More from 37signals Dev
We’ve just launched Hotwire Native v1.2 and it’s the biggest update since the initial launch last year. The update has several key improvements, bug fixes, and more API consistency between platforms. And we’ve created all new iOS and Android demo apps to show it off! A web-first framework for building native mobile apps Improvements There are a few significant changes in v1.2 that are worth specifically highlighting. Route decision handlers Hotwire Native apps route internal urls to screens in your app, and route external urls to the device’s browser. Historically, though, it wasn’t straightforward to customize the default behavior for unique app needs. In v1.2, we’ve introduced the RouteDecisionHandler concept to iOS (formerly only on Android). Route decisions handlers offer a flexible way to decide how to route urls in your app. Out-of-the-box, Hotwire Native registers these route decision handlers to control how urls are routed: AppNavigationRouteDecisionHandler: Routes all internal urls on your app’s domain through your app. SafariViewControllerRouteDecisionHandler: (iOS Only) Routes all external http/https urls to a SFSafariViewController in your app. BrowserTabRouteDecisionHandler: (Android Only) Routes all external http/https urls to a Custom Tab in your app. SystemNavigationRouteDecisionHandler: Routes all remaining external urls (such as sms: or mailto:) through device’s system navigation. If you’d like to customize this behavior you can register your own RouteDecisionHandler implementations in your app. See the documentation for details. Server-driven historical location urls If you’re using Ruby on Rails, the turbo-rails gem provides the following historical location routes. You can use these to manipulate the navigation stack in Hotwire Native apps. recede_or_redirect_to(url, **options) — Pops the visible screen off of the navigation stack. refresh_or_redirect_to(url, **options) — Refreshes the visible screen on the navigation stack. resume_or_redirect_to(url, **options) — Resumes the visible screen on the navigation stack with no further action. In v1.2 there is now built-in support to handle these “command” urls with no additional path configuration setup necessary. We’ve also made improvements so they handle dismissing modal screens automatically. See the documentation for details. Bottom tabs When starting with Hotwire Native, one of the most common questions developers ask is how to support native bottom tab navigation in their apps. We finally have an official answer! We’ve introduced a HotwireTabBarController for iOS and a HotwireBottomNavigationController for Android. And we’ve updated the demo apps for both platforms to show you exactly how to set them up. New demo apps To better show off all the features in Hotwire Native, we’ve created new demo apps for iOS and Android. And there’s a brand new Rails web app for the native apps to leverage. Hotwire Native demo app Clone the GitHub repos to build and run the demo apps to try them out: iOS repo Android repo Rails app Huge thanks to Joe Masilotti for all the demo app improvements. If you’re looking for more resources, Joe even wrote a Hotwire Native for Rails Developers book! Release notes v1.2 contains dozens of other improvements and bug fixes across both platforms. See the full release notes to learn about all the additional changes: iOS release notes Android release notes Take a look If you’ve been curious about using Hotwire Native for your mobile apps, now is a great time to take a look. We have documentation and guides available on native.hotwired.dev and we’ve created really great demo apps for iOS and Android to help you get started.
As the final part of our move out of the cloud, we are working on moving 10 petabytes of data out of AWS Simple Storage Service (S3). After exploring different alternatives, we decided to go with Pure Storage FlashBlade solution. We store different kinds of information on S3, from the attachments customers upload to Basecamp to the Prometheus long-term metrics. On top of that, Pure’s system also provides filesystem-based capabilities, enabling other relevant usages, such as database backup storage. This makes the system a top priority for observability. Although the system has great reliability, out-of-the-box internal alerting, and autonomous ticket creation, it would also be good to have our metrics and alerts to facilitate problem-solving and ensure any disruptions are prioritized and handled. For more context on our current Prometheus setup, see how we use Prometheus at 37signals. Pure OpenMetrics exporter Pure maintains two OpenMetrics exporters, pure-fb-openmetrics-exporter and pure-fa-openmetrics-exporter. Since we use Pure Flashblade (fb), this post covers pure-fb-openmetrics-exporter, although overall usage should be similar. The setup is straightforward and requires only binary and basic authentication installation. Here is a snippet of our Chef recipe that installs it: pure_api_token = "token" # If you use Chef, your token should come from an ecrypted databag. Changed to hardcoded here to simplify PURE_EXPORTER_VERSION = "1.0.13".freeze # Generally, we use Chef node metadata for version management. Changed to hardcoded to simplify directory "/opt/pure_exporter/#{PURE_EXPORTER_VERSION}" do recursive true owner 'pure_exporter' group 'pure_exporter' end # Avoid recreating under /tmp after reboot if target_binary is already there target_binary = "/opt/pure_exporter/#{PURE_EXPORTER_VERSION}/pure-fb-openmetrics-exporter" remote_file "/tmp/pure-fb-openmetrics-exporter-v#{PURE_EXPORTER_VERSION}-linux-amd64.tar.gz" do source "https://github.com/PureStorage-OpenConnect/pure-fb-openmetrics-exporter/releases/download/v#{PURE_EXPORTER_VERSION}/pure-fb-openmetrics-exporter-v#{PURE_EXPORTER_VERSION}-linux-amd64.tar.gz" not_if { ::File.exist?(target_binary) } end archive_file "/tmp/pure-fb-openmetrics-exporter-v#{PURE_EXPORTER_VERSION}-linux-amd64.tar.gz" do destination "/tmp/pure-fb-openmetrics-exporter-v#{PURE_EXPORTER_VERSION}" action :extract not_if { ::File.exist?(target_binary) } end execute "copy binary" do command "sudo cp /tmp/pure-fb-openmetrics-exporter-v#{PURE_EXPORTER_VERSION}/pure-fb-openmetrics-exporter /opt/pure_exporter/#{PURE_EXPORTER_VERSION}/pure-exporter" creates "/opt/pure_exporter/#{PURE_EXPORTER_VERSION}/pure-exporter" not_if { ::File.exist?(target_binary) } end tokens = <<EOF main: address: purestorage-mgmt.mydomain.com api_token: #{pure_api_token['token']} EOF file "/opt/pure_exporter/tokens.yml" do content tokens owner 'pure_exporter' group 'pure_exporter' sensitive true end systemd_unit 'pure-exporter.service' do content <<-EOU # Caution: Chef managed content. This is a file resource from #{cookbook_name}::#{recipe_name} # [Unit] Description=Pure Exporter After=network.target [Service] Restart=on-failure PIDFile=/var/run/pure-exporter.pid User=pure_exporter Group=pure_exporter ExecStart=/opt/pure_exporter/#{PURE_EXPORTER_VERSION}/pure-exporter \ --tokens=/opt/pure_exporter/tokens.yml ExecReload=/bin/kill -HUP $MAINPID SyslogIdentifier=pure-exporter [Install] WantedBy=multi-user.target EOU action [ :create, :enable, :start ] notifies :reload, "service[pure-exporter]" end service 'pure-exporter' Prometheus Job Configuration The simplest way of ingesting the metrics is to configure a basic Job without any customization: - job_name: pure_exporter metrics_path: /metrics static_configs: - targets: ['<%= @hostname %>:9491'] labels: environment: 'production' job: pure_exporter params: endpoint: [main] # From the tokens configuration above For a production-ready setup, we are using a slightly different approach. The exporter supports the usage of specific metric paths to allow for split Prometheus jobs configuration that reduces the overhead of pulling the metrics all at once: - job_name: pure_exporter_array metrics_path: /metrics/array static_configs: - targets: ['<%= @hostname %>:9491'] labels: environment: 'production' job: pure_exporter metric_relabel_configs: - source_labels: [name] target_label: ch regex: "([^.]+).*" replacement: "$1" action: replace - source_labels: [name] target_label: fb regex: "[^.]+\\.([^.]+).*" replacement: "$1" action: replace - source_labels: [name] target_label: bay regex: "[^.]+\\.[^.]+\\.([^.]+)" replacement: "$1" action: replace params: endpoint: [main] # From the tokens configuration above - job_name: pure_exporter_clients metrics_path: /metrics/clients static_configs: - targets: ['<%= @hostname %>:9491'] labels: environment: 'production' job: pure_exporter params: endpoint: [main] # From the tokens configuration above - job_name: pure_exporter_usage metrics_path: /metrics/usage static_configs: - targets: ['<%= @hostname %>:9491'] labels: environment: 'production' job: pure_exporter params: endpoint: [main] - job_name: pure_exporter_policies metrics_path: /metrics/policies static_configs: - targets: ['<%= @hostname %>:9491'] labels: environment: 'production' job: pure_exporter params: endpoint: [main] # From the tokens configuration above We also configure some metric_relabel_configs to extract labels from name using regex. Those labels help reduce the complexity of queries that aggregate metrics by different components. Detailed documentation on the available metrics can be found here. Alerts Auto Generated Alerts As I shared earlier, the system has an internal Alerting module that automatically triggers alerts for critical situations and creates tickets. To cover those alerts on the Prometheus side, we added an alerting configuration of our own that relies on the incoming severities: - alert: PureAlert annotations: summary: '{{ $labels.summary }}' description: '{{ $labels.component_type }} - {{ $labels.component_name }} - {{ $labels.action }} - {{ $labels.kburl }}' dashboard: 'https://grafana/your-dashboard' expr: purefb_alerts_open{environment="production"} == 1 for: 1m We still need to evaluate how the pure-generated alerts will interact with the custom alerts I will cover below, and we might decide to stick to one or the other depending on what we find out. Hardware Before I continue, the image below helps visualize how some of the Pure FlashBlade components are physically organized: Because of Pure’s reliability, most isolated hardware failures do not require the immediate attention of an Ops team member. To cover the most basic hardware failures, we configure an alert that sends a message to the Ops Basecamp 4 project chat: - alert: PureHardwareFailed annotations: summary: Hardware {{ $labels.name }} in chassis {{ $labels.ch }} is failed description: 'The Pure Storage hardware {{ $labels.name }} in chassis {{ $labels.ch }} is failed' dashboard: 'https://grafana/your-dashboard' expr: purefb_hardware_health == 0 for: 1m labels: severity: chat-notification We also configure alerts that check for multiple hardware failures of the same type. This doesn’t mean two simultaneous failures will result in a critical state, but it is a fair guardrail for unexpected scenarios. We also expect those situations to be rare, keeping the risk of causing unnecessary noise low. - alert: PureMultipleHardwareFailed annotations: summary: Pure chassis {{ $labels.ch }} has {{ $value }} failed {{ $labels.type }} description: 'The Pure Storage chassis {{ $labels.ch }} has {{ $value }} failed {{ $labels.type }}, close to the healthy limit of two simultaneous failures. Ensure that the hardware failures are being worked on' dashboard: 'https://grafana/your-dashboard' expr: count(purefb_hardware_health{type!~"eth|mgmt_port|bay"} == 0) by (ch,type,environment) > 1 for: 1m labels: severity: page # We are looking for multiple failed bays in the same blade - alert: PureMultipleBaysFailed annotations: summary: Pure chassis {{ $labels.ch }} has fb {{ $labels.fb }} with {{ $value }} failed bays description: 'The Pure Storage chassis {{ $labels.ch }} has fb {{ $labels.fb }} with {{ $value }} failed bays, close to the healthy limit of two simultaneous failures. Ensure that the hardware failures are being worked on' dashboard: 'https://grafana/your-dashboard' expr: count(purefb_hardware_health{type="bay"} == 0) by (ch,type,fb,environment) > 1 for: 1m labels: severity: page Finally, we configure high-level alerts for chassis and XFM failures: - alert: PureChassisFailed annotations: summary: Chassis {{ $labels.name }} is failed description: 'The Pure Storage hardware chassis {{ $labels.name }} is failed' dashboard: 'https://grafana/your-dashboard' expr: purefb_hardware_health{type="ch"} == 0 for: 1m labels: severity: page - alert: PureXFMFailed annotations: summary: Xternal Fabric Module {{ $labels.name }} is failed description: 'The Pure Storage hardware Xternal fabric module {{ $labels.name }} is failed' dashboard: 'https://grafana/your-dashboard' expr: purefb_hardware_health{type="xfm"} == 0 for: 1m labels: severity: page Latency Using the metric purefb_array_performance_latency_usec we can set a threshold for all the different protocols and dimensions (read, write, etc), so we are alerted if any problem causes the latency to go above an expected level. - alert: PureLatencyHigh annotations: summary: Pure {{ $labels.dimension }} - {{ $labels.protocol }} latency high description: 'Pure {{ $labels.protocol }} latency for dimension {{ $labels.dimension }} is above 100ms' dashboard: 'https://grafana/your-dashboard' expr: (avg_over_time(purefb_array_performance_latency_usec{protocol="all"}[30m]) * 0.001) for: 1m labels: severity: chat-notification Saturation For saturation, we are primarily worried about something unexpected causing excessive use of array space, increasing the risk of hitting the cluster capacity. With that in mind, it’s good to have a simple alert in place, even if we don’t expect it to fire anytime soon: - alert: PureArraySpace annotations: summary: Pure Cluster {{ $labels.instance }} available space is expected to be below 10% description: 'The array space for pure cluster {{ $labels.instance }} is expected to be below 10% in a month, please investigate and ensure there is no risk of running out of capacity' dashboard: 'https://grafana/your-dashboard' expr: (predict_linear(purefb_array_space_bytes{space="empty",type="array"}[30d], 730 * 3600)) < (purefb_array_space_bytes{space="capacity",type="array"} * 0.10) for: 1m labels: severity: chat-notification HTTP We use BigIp load balancers to front-end the cluster, which means that all the alerts we already had in place for the BigIp HTTP profiles, virtual servers, and pools also cover access to Pure. The solution for each organization on this topic will be different, but it is a good practice to keep an eye on HTTP status codes and throughput. Grafana Dashboards The project’s GitHub repository includes JSON files for Grafana dashboards that are based on the metrics generated by the exporter. With simple adjustments to fit each setup, it’s possible to import them quickly. Wrapping up On top of the system’s built-in capabilities, Pure also provides options to integrate their system into well-known tools like Prometheus and Grafana, facilitating the process of managing the cluster the same way we manage everything else. I hope this post helps any other team interested in working with them better understand the effort involved. Thanks for reading!
If you have the luxury of starting a new Rails app today, here’s our recommendation: go vanilla. Fight hard before adding Ruby dependencies. Keep that Gemfile that Rails generates as close to the original one as possible. Fight even harder before adding Javascript dependencies. You don’t need React or any other front-end frameworks, nor a JSON API to feed those. Hotwire is a fantastic, pragmatic, and ridiculously productive technology for the front end. Use it. The same goes for mobile apps: use Hotwire Native. With a hybrid approach you can combine the very same web app you have built with a wonderful native experience right where you want it. The productivity compared to a purely native approach is night and day. Embrace and celebrate rendering things on the server. It has become cool again. ERB templates and view helpers will take you as long as you need, and they are a fantastic common ground for designers to collaborate hands-on with the code. #nobuild is the simplest way to go; don’t close this door with your choices. Instead of bundling Javascript, use import maps. Don’t bundle CSS, just use modern standard CSS goodies and serve them all with Propshaft. If you have 100 Javascript files and 100 stylesheets, serve 200 standalone requests multiplexed over HTTP2. You will be delighted. Don’t add Redis to the mix. Use solid_cache for caching, solid_queue for jobs, and solid_cable for Action Cable. They will all work on your beloved relational database and are battle-tested. Test your apps with Minitest. Use fixtures and build a realistic set of those as you cook your app. Make your app a PWA, which is fully supported by Rails 8. This may be more than enough before caring about mobile apps at all. Deploy your app with Kamal. If you want heuristics, your importmap.rb should import Turbo, Stimulus, your app controllers, and little else. Your Gemfile should be almost identical to the one that Rails generates. I know it sounds radical, but going vanilla is a radical stance in this convoluted world of endless choices. This is the Rails 8 stack we have chosen for our new apps at 37signals. We are a tiny crew, so we care a lot about productivity. And we sell products, not stacks, so we care a lot about delighting our users. This is our Omakase stack because it offers the optimal balance for achieving both. Vanilla means your app stays nimble. Fewer dependencies mean fewer future headaches. You get a tight integration out of the box, so you can focus on building things. It also maximizes the odds of having smoother future upgrades. Vanilla requires determination, though, because new dependencies always look shiny and shinier. It’s always clear what you get when you add them, but never what you lose in the long term. It is certainly up to you. Rails is a wonderful big tent. These are our opinions. If it resonates, choose vanilla! Guess what our advice is for architecting your app internals?
We’ve just released Mission Control — Jobs v1.0.0, the dashboard and set of extensions to operate background jobs that we introduced earlier this year. This new version is the result of 92 pull requests, 67 issues and the help of 35 different contributors. It includes many bugfixes and improvements, such as: Support for Solid Queue’s recurring tasks, including running them on-demand. Support for API-only apps. Allowing immediate dispatching of scheduled and blocked jobs. Backtrace cleaning for failed jobs’ backtraces. A safer default for authentication, with Basic HTTP authentication enabled and initially closed unless configured or explicitly disabled. Recurring tasks in Mission Control — Jobs, with a subset of the tasks we run in production We use Mission Control — Jobs daily to manage jobs HEY and Basecamp 4, with both Solid Queue and Resque, and it’s the dashboard we recommend if you’re using Solid Queue for your jobs. Our plan is to upstream some of the extensions we’ve made to Active Job and continue improving it until it’s ready to be included by default in Rails together with Solid Queue. If you want to help us with that, are interested in learning more or have any issues or questions, head over to the repo in GitHub. We hope you like it!
More in programming
The use of std::string should be banned in C++ code bases. I’m sure this statement sounds like heresy and you want to burn me at stake. But is it really controversial? Java, C#, Go, JavaScript, Python, Ruby, PHP: they all have immutable strings that are basically 2 machine words: a pointer to string data and size of the string. If they have an equivalent of std:string it’s something like StringBuilder. C++ should also use immutable strings in 97% of situations. The problem is gravity: the existing code, the culture. They all pull you strongly towards std::string and going against the current is the hardest thing there is. There isn’t a standard type for that. You can use newish std::span<char*> but there really should be std::str (or some such). I did that in SumatraPDF where I mostly pass char* but I don’t expect many other C++ code bases to switch away from std::string.
This article was originally commissioned by Luca Rossi (paywalled) for refactoring.fm, on February 11th, 2025. Luca edited a version of it that emphasized the importance of building “10x engineering teams” . It was later picked up by IEEE Spectrum (!!!), who scrapped most of the teams content and published a different, shorter piece on March […]
Go team wrote golang.org/x/sys/windows package to call functions in a Windows DLL. Their way is inefficient and this article describes a better way. The sys/windows way To call a function in a DLL, let’s say kernel32.dll, we must: load the dll into memory with LoadLibrary get the address of a function in the dll call the function at that address Here’s how it looks when you use sys/windows library: var ( libole32 *windows.LazyDLL coCreateInstance *windows.LazyProc ) func init() { libole32 = windows.NewLazySystemDLL("ole32.dll") coCreateInstance = libole32.NewProc("CoCreateInstance") } func CoCreateInstance(rclsid *GUID, pUnkOuter *IUnknown, dwClsContext uint32, riid *GUID, ppv *unsafe.Pointer) HRESULT { ret, _, _ := syscall.SyscallN(coCreateInstance.Addr(), 5, uintptr(unsafe.Pointer(rclsid)), uintptr(unsafe.Pointer(pUnkOuter)), uintptr(dwClsContext), uintptr(unsafe.Pointer(riid)), uintptr(unsafe.Pointer(ppv)), 0, ) return HRESULT(ret) } The problem The problem is that this is memory inefficient. For every function all we need is: name of the function to get its address in a dll. That is a string so its 8 bytes (address of the string) + 8 bytes (size of the string) + the content of the string. address of a function, which is 8 bytes on a 64-bit CPU Unfortunately in sys/windows each function requires this: type LazyProc struct { Name string mu sync.Mutex l *LazyDLL proc *Proc } type Proc struct { Dll *DLL Name string addr uintptr } // sync.Mutex type Mutex struct { _ noCopy mu isync.Mutex } // isync.Mutex type Mutex struct { state int32 sema uint32 } Let’s eyeball the size of all those structures: LazyProc : 16 + sizeof(Mutex) + 8 + 8 = 32 + sizeof(Mutex) Proc : 8 + 16 + 8 = 32 Mutex : 8 Total: 32 + 32 + 8 = 72 and that’s not counting possible memory padding for allocations. Windows has a lot of functions so this adds up. Additionally, at startup we call NewProcfor every function, even if they are not used by the program. This increases startup time. The better way What we ultimately need is uintptr for the address of the function. It’ll be lazily looked up. Let’s say we use 8 functions from ole32.dll. We can use a single array of uintptr values for storing function pointers: var oleFuncPtrs = [8]uintptr var oleFuncNames = []string{"CoCreateInstance", "CoGetClassObject", ... } const kCoCreateInstance = 0 const kCoGetClassObject = 1 // etc. const kFuncMissing = 1 func funcAddrInDLL(dll *windows.LazyDLL, funcPtrs []uintptr, funcIdx int, funcNames []string) uintptr { addr := funcPtrs[funcIdx]; if addr == kFuncMissing { // we already tried to look it up and didn't find it // this can happen becuse older version of Windows might not implement this function return 0 } if addr != 0 { return addr } // lookup the funcion by name in dll name := funcNames[funcIdx] /// ... return addr } In real life this would need multi-threading protection with e.g. a mutex. Saving on strings The following is not efficient: var oleFuncNames = []string{"CoCreateInstance", "CoGetClassObject", ... } In addition to the text of the string Go needs 16 bytes: 8 for a pointer to the string and 8 for the size of the string. We can be more efficient by storing all names as a single string: var oleFuncNames ` CoCreateInstance CoGetClassObject ` Only when we’re looking up the function by name we need to construct temporary string that is a slice of oleFuncNames. We need to know the offset and size inside oleFuncNames which we can cleverly encode as a single number: // Auto-generated shell procedure identifier: cache index | str start | str past-end. const ( _PROC_SHCreateItemFromIDList _PROC_SHELL = 0 | (9 << 16) | (31 << 32) _PROC_SHCreateItemFromParsingName _PROC_SHELL = 1 | (32 << 16) | (59 << 32) // ... ) We pack the info into a single number: bits 0-15 : index of function in array of function pointers bits 16-31: start of function name in multi-name string bits 32-47: end of function name in multi-name string This technique requires code generation. It would be too difficult to write those numbers manually. References This technique is used in https://github.com/rodrigocfd/windigo win32 bindings Go library. See e.g. https://github.com/rodrigocfd/windigo/blob/master/internal/dll/dll_gdi.go
How a wild side-quest became the source of many of the articles you’ve read—and have come to expect—in this publication
Watch now | Privilege levels, syscall conventions, and how assembly code talks to the Linux kernel