com (133) foxnews.com (72) thepostmillennial.com (67) foxbusiness.com (66) breitbart.com (64) x.com (63) reuters.com (51) truthsocial.com (48) nypost.com (47) dailywire.com (36) From the links, here’s a word cloud of the most commonly recurring words in the link headlines: “trump” (343) “president” (145) “us” (134) “big” (131) “bill” (127) “beautiful” (113) “trumps” (92) “one” (72) “million” (57) “house” (56) The data and these graphs are all in my spreadsheet, so I can open it up whenever I want to see the latest data and re-run my script to pull the latest from val.town. In response to the new data that comes in, the spreadsheet automatically parses it, turn it into links, and updates the graphs. Cool! If you want to check out the spreadsheet — sorry! My API key for val.town is in it (“secrets management” is on the roadmap). But I created a duplicate where I inlined the data from the API (rather than the code which dynamically pulls it) which you can check out here at your convenience. Email · Mastodon · Bluesky
Consent morality is the idea that there are no higher values or virtues than allowing consenting adults to do whatever they please. As long as they're not hurting anyone, it's all good, and whoever might have a problem with that is by definition a bigot. This was the overriding morality I picked up as a child of the 90s. From TV, movies, music, and popular culture. Fly your freak! Whatever feels right is right! It doesn't seem like much has changed since then. What a moral dead end. I first heard the term consent morality as part of Louise Perry's critique of the sexual revolution. That in the context of hook-up culture, situationships, and falling birthrates, we have to wrestle with the fact that the sexual revolution — and it's insistence that, say, a sky-high body count mustn't be taboo — has led society to screwy dating market in the internet age that few people are actually happy with. But the application of consent morality that I actually find even more troubling is towards parenthood. As is widely acknowledged now, we're in a bit of a birthrate crisis all over the world. And I think consent morality can help explain part of it. I was reminded of this when I posted a cute video of a young girl so over-the-moon excited for her dad getting off work to argue that you'd be crazy to trade that for some nebulous concept of "personal freedom". Predictably, consent morality immediately appeared in the comments: Some people just don't want children and that's TOTALLY OKAY and you're actually bad for suggesting they should! No. It's the role of a well-functioning culture to guide people towards The Good Life. Not force, but guide. Nobody wants to be convinced by the morality police at the pointy end of a bayonet, but giving up on the whole idea of objective higher values and virtues is a nihilistic and cowardly alternative. Humans are deeply mimetic creatures. It's imperative that we celebrate what's good, true, and beautiful, such that these ideals become collective markers for morality. Such that they guide behavior. I don't think we've done a good job at doing that with parenthood in the last thirty-plus years. In fact, I'd argue we've done just about everything to undermine the cultural appeal of the simple yet divine satisfaction of child rearing (and by extension maligned the square family unit with mom, dad, and a few kids). Partly out of a coordinated campaign against the family unit as some sort of trad (possibly fascist!) identity marker in a long-waged culture war, but perhaps just as much out of the banal denigration of how boring and limiting it must be to carry such simple burdens as being a father or a mother in modern society. It's no wonder that if you incessantly focus on how expensive it is, how little sleep you get, how terrifying the responsibility is, and how much stress is involved with parenthood that it doesn't seem all that appealing! This is where Jordan Peterson does his best work. In advocating for the deeper meaning of embracing burden and responsibility. In diagnosing that much of our modern malaise does not come from carrying too much, but from carrying too little. That a myopic focus on personal freedom — the nights out, the "me time", the money saved — is a spiritual mirage: You think you want the paradise of nothing ever being asked of you, but it turns out to be the hell of nobody ever needing you. Whatever the cause, I think part of the cure is for our culture to reembrace the virtue and the value of parenthood without reservation. To stop centering the margins and their pathologies. To start centering the overwhelming middle where most people make for good parents, and will come to see that role as the most meaningful part they've played in their time on this planet. But this requires giving up on consent morality as the only way to find our path to The Good Life. It involves taking a moral stance that some ways of living are better than other ways of living for the broad many. That parenthood is good, that we need more children both for the literal survival of civilization, but also for the collective motivation to guard against the bad, the false, and the ugly. There's more to life than what you feel like doing in the moment. The worst thing in the world is not to have others ask more of you. Giving up on the total freedom of the unmoored life is a small price to pay for finding the deeper meaning in a tethered relationship with continuing a bloodline that's been drawn for hundreds of thousands of years before it came to you. You're never going to be "ready" before you take the leap. If you keep waiting, you'll wait until the window has closed, and all you see is regret. Summon a bit of bravery, don't overthink it, and do your part for the future of the world. It's 2.1 or bust, baby!
An interactive demo of bisection search and golden ratio search algorithms. There is also a motivation to learn them both. Spoiler alert! One converges better, and the other has a better computational cost.