Full Width [alt+shift+f] Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
71
I'm making a more focused effort to juggle this year. Mostly boxes, but also classic balls too.1 I've gotten to the point where I can almost consistently do a five-ball cascade, which I thought was the cutoff to being a "good juggler". "Thought" because I now know a "good juggler" is one who can do the five-ball cascade with outside throws. I know this because I can't do the outside five-ball cascade... yet. But it's something I can see myself eventually mastering, unlike the slightly more difficult trick of the five-ball mess, which is impossible for mere mortals like me. In theory there is a spectrum of trick difficulties and skill levels. I could place myself on the axis like this: In practice, there are three tiers: Toddlers Good jugglers who practice hard Genetic freaks and actual wizards And the graph always, always looks like this: This is the jugglers curse, and it's a three-parter: The threshold between you and "good" is the next trick you cannot do. Everything below that...
5 months ago

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from Computer Things

You can cheat a test suite with a big enough polynomial

Hi nerds, I'm back from Systems Distributed! I'd heartily recommend it, wildest conference I've been to in years. I have a lot of work to catch up on, so this will be a short newsletter. In an earlier version of my talk, I had a gag about unit tests. First I showed the test f([1,2,3]) == 3, then said that this was satisfied by f(l) = 3, f(l) = l[-1], f(l) = len(l), f(l) = (129*l[0]-34*l[1]-617)*l[2] - 443*l[0] + 1148*l[1] - 182. Then I progressively rule them out one by one with more unit tests, except the last polynomial which stubbornly passes every single test. If you're given some function of f(x: int, y: int, …): int and a set of unit tests asserting specific inputs give specific outputs, then you can find a polynomial that passes every single unit test. To find the gag, and as SMT practice, I wrote a Python program that finds a polynomial that passes a test suite meant for max. It's hardcoded for three parameters and only finds 2nd-order polynomials but I think it could be generalized with enough effort. The code Full code here, breakdown below. from z3 import * # type: ignore s1, s2 = Solver(), Solver() Z3 is just the particular SMT solver we use, as it has good language bindings and a lot of affordances. As part of learning SMT I wanted to do this two ways. First by putting the polynomial "outside" of the SMT solver in a python function, second by doing it "natively" in Z3. I created two solvers so I could test both versions in one run. a0, a, b, c, d, e, f = Consts('a0 a b c d e f', IntSort()) x, y, z = Ints('x y z') t = "a*x+b*y+c*z+d*x*y+e*x*z+f*y*z+a0" Both Const('x', IntSort()) and Int('x') do the exact same thing, the latter being syntactic sugar for the former. I did not know this when I wrote the program. To keep the two versions in sync I represented the equation as a string, which I later eval. This is one of the rare cases where eval is a good idea, to help us experiment more quickly while learning. The polynomial is a "2nd-order polynomial", even though it doesn't have x^2 terms, as it has xy and xz terms. lambdamax = lambda x, y, z: eval(t) z3max = Function('z3max', IntSort(), IntSort(), IntSort(), IntSort()) s1.add(ForAll([x, y, z], z3max(x, y, z) == eval(t))) lambdamax is pretty straightforward: create a lambda with three parameters and eval the string. The string "a*x" then becomes the python expression a*x, a is an SMT symbol, while the x SMT symbol is shadowed by the lambda parameter. To reiterate, a terrible idea in practice, but a good way to learn faster. z3max function is a little more complex. Function takes an identifier string and N "sorts" (roughly the same as programming types). The first N-1 sorts define the parameters of the function, while the last becomes the output. So here I assign the string identifier "z3max" to be a function with signature (int, int, int) -> int. I can load the function into the model by specifying constraints on what z3max could be. This could either be a strict input/output, as will be done later, or a ForAll over all possible inputs. Here I just use that directly to say "for all inputs, the function should match this polynomial." But I could do more complicated constraints, like commutativity (f(x, y) == f(y, x)) or monotonicity (Implies(x < y, f(x) <= f(y))). Note ForAll takes a list of z3 symbols to quantify over. That's the only reason we need to define x, y, z in the first place. The lambda version doesn't need them. inputs = [(1,2,3), (4, 2, 2), (1, 1, 1), (3, 5, 4)] for g in inputs: s1.add(z3max(*g) == max(*g)) s2.add(lambdamax(*g) == max(*g)) This sets up the joke: adding constraints to each solver that the polynomial it finds must, for a fixed list of triplets, return the max of each triplet. for s, func in [(s1, z3max), (s2, lambdamax)]: if s.check() == sat: m = s.model() for x, y, z in inputs: print(f"max([{x}, {y}, {z}]) =", m.evaluate(func(x, y, z))) print(f"max([x, y, z]) = {m[a]}x + {m[b]}y", f"+ {m[c]}z +", # linebreaks added for newsletter rendering f"{m[d]}xy + {m[e]}xz + {m[f]}yz + {m[a0]}\n") Output: max([1, 2, 3]) = 3 # etc max([x, y, z]) = -133x + 130y + -10z + -2xy + 62xz + -46yz + 0 max([1, 2, 3]) = 3 # etc max([x, y, z]) = -17x + 16y + 0z + 0xy + 8xz + -6yz + 0 I find that z3max (top) consistently finds larger coefficients than lambdamax does. I don't know why. Practical Applications Test-Driven Development recommends a strict "red-green refactor" cycle. Write a new failing test, make the new test pass, then go back and refactor. Well, the easiest way to make the new test pass would be to paste in a new polynomial, so that's what you should be doing. You can even do this all automatically: have a script read the set of test cases, pass them to the solver, and write the new polynomial to your code file. All you need to do is write the tests! Pedagogical Notes Writing the script took me a couple of hours. I'm sure an LLM could have whipped it all up in five minutes but I really want to learn SMT and LLMs may decrease learning retention.1 Z3 documentation is not... great for non-academics, though, and most other SMT solvers have even worse docs. One useful trick I use regularly is to use Github code search to find code using the same APIs and study how that works. Turns out reading API-heavy code is a lot easier than writing it! Anyway, I'm very, very slowly feeling like I'm getting the basics on how to use SMT. I don't have any practical use cases yet, but I wanted to learn this skill for a while and glad I finally did. Caveat I have not actually read the study, for all I know it could have a sample size of three people, I'll get around to it eventually ↩

6 days ago 9 votes
Solving LinkedIn Queens with SMT

No newsletter next week I’ll be speaking at Systems Distributed. My talk isn't close to done yet, which is why this newsletter is both late and short. Solving LinkedIn Queens in SMT The article Modern SAT solvers: fast, neat and underused claims that SAT solvers1 are "criminally underused by the industry". A while back on the newsletter I asked "why": how come they're so powerful and yet nobody uses them? Many experts responded saying the reason is that encoding SAT kinda sucked and they rather prefer using tools that compile to SAT. I was reminded of this when I read Ryan Berger's post on solving “LinkedIn Queens” as a SAT problem. A quick overview of Queens. You’re presented with an NxN grid divided into N regions, and have to place N queens so that there is exactly one queen in each row, column, and region. While queens can be on the same diagonal, they cannot be adjacently diagonal. (Important note: Linkedin “Queens” is a variation on the puzzle game Star Battle, which is the same except the number of stars you place in each row/column/region varies per puzzle, and is usually two. This is also why 'queens' don’t capture like chess queens.) Ryan solved this by writing Queens as a SAT problem, expressing properties like "there is exactly one queen in row 3" as a large number of boolean clauses. Go read his post, it's pretty cool. What leapt out to me was that he used CVC5, an SMT solver.2 SMT solvers are "higher-level" than SAT, capable of handling more data types than just boolean variables. It's a lot easier to solve the problem at the SMT level than at the SAT level. To show this, I whipped up a short demo of solving the same problem in Z3 (via the Python API). Full code here, which you can compare to Ryan's SAT solution here. I didn't do a whole lot of cleanup on it (again, time crunch!), but short explanation below. The code from z3 import * # type: ignore from itertools import combinations, chain, product solver = Solver() size = 9 # N Initial setup and modules. size is the number of rows/columns/regions in the board, which I'll call N below. # queens[n] = col of queen on row n # by construction, not on same row queens = IntVector('q', size) SAT represents the queen positions via N² booleans: q_00 means that a Queen is on row 0 and column 0, !q_05 means a queen isn't on row 0 col 5, etc. In SMT we can instead encode it as N integers: q_0 = 5 means that the queen on row 0 is positioned at column 5. This immediately enforces one class of constraints for us: we don't need any constraints saying "exactly one queen per row", because that's embedded in the definition of queens! (Incidentally, using 0-based indexing for the board was a mistake on my part, it makes correctly encoding the regions later really painful.) To actually make the variables [q_0, q_1, …], we use the Z3 affordance IntVector(str, n) for making n variables at once. solver.add([And(0 <= i, i < size) for i in queens]) # not on same column solver.add(Distinct(queens)) First we constrain all the integers to [0, N), then use the incredibly handy Distinct constraint to force all the integers to have different values. This guarantees at most one queen per column, which by the pigeonhole principle means there is exactly one queen per column. # not diagonally adjacent for i in range(size-1): q1, q2 = queens[i], queens[i+1] solver.add(Abs(q1 - q2) != 1) One of the rules is that queens can't be adjacent. We already know that they can't be horizontally or vertically adjacent via other constraints, which leaves the diagonals. We only need to add constraints that, for each queen, there is no queen in the lower-left or lower-right corner, aka q_3 != q_2 ± 1. We don't need to check the top corners because if q_1 is in the upper-left corner of q_2, then q_2 is in the lower-right corner of q_1! That covers everything except the "one queen per region" constraint. But the regions are the tricky part, which we should expect because we vary the difficulty of queens games by varying the regions. regions = { "purple": [(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0), (8, 0), (1, 1), (8, 1)], "red": [(1, 2), (2, 2), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (6, 2), (7, 1), (7, 2), (8, 2), (8, 3),], # you get the picture } # Some checking code left out, see below The region has to be manually coded in, which is a huge pain. (In the link, some validation code follows. Since it breaks up explaining the model I put it in the next section.) for r in regions.values(): solver.add(Or( *[queens[row] == col for (row, col) in r] )) Finally we have the region constraint. The easiest way I found to say "there is exactly one queen in each region" is to say "there is a queen in region 1 and a queen in region 2 and a queen in region 3" etc." Then to say "there is a queen in region purple" I wrote "q_0 = 0 OR q_0 = 1 OR … OR q_1 = 0 etc." Why iterate over every position in the region instead of doing something like (0, q[0]) in r? I tried that but it's not an expression that Z3 supports. if solver.check() == sat: m = solver.model() print([(l, m[l]) for l in queens]) Finally, we solve and print the positions. Running this gives me: [(q__0, 0), (q__1, 5), (q__2, 8), (q__3, 2), (q__4, 7), (q__5, 4), (q__6, 1), (q__7, 3), (q__8, 6)] Which is the correct solution to the queens puzzle. I didn't benchmark the solution times, but I imagine it's considerably slower than a raw SAT solver. Glucose is really, really fast. But even so, solving the problem with SMT was a lot easier than solving it with SAT. That satisfies me as an explanation for why people prefer it to SAT. Sanity checks One bit I glossed over earlier was the sanity checking code. I knew for sure that I was going to make a mistake encoding the region, and the solver wasn't going to provide useful information abut what I did wrong. In cases like these, I like adding small tests and checks to catch mistakes early, because the solver certainly isn't going to catch them! all_squares = set(product(range(size), repeat=2)) def test_i_set_up_problem_right(): assert all_squares == set(chain.from_iterable(regions.values())) for r1, r2 in combinations(regions.values(), 2): assert not set(r1) & set(r2), set(r1) & set(r2) The first check was a quick test that I didn't leave any squares out, or accidentally put the same square in both regions. Converting the values into sets makes both checks a lot easier. Honestly I don't know why I didn't just use sets from the start, sets are great. def render_regions(): colormap = ["purple", "red", "brown", "white", "green", "yellow", "orange", "blue", "pink"] board = [[0 for _ in range(size)] for _ in range(size)] for (row, col) in all_squares: for color, region in regions.items(): if (row, col) in region: board[row][col] = colormap.index(color)+1 for row in board: print("".join(map(str, row))) render_regions() The second check is something that prints out the regions. It produces something like this: 111111111 112333999 122439999 124437799 124666779 124467799 122467899 122555889 112258899 I can compare this to the picture of the board to make sure I got it right. I guess a more advanced solution would be to print emoji squares like 🟥 instead. Neither check is quality code but it's throwaway and it gets the job done so eh. "Boolean SATisfiability Solver", aka a solver that can find assignments that make complex boolean expressions true. I write a bit more about them here. ↩ "Satisfiability Modulo Theories" ↩

2 weeks ago 14 votes
AI is a gamechanger for TLA+ users

New Logic for Programmers Release v0.10 is now available! This is a minor release, mostly focused on logic-based refactoring, with new material on set types and testing refactors are correct. See the full release notes at the changelog page. Due to conference pressure v0.11 will also likely be a minor release. AI is a gamechanger for TLA+ users TLA+ is a specification language to model and debug distributed systems. While very powerful, it's also hard for programmers to learn, and there's always questions of connecting specifications with actual code. That's why The Coming AI Revolution in Distributed Systems caught my interest. In the post, Cheng Huang claims that Azure successfully used LLMs to examine an existing codebase, derive a TLA+ spec, and find a production bug in that spec. "After a decade of manually crafting TLA+ specifications", he wrote, "I must acknowledge that this AI-generated specification rivals human work". This inspired me to experiment with LLMs in TLA+ myself. My goals are a little less ambitious than Cheng's: I wanted to see how LLMs could help junior specifiers write TLA+, rather than handling the entire spec automatically. Details on what did and didn't work below, but my takeaway is that LLMs are an immense specification force multiplier. All tests were done with a standard VSCode Copilot subscription, writing Claude 3.7 in Agent mode. Other LLMs or IDEs may be more or less effective, etc. Things Claude was good at Fixing syntax errors TLA+ uses a very different syntax than mainstream programming languages, meaning beginners make a lot of mistakes where they do a "programming syntax" instead of TLA+ syntax: NotThree(x) = \* should be ==, not = x != 3 \* should be #, not != The problem is that the TLA+ syntax checker, SANY, is 30 years old and doesn't provide good information. Here's what it says for that snippet: Was expecting "==== or more Module body" Encountered "NotThree" at line 6, column 1 That only isolates one error and doesn't tell us what the problem is, only where it is. Experienced TLA+ users get "error eyes" and can quickly see what the problem is, but beginners really struggle with this. The TLA+ foundation has made LLM integration a priority, so the VSCode extension naturally supports several agents actions. One of these is running SANY, meaning an agent can get an error, fix it, get another error, fix it, etc. Provided the above sample and asked to make it work, Claude successfully fixed both errors. It also fixed many errors in a larger spec, as well as figure out why PlusCal specs weren't compiling to TLA+. This by itself is already enough to make LLMs a worthwhile tool, as it fixes one of the biggest barriers to entry. Understanding error traces When TLA+ finds a violated property, it outputs the sequence of steps that leads to the error. This starts in plaintext, and VSCode parses it into an interactive table: Learning to read these error traces is a skill in itself. You have to understand what's happening in each step and how it relates back to the actually broken property. It takes a long time for people to learn how to do this well. Claude was successful here, too, accurately reading 20+ step error traces and giving a high-level explanation of what went wrong. It also could condense error traces: if ten steps of the error trace could be condensed into a one-sentence summary (which can happen if you're modeling a lot of process internals) Claude would do it. I did have issues here with doing this in agent mode: while the extension does provide a "run model checker" command, the agent would regularly ignore this and prefer to run a terminal command instead. This would be fine except that the LLM consistently hallucinated invalid commands. I had to amend every prompt with "run the model checker via vscode, do not use a terminal command". You can skip this if you're willing to copy and paste the error trace into the prompt. As with syntax checking, if this was the only thing LLMs could effectively do, that would already be enough1 to earn a strong recommend. Even as a TLA+ expert I expect I'll be using this trick regularly. Boilerplate tasks TLA+ has a lot of boilerplate. One of the most notorious examples is UNCHANGED rules. Specifications are extremely precise — so precise that you have to specify what variables don't change in every step. This takes the form of an UNCHANGED clause at the end of relevant actions: RemoveObjectFromStore(srv, o, s) == /\ o \in stored[s] /\ stored' = [stored EXCEPT ![s] = @ \ {o}] /\ UNCHANGED <<capacity, log, objectsize, pc>> Writing this is really annoying. Updating these whenever you change an action, or add a new variable to the spec, is doubly so. Syntax checking and error analysis are important for beginners, but this is what I wanted for myself. I took a spec and prompted Claude Add UNCHANGED <> for each variable not changed in an action. And it worked! It successfully updated the UNCHANGED in every action. (Note, though, that it was a "well-behaved" spec in this regard: only one "action" happened at a time. In TLA+ you can have two actions happen simultaneously, that each update half of the variables, meaning neither of them should have an UNCHANGED clause. I haven't tested how Claude handles that!) That's the most obvious win, but Claude was good at handling other tedious work, too. Some examples include updating vars (the conventional collection of all state variables), lifting a hard-coded value into a model parameter, and changing data formats. Most impressive to me, though, was rewriting a spec designed for one process to instead handle multiple processes. This means taking all of the process variables, which originally have types like Int, converting them to types like [Process -> Int], and then updating the uses of all of those variables in the spec. It didn't account for race conditions in the new concurrent behavior, but it was an excellent scaffold to do more work. Writing properties from an informal description You have to be pretty precise with your intended property description but it handles converting that precise description into TLA+'s formalized syntax, which is something beginners often struggle with. Things it is less good at Generating model config files To model check TLA+, you need both a specification (.tla) and a model config file (.cfg), which have separate syntaxes. Asking the agent to generate the second often lead to it using TLA+ syntax. It automatically fixed this after getting parsing errors, though. Fixing specs Whenever the ran model checking and discovered a bug, it would naturally propose a change to either the invalid property or the spec. Sometimes the changes were good, other times the changes were not physically realizable. For example, if it found that a bug was due to a race condition between processes, it would often suggest fixing it by saying race conditions were okay. I mean yes, if you say bugs are okay, then the spec finds that bugs are okay! Or it would alternatively suggest adding a constraint to the spec saying that race conditions don't happen. But that's a huge mistake in specification, because race conditions happen if we don't have coordination. We need to specify the mechanism that is supposed to prevent them. Finding properties of the spec After seeing how capable it was at translating my properties to TLA+, I started prompting Claude to come up with properties on its own. Unfortunately, almost everything I got back was either trivial, uninteresting, or too coupled to implementation details. I haven't tested if it would work better to ask it for "properties that may be violated". Generating code from specs I have to be specific here: Claude could sometimes convert Python into a passable spec, an vice versa. It wasn't good at recognizing abstraction. For example, TLA+ specifications often represent sequential operations with a state variable, commonly called pc. If modeling code that nonatomically retrieves a counter value and increments it, we'd have one action that requires pc = "Get" and sets the new value to "Inc", then another that requires it be "Inc" and sets it to "Done". I found that Claude would try to somehow convert pc into part of the Python program's state, rather than recognize it as a TLA+ abstraction. On the other side, when converting python code to TLA+ it would often try to translate things like sleep into some part of the spec, not recognizing that it is abstractable into a distinct action. I didn't test other possible misconceptions, like converting randomness to nondeterminism. For the record, when converting TLA+ to Python Claude tended to make simulators of the spec, rather than possible production code implementing the spec. I really wasn't expecting otherwise though. Unexplored Applications Things I haven't explored thoroughly but could possibly be effective, based on what I know about TLA+ and AI: Writing Java Overrides Most TLA+ operators are resolved via TLA+ interpreters, but you can also implement them in "native" Java. This lets you escape the standard language semantics and add capabilities like executing programs during model-checking or dynamically constrain the depth of the searched state space. There's a lot of cool things I think would be possible with overrides. The problem is there's only a handful of people in the world who know how to write them. But that handful have written quite a few overrides and I think there's enough there for Claude to work with. Writing specs, given a reference mechanism In all my experiments, the LLM only had my prompts and the occasional Python script as information. That makes me suspect that some of its problems with writing and fixing specs come down to not having a system model. Maybe it wouldn't suggest fixes like "these processes never race" if it had a design doc saying that the processes can't coordinate. (Could a Sufficiently Powerful LLM derive some TLA+ specification from a design document?) Connecting specs and code This is the holy grail of TLA+: taking a codebase and showing it correctly implements a spec. Currently the best ways to do this are by either using TLA+ to generate a test suite, or by taking logged production traces and matching them to TLA+ behaviors. This blog post discusses both. While I've seen a lot of academic research into these approaches there are no industry-ready tools. So if you want trace validation you have to do a lot of manual labour tailored to your specific product. If LLMs could do some of this work for us then that'd really amplify the usefulness of TLA+ to many companies. Thoughts Right now, agents seem good at the tedious and routine parts of TLA+ and worse at the strategic and abstraction parts. But, since the routine parts are often a huge barrier to beginners, this means that LLMs have the potential to make TLA+ far, far more accessible than it previously was. I have mixed thoughts on this. As an advocate, this is incredible. I want more people using formal specifications because I believe it leads to cheaper, safer, more reliable software. Anything that gets people comfortable with specs is great for our industry. As a professional TLA+ consultant, I'm worried that this obsoletes me. Most of my income comes from training and coaching, which companies will have far less demand of now. Then again, maybe this an opportunity to pitch "agentic TLA+ training" to companies! Anyway, if you're interested in TLA+, there has never been a better time to try it. I mean it, these tools handle so much of the hard part now. I've got a free book available online, as does the inventor of TLA+. I like this guide too. Happy modeling! Dayenu. ↩

3 weeks ago 12 votes
What does "Undecidable" mean, anyway

Systems Distributed I'll be speaking at Systems Distributed next month! The talk is brand new and will aim to showcase some of the formal methods mental models that would be useful in mainstream software development. It has added some extra stress on my schedule, though, so expect the next two monthly releases of Logic for Programmers to be mostly minor changes. What does "Undecidable" mean, anyway Last week I read Against Curry-Howard Mysticism, which is a solid article I recommend reading. But this newsletter is actually about one comment: I like to see posts like this because I often feel like I can’t tell the difference between BS and a point I’m missing. Can we get one for questions like “Isn’t XYZ (Undecidable|NP-Complete|PSPACE-Complete)?” I've already written one of these for NP-complete, so let's do one for "undecidable". Step one is to pull a technical definition from the book Automata and Computability: A property P of strings is said to be decidable if ... there is a total Turing machine that accepts input strings that have property P and rejects those that do not. (pg 220) Step two is to translate the technical computer science definition into more conventional programmer terms. Warning, because this is a newsletter and not a blog post, I might be a little sloppy with terms. Machines and Decision Problems In automata theory, all inputs to a "program" are strings of characters, and all outputs are "true" or "false". A program "accepts" a string if it outputs "true", and "rejects" if it outputs "false". You can think of this as automata studying all pure functions of type f :: string -> boolean. Problems solvable by finding such an f are called "decision problems". This covers more than you'd think, because we can bootstrap more powerful functions from these. First, as anyone who's programmed in bash knows, strings can represent any other data. Second, we can fake non-boolean outputs by instead checking if a certain computation gives a certain result. For example, I can reframe the function add(x, y) = x + y as a decision problem like this: IS_SUM(str) { x, y, z = split(str, "#") return x + y == z } Then because IS_SUM("2#3#5") returns true, we know 2 + 3 == 5, while IS_SUM("2#3#6") is false. Since we can bootstrap parameters out of strings, I'll just say it's IS_SUM(x, y, z) going forward. A big part of automata theory is studying different models of computation with different strengths. One of the weakest is called "DFA". I won't go into any details about what DFA actually can do, but the important thing is that it can't solve IS_SUM. That is, if you give me a DFA that takes inputs of form x#y#z, I can always find an input where the DFA returns true when x + y != z, or an input which returns false when x + y == z. It's really important to keep this model of "solve" in mind: a program solves a problem if it correctly returns true on all true inputs and correctly returns false on all false inputs. (total) Turing Machines A Turing Machine (TM) is a particular type of computation model. It's important for two reasons: By the Church-Turing thesis, a Turing Machine is the "upper bound" of how powerful (physically realizable) computational models can get. This means that if an actual real-world programming language can solve a particular decision problem, so can a TM. Conversely, if the TM can't solve it, neither can the programming language.1 It's possible to write a Turing machine that takes a textual representation of another Turing machine as input, and then simulates that Turing machine as part of its computations. Property (1) means that we can move between different computational models of equal strength, proving things about one to learn things about another. That's why I'm able to write IS_SUM in a pseudocode instead of writing it in terms of the TM computational model (and why I was able to use split for convenience). Property (2) does several interesting things. First of all, it makes it possible to compose Turing machines. Here's how I can roughly ask if a given number is the sum of two primes, with "just" addition and boolean functions: IS_SUM_TWO_PRIMES(z): x := 1 y := 1 loop { if x > z {return false} if IS_PRIME(x) { if IS_PRIME(y) { if IS_SUM(x, y, z) { return true; } } } y := y + 1 if y > x { x := x + 1 y := 0 } } Notice that without the if x > z {return false}, the program would loop forever on z=2. A TM that always halts for all inputs is called total. Property (2) also makes "Turing machines" a possible input to functions, meaning that we can now make decision problems about the behavior of Turing machines. For example, "does the TM M either accept or reject x within ten steps?"2 IS_DONE_IN_TEN_STEPS(M, x) { for (i = 0; i < 10; i++) { `simulate M(x) for one step` if(`M accepted or rejected`) { return true } } return false } Decidability and Undecidability Now we have all of the pieces to understand our original definition: A property P of strings is said to be decidable if ... there is a total Turing machine that accepts input strings that have property P and rejects those that do not. (220) Let IS_P be the decision problem "Does the input satisfy P"? Then IS_P is decidable if it can be solved by a Turing machine, ie, I can provide some IS_P(x) machine that always accepts if x has property P, and always rejects if x doesn't have property P. If I can't do that, then IS_P is undecidable. IS_SUM(x, y, z) and IS_DONE_IN_TEN_STEPS(M, x) are decidable properties. Is IS_SUM_TWO_PRIMES(z) decidable? Some analysis shows that our corresponding program will either find a solution, or have x>z and return false. So yes, it is decidable. Notice there's an asymmetry here. To prove some property is decidable, I need just to need to find one program that correctly solves it. To prove some property is undecidable, I need to show that any possible program, no matter what it is, doesn't solve it. So with that asymmetry in mind, do are there any undecidable problems? Yes, quite a lot. Recall that Turing machines can accept encodings of other TMs as input, meaning we can write a TM that checks properties of Turing machines. And, by Rice's Theorem, almost every nontrivial semantic3 property of Turing machines is undecidable. The conventional way to prove this is to first find a single undecidable property H, and then use that to bootstrap undecidability of other properties. The canonical and most famous example of an undecidable problem is the Halting problem: "does machine M halt on input i?" It's pretty easy to prove undecidable, and easy to use it to bootstrap other undecidability properties. But again, any nontrivial property is undecidable. Checking a TM is total is undecidable. Checking a TM accepts any inputs is undecidable. Checking a TM solves IS_SUM is undecidable. Etc etc etc. What this doesn't mean in practice I often see the halting problem misconstrued as "it's impossible to tell if a program will halt before running it." This is wrong. The halting problem says that we cannot create an algorithm that, when applied to an arbitrary program, tells us whether the program will halt or not. It is absolutely possible to tell if many programs will halt or not. It's possible to find entire subcategories of programs that are guaranteed to halt. It's possible to say "a program constructed following constraints XYZ is guaranteed to halt." The actual consequence of undecidability is more subtle. If we want to know if a program has property P, undecidability tells us We will have to spend time and mental effort to determine if it has P We may not be successful. This is subtle because we're so used to living in a world where everything's undecidable that we don't really consider what the counterfactual would be like. In such a world there might be no need for Rust, because "does this C program guarantee memory-safety" is a decidable property. The entire field of formal verification could be unnecessary, as we could just check properties of arbitrary programs directly. We could automatically check if a change in a program preserves all existing behavior. Lots of famous math problems could be solved overnight. (This to me is a strong "intuitive" argument for why the halting problem is undecidable: a halt detector can be trivially repurposed as a program optimizer / theorem-prover / bcrypt cracker / chess engine. It's too powerful, so we should expect it to be impossible.) But because we don't live in that world, all of those things are hard problems that take effort and ingenuity to solve, and even then we often fail. To be pendantic, a TM can't do things like "scrape a webpage" or "render a bitmap", but we're only talking about computational decision problems here. ↩ One notation I've adopted in Logic for Programmers is marking abstract sections of pseudocode with backticks. It's really handy! ↩ Nontrivial meaning "at least one TM has this property and at least one TM doesn't have this property". Semantic meaning "related to whether the TM accepts, rejects, or runs forever on a class of inputs". IS_DONE_IN_TEN_STEPS is not a semantic property, as it doesn't tell us anything about inputs that take longer than ten steps. ↩

a month ago 15 votes
Modeling Awkward Social Situations with TLA+

You're walking down the street and need to pass someone going the opposite way. You take a step left, but they're thinking the same thing and take a step to their right, aka your left. You're still blocking each other. Then you take a step to the right, and they take a step to their left, and you're back to where you started. I've heard this called "walkwarding" Let's model this in TLA+. TLA+ is a formal methods tool for finding bugs in complex software designs, most often involving concurrency. Two people trying to get past each other just also happens to be a concurrent system. A gentler introduction to TLA+'s capabilities is here, an in-depth guide teaching the language is here. The spec ---- MODULE walkward ---- EXTENDS Integers VARIABLES pos vars == <<pos>> Double equals defines a new operator, single equals is an equality check. <<pos>> is a sequence, aka array. you == "you" me == "me" People == {you, me} MaxPlace == 4 left == 0 right == 1 I've gotten into the habit of assigning string "symbols" to operators so that the compiler complains if I misspelled something. left and right are numbers so we can shift position with right - pos. direction == [you |-> 1, me |-> -1] goal == [you |-> MaxPlace, me |-> 1] Init == \* left-right, forward-backward pos = [you |-> [lr |-> left, fb |-> 1], me |-> [lr |-> left, fb |-> MaxPlace]] direction, goal, and pos are "records", or hash tables with string keys. I can get my left-right position with pos.me.lr or pos["me"]["lr"] (or pos[me].lr, as me == "me"). Juke(person) == pos' = [pos EXCEPT ![person].lr = right - @] TLA+ breaks the world into a sequence of steps. In each step, pos is the value of pos in the current step and pos' is the value in the next step. The main outcome of this semantics is that we "assign" a new value to pos by declaring pos' equal to something. But the semantics also open up lots of cool tricks, like swapping two values with x' = y /\ y' = x. TLA+ is a little weird about updating functions. To set f[x] = 3, you gotta write f' = [f EXCEPT ![x] = 3]. To make things a little easier, the rhs of a function update can contain @ for the old value. ![me].lr = right - @ is the same as right - pos[me].lr, so it swaps left and right. ("Juke" comes from here) Move(person) == LET new_pos == [pos[person] EXCEPT !.fb = @ + direction[person]] IN /\ pos[person].fb # goal[person] /\ \A p \in People: pos[p] # new_pos /\ pos' = [pos EXCEPT ![person] = new_pos] The EXCEPT syntax can be used in regular definitions, too. This lets someone move one step in their goal direction unless they are at the goal or someone is already in that space. /\ means "and". Next == \E p \in People: \/ Move(p) \/ Juke(p) I really like how TLA+ represents concurrency: "In each step, there is a person who either moves or jukes." It can take a few uses to really wrap your head around but it can express extraordinarily complicated distributed systems. Spec == Init /\ [][Next]_vars Liveness == <>(pos[me].fb = goal[me]) ==== Spec is our specification: we start at Init and take a Next step every step. Liveness is the generic term for "something good is guaranteed to happen", see here for more. <> means "eventually", so Liveness means "eventually my forward-backward position will be my goal". I could extend it to "both of us eventually reach out goal" but I think this is good enough for a demo. Checking the spec Four years ago, everybody in TLA+ used the toolbox. Now the community has collectively shifted over to using the VSCode extension.1 VSCode requires we write a configuration file, which I will call walkward.cfg. SPECIFICATION Spec PROPERTY Liveness I then check the model with the VSCode command TLA+: Check model with TLC. Unsurprisingly, it finds an error: The reason it fails is "stuttering": I can get one step away from my goal and then just stop moving forever. We say the spec is unfair: it does not guarantee that if progress is always possible, progress will be made. If I want the spec to always make progress, I have to make some of the steps weakly fair. + Fairness == WF_vars(Next) - Spec == Init /\ [][Next]_vars + Spec == Init /\ [][Next]_vars /\ Fairness Now the spec is weakly fair, so someone will always do something. New error: \* First six steps cut 7: <Move("me")> pos = [you |-> [lr |-> 0, fb |-> 4], me |-> [lr |-> 1, fb |-> 2]] 8: <Juke("me")> pos = [you |-> [lr |-> 0, fb |-> 4], me |-> [lr |-> 0, fb |-> 2]] 9: <Juke("me")> (back to state 7) In this failure, I've successfully gotten past you, and then spend the rest of my life endlessly juking back and forth. The Next step keeps happening, so weak fairness is satisfied. What I actually want is for both my Move and my Juke to both be weakly fair independently of each other. - Fairness == WF_vars(Next) + Fairness == WF_vars(Move(me)) /\ WF_vars(Juke(me)) If my liveness property also specified that you reached your goal, I could instead write \A p \in People: WF_vars(Move(p)) etc. I could also swap the \A with a \E to mean at least one of us is guaranteed to have fair actions, but not necessarily both of us. New error: 3: <Move("me")> pos = [you |-> [lr |-> 0, fb |-> 2], me |-> [lr |-> 0, fb |-> 3]] 4: <Juke("you")> pos = [you |-> [lr |-> 1, fb |-> 2], me |-> [lr |-> 0, fb |-> 3]] 5: <Juke("me")> pos = [you |-> [lr |-> 1, fb |-> 2], me |-> [lr |-> 1, fb |-> 3]] 6: <Juke("me")> pos = [you |-> [lr |-> 1, fb |-> 2], me |-> [lr |-> 0, fb |-> 3]] 7: <Juke("you")> (back to state 3) Now we're getting somewhere! This is the original walkwarding situation we wanted to capture. We're in each others way, then you juke, but before either of us can move you juke, then we both juke back. We can repeat this forever, trapped in a social hell. Wait, but doesn't WF(Move(me)) guarantee I will eventually move? Yes, but only if a move is permanently available. In this case, it's not permanently available, because every couple of steps it's made temporarily unavailable. How do I fix this? I can't add a rule saying that we only juke if we're blocked, because the whole point of walkwarding is that we're not coordinated. In the real world, walkwarding can go on for agonizing seconds. What I can do instead is say that Liveness holds as long as Move is strongly fair. Unlike weak fairness, strong fairness guarantees something happens if it keeps becoming possible, even with interruptions. Liveness == + SF_vars(Move(me)) => <>(pos[me].fb = goal[me]) This makes the spec pass. Even if we weave back and forth for five minutes, as long as we eventually pass each other, I will reach my goal. Note we could also by making Move in Fairness strongly fair, which is preferable if we have a lot of different liveness properties to check. A small exercise for the reader There is a presumed invariant that is violated. Identify what it is, write it as a property in TLA+, and show the spec violates it. Then fix it. Answer (in rot13): Gur vainevnag vf "ab gjb crbcyr ner va gur rknpg fnzr ybpngvba". Zbir thnenagrrf guvf ohg Whxr qbrf abg. More TLA+ Exercises I've started work on an exercises repo. There's only a handful of specific problems now but I'm planning on adding more over the summer. learntla is still on the toolbox, but I'm hoping to get it all moved over this summer. ↩

a month ago 25 votes

More in programming

That boolean should probably be something else

One of the first types we learn about is the boolean. It's pretty natural to use, because boolean logic underpins much of modern computing. And yet, it's one of the types we should probably be using a lot less of. In almost every single instance when you use a boolean, it should be something else. The trick is figuring out what "something else" is. Doing this is worth the effort. It tells you a lot about your system, and it will improve your design (even if you end up using a boolean). There are a few possible types that come up often, hiding as booleans. Let's take a look at each of these, as well as the case where using a boolean does make sense. This isn't exhaustive—[1]there are surely other types that can make sense, too. Datetimes A lot of boolean data is representing a temporal event having happened. For example, websites often have you confirm your email. This may be stored as a boolean column, is_confirmed, in the database. It makes a lot of sense. But, you're throwing away data: when the confirmation happened. You can instead store when the user confirmed their email in a nullable column. You can still get the same information by checking whether the column is null. But you also get richer data for other purposes. Maybe you find out down the road that there was a bug in your confirmation process. You can use these timestamps to check which users would be affected by that, based on when their confirmation was stored. This is the one I've seen discussed the most of all these. We run into it with almost every database we design, after all. You can detect it by asking if an action has to occur for the boolean to change values, and if values can only change one time. If you have both of these, then it really looks like it is a datetime being transformed into a boolean. Store the datetime! Enums Much of the remaining boolean data indicates either what type something is, or its status. Is a user an admin or not? Check the is_admin column! Did that job fail? Check the failed column! Is the user allowed to take this action? Return a boolean for that, yes or no! These usually make more sense as an enum. Consider the admin case: this is really a user role, and you should have an enum for it. If it's a boolean, you're going to eventually need more columns, and you'll keep adding on other statuses. Oh, we had users and admins, but now we also need guest users and we need super-admins. With an enum, you can add those easily. enum UserRole { User, Admin, Guest, SuperAdmin, } And then you can usually use your tooling to make sure that all the new cases are covered in your code. With a boolean, you have to add more booleans, and then you have to make sure you find all the places where the old booleans were used and make sure they handle these new cases, too. Enums help you avoid these bugs. Job status is one that's pretty clearly an enum as well. If you use booleans, you'll have is_failed, is_started, is_queued, and on and on. Or you could just have one single field, status, which is an enum with the various statuses. (Note, though, that you probably do want timestamp fields for each of these events—but you're still best having the status stored explicitly as well.) This begins to resemble a state machine once you store the status, and it means that you can make much cleaner code and analyze things along state transition lines. And it's not just for storing in a database, either. If you're checking a user's permissions, you often return a boolean for that. fn check_permissions(user: User) -> bool { false // no one is allowed to do anything i guess } In this case, true means the user can do it and false means they can't. Usually. I think. But you can really start to have doubts here, and with any boolean, because the application logic meaning of the value cannot be inferred from the type. Instead, this can be represented as an enum, even when there are just two choices. enum PermissionCheck { Allowed, NotPermitted(reason: String), } As a bonus, though, if you use an enum? You can end up with richer information, like returning a reason for a permission check failing. And you are safe for future expansions of the enum, just like with roles. You can detect when something should be an enum a proliferation of booleans which are mutually exclusive or depend on one another. You'll see multiple columns which are all changed at the same time. Or you'll see a boolean which is returned and used for a long time. It's important to use enums here to keep your program maintainable and understandable. Conditionals But when should we use a boolean? I've mainly run into one case where it makes sense: when you're (temporarily) storing the result of a conditional expression for evaluation. This is in some ways an optimization, either for the computer (reuse a variable[2]) or for the programmer (make it more comprehensible by giving a name to a big conditional) by storing an intermediate value. Here's a contrived example where using a boolean as an intermediate value. fn calculate_user_data(user: User, records: RecordStore) { // this would be some nice long conditional, // but I don't have one. So variables it is! let user_can_do_this: bool = (a && b) && (c || !d); if user_can_do_this && records.ready() { // do the thing } else if user_can_do_this && records.in_progress() { // do another thing } else { // and something else! } } But even here in this contrived example, some enums would make more sense. I'd keep the boolean, probably, simply to give a name to what we're calculating. But the rest of it should be a match on an enum! * * * Sure, not every boolean should go away. There's probably no single rule in software design that is always true. But, we should be paying a lot more attention to booleans. They're sneaky. They feel like they make sense for our data, but they make sense for our logic. The data is usually something different underneath. By storing a boolean as our data, we're coupling that data tightly to our application logic. Instead, we should remain critical and ask what data the boolean depends on, and should we maybe store that instead? It comes easier with practice. Really, all good design does. A little thinking up front saves you a lot of time in the long run. I know that using an em-dash is treated as a sign of using LLMs. LLMs are never used for my writing. I just really like em-dashes and have a dedicated key for them on one of my keyboard layers. ↩ This one is probably best left to the compiler. ↩

19 hours ago 2 votes
AmigaGuide Reference Library

As I slowly but surely work towards the next release of my setcmd project for the Amiga (see the 68k branch for the gory details and my total noob-like C flailing around), I’ve made heavy use of documentation in the AmigaGuide format. Despite it’s age, it’s a great Amiga-native format and there’s a wealth of great information out there for things like the C API, as well as language guides and tutorials for tools like the Installer utility - and the AmigaGuide markup syntax itself. The only snag is, I had to have access to an Amiga (real or emulated), or install one of the various viewer programs on my laptops. Because like many, I spend a lot of time in a web browser and occasionally want to check something on my mobile phone, this is less than convenient. Fortunately, there’s a great AmigaGuideJS online viewer which renders AmigaGuide format documents using Javascript. I’ve started building up a collection of useful developer guides and other files in my own reference library so that I can access this documentation whenever I’m not at my Amiga or am coding in my “modern” dev environment. It’s really just for my own personal use, but I’ll be adding to it whenever I come across a useful piece of documentation so I hope it’s of some use to others as well! And on a related note, I now have a “unified” code-base so that SetCmd now builds and runs on 68k-based OS 3.x systems as well as OS 4.x PPC systems like my X5000. I need to: Tidy up my code and fix all the “TODO” stuff Update the Installer to run on OS 3.x systems Update the documentation Build a new package and upload to Aminet/OS4Depot Hopefully I’ll get that done in the next month or so. With the pressures of work and family life (and my other hobbies), progress has been a lot slower these last few years but I’m still really enjoying working on Amiga code and it’s great to have a fun personal project that’s there for me whenever I want to hack away at something for the sheer hell of it. I’ve learned a lot along the way and the AmigaOS is still an absolute joy to develop for. I even brought my X5000 to the most recent Kickstart Amiga User Group BBQ/meetup and had a fun day working on the code with fellow Amigans and enjoying some classic gaming & demos - there was also a MorphOS machine there, which I think will be my next target as the codebase is slowly becoming more portable. Just got to find some room in the “retro cave” now… This stuff is addictive :)

11 hours ago 2 votes
An Analysis of Links From The White House’s “Wire” Website

A little while back I heard about the White House launching their version of a Drudge Report style website called White House Wire. According to Axios, a White House official said the site’s purpose was to serve as “a place for supporters of the president’s agenda to get the real news all in one place”. So a link blog, if you will. As a self-professed connoisseur of websites and link blogs, this got me thinking: “I wonder what kind of links they’re considering as ‘real news’ and what they’re linking to?” So I decided to do quick analysis using Quadratic, a programmable spreadsheet where you can write code and return values to a 2d interface of rows and columns. I wrote some JavaScript to: Fetch the HTML page at whitehouse.gov/wire Parse it with cheerio Select all the external links on the page Return a list of links and their headline text In a few minutes I had a quick analysis of what kind of links were on the page: This immediately sparked my curiosity to know more about the meta information around the links, like: If you grouped all the links together, which sites get linked to the most? What kind of interesting data could you pull from the headlines they’re writing, like the most frequently used words? What if you did this analysis, but with snapshots of the website over time (rather than just the current moment)? So I got to building. Quadratic today doesn’t yet have the ability for your spreadsheet to run in the background on a schedule and append data. So I had to look elsewhere for a little extra functionality. My mind went to val.town which lets you write little scripts that can 1) run on a schedule (cron), 2) store information (blobs), and 3) retrieve stored information via their API. After a quick read of their docs, I figured out how to write a little script that’ll run once a day, scrape the site, and save the resulting HTML page in their key/value storage. From there, I was back to Quadratic writing code to talk to val.town’s API and retrieve my HTML, parse it, and turn it into good, structured data. There were some things I had to do, like: Fine-tune how I select all the editorial links on the page from the source HTML (I didn’t want, for example, to include external links to the White House’s social pages which appear on every page). This required a little finessing, but I eventually got a collection of links that corresponded to what I was seeing on the page. Parse the links and pull out the top-level domains so I could group links by domain occurrence. Create charts and graphs to visualize the structured data I had created. Selfish plug: Quadratic made this all super easy, as I could program in JavaScript and use third-party tools like tldts to do the analysis, all while visualizing my output on a 2d grid in real-time which made for a super fast feedback loop! Once I got all that done, I just had to sit back and wait for the HTML snapshots to begin accumulating! It’s been about a month and a half since I started this and I have about fifty days worth of data. The results? Here’s the top 10 domains that the White House Wire links to (by occurrence), from May 8 to June 24, 2025: youtube.com (133) foxnews.com (72) thepostmillennial.com (67) foxbusiness.com (66) breitbart.com (64) x.com (63) reuters.com (51) truthsocial.com (48) nypost.com (47) dailywire.com (36) From the links, here’s a word cloud of the most commonly recurring words in the link headlines: “trump” (343) “president” (145) “us” (134) “big” (131) “bill” (127) “beautiful” (113) “trumps” (92) “one” (72) “million” (57) “house” (56) The data and these graphs are all in my spreadsheet, so I can open it up whenever I want to see the latest data and re-run my script to pull the latest from val.town. In response to the new data that comes in, the spreadsheet automatically parses it, turn it into links, and updates the graphs. Cool! If you want to check out the spreadsheet — sorry! My API key for val.town is in it (“secrets management” is on the roadmap). But I created a duplicate where I inlined the data from the API (rather than the code which dynamically pulls it) which you can check out here at your convenience. Email · Mastodon · Bluesky

53 minutes ago 1 votes
The parental dead end of consent morality

Consent morality is the idea that there are no higher values or virtues than allowing consenting adults to do whatever they please. As long as they're not hurting anyone, it's all good, and whoever might have a problem with that is by definition a bigot.  This was the overriding morality I picked up as a child of the 90s. From TV, movies, music, and popular culture. Fly your freak! Whatever feels right is right! It doesn't seem like much has changed since then. What a moral dead end. I first heard the term consent morality as part of Louise Perry's critique of the sexual revolution. That in the context of hook-up culture, situationships, and falling birthrates, we have to wrestle with the fact that the sexual revolution — and it's insistence that, say, a sky-high body count mustn't be taboo — has led society to screwy dating market in the internet age that few people are actually happy with. But the application of consent morality that I actually find even more troubling is towards parenthood. As is widely acknowledged now, we're in a bit of a birthrate crisis all over the world. And I think consent morality can help explain part of it. I was reminded of this when I posted a cute video of a young girl so over-the-moon excited for her dad getting off work to argue that you'd be crazy to trade that for some nebulous concept of "personal freedom". Predictably, consent morality immediately appeared in the comments: Some people just don't want children and that's TOTALLY OKAY and you're actually bad for suggesting they should! No. It's the role of a well-functioning culture to guide people towards The Good Life. Not force, but guide. Nobody wants to be convinced by the morality police at the pointy end of a bayonet, but giving up on the whole idea of objective higher values and virtues is a nihilistic and cowardly alternative. Humans are deeply mimetic creatures. It's imperative that we celebrate what's good, true, and beautiful, such that these ideals become collective markers for morality. Such that they guide behavior. I don't think we've done a good job at doing that with parenthood in the last thirty-plus years. In fact, I'd argue we've done just about everything to undermine the cultural appeal of the simple yet divine satisfaction of child rearing (and by extension maligned the square family unit with mom, dad, and a few kids). Partly out of a coordinated campaign against the family unit as some sort of trad (possibly fascist!) identity marker in a long-waged culture war, but perhaps just as much out of the banal denigration of how boring and limiting it must be to carry such simple burdens as being a father or a mother in modern society. It's no wonder that if you incessantly focus on how expensive it is, how little sleep you get, how terrifying the responsibility is, and how much stress is involved with parenthood that it doesn't seem all that appealing! This is where Jordan Peterson does his best work. In advocating for the deeper meaning of embracing burden and responsibility. In diagnosing that much of our modern malaise does not come from carrying too much, but from carrying too little. That a myopic focus on personal freedom — the nights out, the "me time", the money saved — is a spiritual mirage: You think you want the paradise of nothing ever being asked of you, but it turns out to be the hell of nobody ever needing you. Whatever the cause, I think part of the cure is for our culture to reembrace the virtue and the value of parenthood without reservation. To stop centering the margins and their pathologies. To start centering the overwhelming middle where most people make for good parents, and will come to see that role as the most meaningful part they've played in their time on this planet. But this requires giving up on consent morality as the only way to find our path to The Good Life. It involves taking a moral stance that some ways of living are better than other ways of living for the broad many. That parenthood is good, that we need more children both for the literal survival of civilization, but also for the collective motivation to guard against the bad, the false, and the ugly. There's more to life than what you feel like doing in the moment. The worst thing in the world is not to have others ask more of you. Giving up on the total freedom of the unmoored life is a small price to pay for finding the deeper meaning in a tethered relationship with continuing a bloodline that's been drawn for hundreds of thousands of years before it came to you. You're never going to be "ready" before you take the leap. If you keep waiting, you'll wait until the window has closed, and all you see is regret. Summon a bit of bravery, don't overthink it, and do your part for the future of the world. It's 2.1 or bust, baby!

yesterday 2 votes
Why learn about the golden-section search

An interactive demo of bisection search and golden ratio search algorithms. There is also a motivation to learn them both. Spoiler alert! One converges better, and the other has a better computational cost.

yesterday 3 votes