Full Width [alt+shift+f] Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
87
Here are some miscellaneous unsorted notes about BIND9’s dnssec-policy that turned out not to be useful in my previous blog posts, but which some readers might find informative. Some of them I learned the hard way, so I hope I can make it easier for others! contents of key files changes to key files fast timers? parental agents This is the third article in a three part series: Introducing BIND9 dnssec-policy Migrating to BIND9 dnssec-policy BIND9 dnssec-policy appendices (this post) contents of key files The key files contain a bunch of stuff: the key material itself: the secret part(s) in the .private file a DNSKEY record in zone file syntax in the .key file whether it is a ZSK or KSK or CSK with auto-dnssec this was indicated by the DNSKEY flags field: 256 for a ZSK or 257 for a KSK the flags field is also explained by a comment in the .key file if there was only one key then it was implicitly a CSK with dnssec-policy the key type is more explicitly described in the .state file its...
a year ago

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from Tony Finch's blog

Golang and Let's Encrypt: a free software story

Here’s a story from nearly 10 years ago. the bug I think it was my friend Richard Kettlewell who told me about a bug he encountered with Let’s Encrypt in its early days in autumn 2015: it was failing to validate mail domains correctly. the context At the time I had previously been responsible for Cambridge University’s email anti-spam system for about 10 years, and in 2014 I had been given responsibility for Cambridge University’s DNS. So I knew how Let’s Encrypt should validate mail domains. Let’s Encrypt was about one year old. Unusually, the code that runs their operations, Boulder, is free software and open to external contributors. Boulder is written in Golang, and I had not previously written any code in Golang. But its reputation is to be easy to get to grips with. So, in principle, the bug was straightforward for me to fix. How difficult would it be as a Golang newbie? And what would Let’s Encrypt’s contribution process be like? the hack I cloned the Boulder repository and had a look around the code. As is pretty typical, there are a couple of stages to fixing a bug in an unfamiliar codebase: work out where the problem is try to understand if the obvious fix could be better In this case, I remember discovering a relatively substantial TODO item that intersected with the bug. I can’t remember the details, but I think there were wider issues with DNS lookups in Boulder. I decided it made sense to fix the immediate problem without getting involved in things that would require discussion with Let’s Encrypt staff. I faffed around with the code and pushed something that looked like it might work. A fun thing about this hack is that I never got a working Boulder test setup on my workstation (or even Golang, I think!) – I just relied on the Let’s Encrypt cloud test setup. The feedback time was very slow, but it was tolerable for a simple one-off change. the fix My pull request was small, +48-14. After a couple of rounds of review and within a few days, it was merged and put into production! A pleasing result. the upshot I thought Golang (at least as it was used in the Boulder codebase) was as easy to get to grips with as promised. I did not touch it again until several years later, because there was no need to, but it seemed fine. I was very impressed by the Let’s Encrypt continuous integration and automated testing setup, and by their low-friction workflow for external contributors. One of my fastest drive-by patches to get into worldwide production. My fix was always going to be temporary, and all trace of it was overwritten years ago. It’s good when “temporary” turns out to be true! the point I was reminded of this story in the pub this evening, and I thought it was worth writing down. It demonstrated to me that Let’s Encrypt really were doing all the good stuff they said they were doing. So thank you to Let’s Encrypt for providing an exemplary service and for giving me a happy little anecdote.

5 days ago 8 votes
performance of random floats

A couple of years ago I wrote about random floating point numbers. In that article I was mainly concerned about how neat the code is, and I didn’t pay attention to its performance. Recently, a comment from Oliver Hunt and a blog post from Alisa Sireneva prompted me to wonder if I made an unwarranted assumption. So I wrote a little benchmark, which you can find in pcg-dxsm.git. As a brief recap, there are two basic ways to convert a random integer to a floating point number between 0.0 and 1.0: Use bit fiddling to construct an integer whose format matches a float between 1.0 and 2.0; this is the same span as the result but with a simpler exponent. Bitcast the integer to a float and subtract 1.0 to get the result. Shift the integer down to the same range as the mantissa, convert to float, then multiply by a scaling factor that reduces it to the desired range. This produces one more bit of randomness than the bithacking conversion. (There are other less basic ways.) My benchmark has 2 x 2 x 2 tests: bithacking vs multiplying 32 bit vs 64 bit sequential integers vs random integers Each operation is isolated from the benchmark loop by putting it in a separate translation unit (to prevent the compiler from inlining) and there is a fence instruction (ISB SY on ARM, MFENCE on AMD) in the loop to stop the CPU from overlapping successive iterations. I ran the benchmark on my Apple M1 Pro and my AMD Ryzen 7950X. In the table below, the leftmost column is the number of random bits. The top half measures sequential numbers, the bottom half is random numbers. The times are nanoseconds per operation, which includes the overheads of the benchmark loop and function call. arm amd 23 12.15 11.22 24 13.37 11.21 52 12.11 11.02 53 13.38 11.20 23 14.75 12.62 24 15.85 12.81 52 16.78 14.23 53 18.02 14.41 The times vary a little from run to run but the difference in speed of the various loops is reasonably consistent. I think my conclusion is that the bithacking conversion is about 1ns faster than the multiply conversion on my ARM box. There’s a subnanosecond difference on my AMD box which might indicate that the conversion takes different amounts of time depending on the value? Dunno.

3 weeks ago 16 votes
moka pot notes

In hot weather I like to drink my coffee in an iced latte. To make it, I have a very large Bialetti Moka Express. Recently when I got it going again after a winter of disuse, it took me a couple of attempts to get the technique right, so here are some notes as a reminder to my future self next year. It’s worth noting that I’m not fussy about my coffee: I usually drink pre-ground beans from the supermarket, with cream (in winter hot coffee) or milk and ice. basic principle When I was getting the hang of my moka pot, I learned from YouTube coffee geeks such as James Hoffmann that the main aim is for the water to be pushed through the coffee smoothly and gently. Better to err on the side of too little flow than too much. I have not had much success trying to make fine temperature adjustments while the coffee is brewing, because the big moka pot has a lot of thermal inertia: it takes a long time for any change in gas level to have any effect on on the coffee flow. routine fill the kettle and turn it on put the moka pot’s basket in a mug to keep it stable fill it with coffee (mine needs about 4 Aeropress scoops) tamp it down firmly [1] when the kettle has boiled, fill the base of the pot to just below the pressure valve (which is also just below the filter screen in the basket) insert the coffee basket, making sure there are no stray grounds around the edge where the seal will mate screw on the upper chamber firmly put it on a small gas ring turned up to the max [2] leave the lid open and wait for the coffee to emerge immediately turn the gas down to the minimum [3] the coffee should now come out in a steady thin stream without spluttering or stalling when the upper chamber is filled near the mouths of the central spout, it’ll start fizzing or spluttering [4] turn off the gas and pour the coffee into a carafe notes If I don’t tamp the grounds, the pot tends to splutter. I guess tamping gives the puck better integrity to resist channelling, and to keep the water under even pressure. Might be an effect of the relatively coarse supermarket grind? It takes a long time to get the pot back up to boiling point and I’m not sure that heating it up slower helps. The main risk, I think, is overshooting the ideal steady brewing state too much, but: With my moka pot on my hob the lowest gas flow on the smallest rings is just enough to keep the coffee flowing without stalling. The flow when the coffee first emerges is relatively fast, and it slows to the steady state several seconds after I turn the heat down, so I think the overshoot isn’t too bad. This routine turns almost all of the water into coffee, which Hoffmann suggests is a good result, and a sign that the pressure and temperature aren’t getting too high.

a month ago 13 votes
the algebra of dependent types

TIL (or this week-ish I learned) why big-sigma and big-pi turn up in the notation of dependent type theory. I’ve long been aware of the zoo of more obscure Greek letters that turn up in papers about type system features of functional programming languages, μ, Λ, Π, Σ. Their meaning is usually clear from context but the reason for the choice of notation is usually not explained. I recently stumbled on an explanation for Π (dependent functions) and Σ (dependent pairs) which turn out to be nicer than I expected, and closely related to every-day algebraic data types. sizes of types The easiest way to understand algebraic data types is by counting the inhabitants of a type. For example: the unit type () has one inhabitant, (), and the number 1 is why it’s called the unit type; the bool type hass two inhabitants, false and true. I have even seen these types called 1 and 2 (cruelly, without explanation) in occasional papers. product types Or pairs or (more generally) tuples or records. Usually written, (A, B) The pair contains an A and a B, so the number of possible values is the number of possible A values multiplied by the number of possible B values. So it is spelled in type theory (and in Standard ML) like, A * B sum types Or disjoint union, or variant record. Declared in Haskell like, data Either a b = Left a | Right b Or in Rust like, enum Either<A, B> { Left(A), Right(B), } A value of the type is either an A or a B, so the number of possible values is the number of A values plus the number of B values. So it is spelled in type theory like, A + B dependent pairs In a dependent pair, the type of the second element depends on the value of the first. The classic example is a slice, roughly, struct IntSlice { len: usize, elem: &[i64; len], } (This might look a bit circular, but the idea is that an array [i64; N] must be told how big it is – its size is an explicit part of its type – but an IntSlice knows its own size. The traditional dependent “vector” type is a sized linked list, more like my array type than my slice type.) The classic way to write a dependent pair in type theory is like,      Σ len: usize . Array(Int, len) The big sigma binds a variable that has a type annotation, with a scope covering the expression after the dot – similar syntax to a typed lambda expression. We can expand a simple example like this into a many-armed sum type: either an array of length zero, or an array of length 1, or an array of length 2, … but in a sigma type the discriminant is user-defined instead of hidden. The number of possible values of the type comes from adding up all the alternatives, a summation just like the big sigma summation we were taught in school. ∑ a ∈ A B a When the second element doesn’t depend on the first element, we can count the inhabitants like, ∑ A B = A*B And the sigma type simplifies to a product type. telescopes An aside from the main topic of these notes, I also recently encountered the name “telescope” for a multi-part dependent tuple or record. The name “telescope” comes from de Bruijn’s AUTOMATH, one of the first computerized proof assistants. (I first encountered de Bruijn as the inventor of numbered lambda bindings.) dependent functions The return type of a dependent function can vary according to the argument it is passed. For example, to construct an array we might write something like, fn repeat_zero(len: usize) -> [i64; len] { [0; len] } The classic way to write the type of repeat_zero() is very similar to the IntSlice dependent pair, but with a big pi instead of a big sigma:      Π len: usize . Array(Int, len) Mmm, pie. To count the number of possible (pure, total) functions A ➞ B, we can think of each function as a big lookup table with A entries each containing a B. That is, a big tuple (B, B, … B), that is, B * B * … * B, that is, BA. Functions are exponential types. We can count a dependent function, where the number of possible Bs depends on which A we are passed, ∏ a ∈ A B a danger I have avoided the terms “dependent sum” and “dependent product”, because they seem perfectly designed to cause confusion over whether I am talking about variants, records, or functions. It kind of makes me want to avoid algebraic data type jargon, except that there isn’t a good alternative for “sum type”. Hmf.

a month ago 21 votes
the penultimate conditional syntax

About half a year ago I encountered a paper bombastically titled “the ultimate conditional syntax”. It has the attractive goal of unifying pattern match with boolean if tests, and its solution is in some ways very nice. But it seems over-complicated to me, especially for something that’s a basic work-horse of programming. I couldn’t immediately see how to cut it down to manageable proportions, but recently I had an idea. I’ll outline it under the “penultimate conditionals” heading below, after reviewing the UCS and explaining my motivation. what the UCS? whence UCS out of scope penultimate conditionals dangling syntax examples antepenultimate breath what the UCS? The ultimate conditional syntax does several things which are somewhat intertwined and support each other. An “expression is pattern” operator allows you to do pattern matching inside boolean expressions. Like “match” but unlike most other expressions, “is” binds variables whose scope is the rest of the boolean expression that might be evaluated when the “is” is true, and the consequent “then” clause. You can “split” tests to avoid repeating parts that are the same in successive branches. For example, if num < 0 then -1 else if num > 0 then +1 else 0 can be written if num < 0 then -1 > 0 then +1 else 0 The example shows a split before an operator, where the left hand operand is the same and the rest of the expression varies. You can split after the operator when the operator is the same, which is common for “is” pattern match clauses. Indentation-based syntax (an offside rule) reduces the amount of punctuation that splits would otherwise need. An explicit version of the example above is if { x { { < { 0 then −1 } }; { > { 0 then +1 } }; else 0 } } (This example is written in the paper on one line. I’ve split it for narrow screens, which exposes what I think is a mistake in the nesting.) You can also intersperse let bindings between splits. I doubt the value of this feature, since “is” can also bind values, but interspersed let does have its uses. The paper has an example using let to avoid rightward drift: if let tp1_n = normalize(tp1) tp1_n is Bot then Bot let tp2_n = normalize(tp2) tp2_n is Bot then Bot let m = merge(tp1_n, tp2_n) m is Some(tp) then tp m is None then glb(tp1_n, tp2_n) It’s probably better to use early return to avoid rightward drift. The desugaring uses let bindings when lowering the UCS to simpler constructions. whence UCS Pattern matching in the tradition of functional programming languages supports nested patterns that are compiled in a way that eliminates redundant tests. For example, this example checks that e1 is Some(_) once, not twice as written. if e1 is Some(Left(lv)) then e2 Some(Right(rv)) then e3 None then e4 Being cheeky, I’d say UCS introduces more causes of redundant checks, then goes to great effort to to eliminate redundant checks again. Splits reduce redundant code at the source level; the bulk of the paper is about eliminating redundant checks in the lowering from source to core language. I think the primary cause of this extra complexity is treating the is operator as a two-way test rather than a multi-way match. Splits are introduced as a more general (more complicated) way to build multi-way conditions out of two-way tests. There’s a secondary cause: the tradition of expression-oriented functional languages doesn’t like early returns. A nice pattern in imperative code is to write a function as a series of preliminary calculations and guards with early returns that set things up for the main work of the function. Rust’s ? operator and let-else statement support this pattern directly. UCS addresses the same pattern by wedging calculate-check sequences into if statements, as in the normalize example above. out of scope I suspect UCS’s indentation-based syntax will make programmers more likely to make mistakes, and make compilers have more trouble producing nice error messages. (YAML has put me off syntax that doesn’t have enough redundancy to support good error recovery.) So I wondered if there’s a way to have something like an “is pattern” operator in a Rust-like language, without an offside rule, and without the excess of punctuation in the UCS desugaring. But I couldn’t work out how to make the scope of variable bindings in patterns cover all the code that might need to use them. The scope needs to extend into the consequent then clause, but also into any follow-up tests – and those tests can branch so the scope might need to reach into multiple then clauses. The problem was the way I was still thinking of the then and else clauses as part of the outer if. That implied the expression has to be closed off before the then, which troublesomely closes off the scope of any is-bound variables. The solution – part of it, at least – is actually in the paper, where then and else are nested inside the conditional expression. penultimate conditionals There are two ingredients: The then and else clauses become operators that cause early return from a conditional expression. They can be lowered to a vaguely Rust syntax with the following desugaring rules. The 'if label denotes the closest-enclosing if; you can’t use then or else inside the expr of a then or else unless there’s another intervening if. then expr ⟼ && break 'if expr else expr ⟼ || break 'if expr else expr ⟼ || _ && break 'if expr There are two desugarings for else depending on whether it appears in an expression or a pattern. If you prefer a less wordy syntax, you might spell then as => (like match in Rust) and else as || =>. (For symmetry we might allow && => for then as well.) An is operator for multi-way pattern-matching that binds variables whose scope covers the consequent part of the expression. The basic form is like the UCS, scrutinee is pattern which matches the scrutinee against the pattern returning a boolean result. For example, foo is None Guarded patterns are like, scrutinee is pattern && consequent where the scope of the variables bound by the pattern covers the consequent. The consequent might be a simple boolean guard, for example, foo is Some(n) && n < 0 or inside an if expression it might end with a then clause, if foo is Some(n) && n < 0 => -1 // ... Simple multi-way patterns are like, scrutinee is { pattern || pattern || … } If there is a consequent then the patterns must all bind the same set of variables (if any) with the same types. More typically, a multi-way match will have consequent clauses, like scrutinee is { pattern && consequent || pattern && consequent || => otherwise } When a consequent is false, we go on to try other alternatives of the match, like we would when the first operand of boolean || is false. To help with layout, you can include a redundant || before the first alternative. For example, if foo is { || Some(n) && n < 0 => -1 || Some(n) && n > 0 => +1 || Some(n) => 0 || None => 0 } Alternatively, if foo is { Some(n) && ( n < 0 => -1 || n > 0 => +1 || => 0 ) || None => 0 } (They should compile the same way.) The evaluation model is like familiar shortcutting && and || and the syntax is supposed to reinforce that intuition. The UCS paper spends a lot of time discussing backtracking and how to eliminate it, but penultimate conditionals evaluate straightforwardly from left to right. The paper briefly mentions as patterns, like Some(Pair(x, y) as p) which in Rust would be written Some(p @ Pair(x, y)) The is operator doesn’t need a separate syntax for this feature: Some(p is Pair(x, y)) For large examples, the penultimate conditional syntax is about as noisy as Rust’s match, but it scales down nicely to smaller matches. However, there are differences in how consequences and alternatives are punctuated which need a bit more discussion. dangling syntax The precedence and associativity of the is operator is tricky: it has two kinds of dangling-else problem. The first kind occurs with a surrounding boolean expression. For example, when b = false, what is the value of this? b is true || false It could bracket to the left, yielding false: (b is true) || false Or to the right, yielding true: b is { true || false } This could be disambiguated by using different spellings for boolean or and pattern alternatives. But that doesn’t help for the second kind which occurs with an inner match. foo is Some(_) && bar is Some(_) || None Does that check foo is Some(_) with an always-true look at bar ( foo is Some(_) ) && bar is { Some(_) || None } Or does it check bar is Some(_) and waste time with foo? foo is { Some(_) && ( bar is Some(_) ) || None } I have chosen to resolve the ambiguity by requiring curly braces {} around groups of alternative patterns. This allows me to use the same spelling || for all kinds of alternation. (Compare Rust, which uses || for boolean expressions, | in a pattern, and , between the arms of a match.) Curlies around multi-way matches can be nested, so the example in the previous section can also be written, if foo is { || Some(n) && n < 0 => -1 || Some(n) && n > 0 => +1 || { Some(0) || None } => 0 } The is operator binds tigher than && on its left, but looser than && on its right (so that a chain of && is gathered into a consequent) and tigher than || on its right so that outer || alternatives don’t need extra brackets. examples I’m going to finish these notes by going through the ultimate conditional syntax paper to translate most of its examples into the penultimate syntax, to give it some exercise. Here we use is to name a value n, as a replacement for the |> abs pipe operator, and we use range patterns instead of split relational operators: if foo(args) is { || 0 => "null" || n && abs(n) is { || 101.. => "large" || ..10 => "small" || => "medium" ) } In both the previous example and the next one, we have some extra brackets where UCS relies purely on an offside rule. if x is { || Right(None) => defaultValue || Right(Some(cached)) => f(cached) || Left(input) && compute(input) is { || None => defaultValue || Some(result) => f(result) } } This one is almost identical to UCS apart from the spellings of and, then, else. if name.startsWith("_") && name.tailOption is Some(namePostfix) && namePostfix.toIntOption is Some(index) && 0 <= index && index < arity && => Right([index, name]) || => Left("invalid identifier: " + name) Here are some nested multi-way matches with overlapping patterns and bound values: if e is { // ... || Lit(value) && Map.find_opt(value) is Some(result) => Some(result) // ... || { Lit(value) || Add(Lit(0), value) || Add(value, Lit(0)) } => { print_int(value); Some(value) } // ... } The next few examples show UCS splits without the is operator. In my syntax I need to press a few more buttons but I think that’s OK. if x == 0 => "zero" || x == 1 => "unit" || => "?" if x == 0 => "null" || x > 0 => "positive" || => "negative" if predicate(0, 1) => "A" || predicate(2, 3) => "B" || => "C" The first two can be written with is instead, but it’s not briefer: if x is { || 0 => "zero" || 1 => "unit" || => "?" } if x is { || 0 => "null" || 1.. => "positive" || => "negative" } There’s little need for a split-anything feature when we have multi-way matches. if foo(u, v, w) is { || Some(x) && x is { || Left(_) => "left-defined" || Right(_) => "right-defined" } || None => "undefined" } A more complete function: fn zip_with(f, xs, ys) { if [xs, ys] is { || [x :: xs, y :: ys] && zip_with(f, xs, ys) is Some(tail) => Some(f(x, y) :: tail) || [Nil, Nil] => Some(Nil) || => None } } Another fragment of the expression evaluator: if e is { // ... || Var(name) && Map.find_opt(env, name) is { || Some(Right(value)) => Some(value) || Some(Left(thunk)) => Some(thunk()) } || App(lhs, rhs) => // ... // ... } This expression is used in the paper to show how a UCS split is desugared: if Pair(x, y) is { || Pair(Some(xv), Some(yv)) => xv + yv || Pair(Some(xv), None) => xv || Pair(None, Some(yv)) => yv || Pair(None, None) => 0 } The desugaring in the paper introduces a lot of redundant tests. I would desugar straightforwardly, then rely on later optimizations to eliminate other redundancies such as the construction and immediate destruction of the pair: if Pair(x, y) is Pair(xx, yy) && xx is { || Some(xv) && yy is { || Some(yv) => xv + yv || None => xv } || None && yy is { || Some(yv) => yv || None => 0 } } Skipping ahead to the “non-trivial example” in the paper’s fig. 11: if e is { || Var(x) && context.get(x) is { || Some(IntVal(v)) => Left(v) || Some(BoolVal(v)) => Right(v) } || Lit(IntVal(v)) => Left(v) || Lit(BoolVal(v)) => Right(v) // ... } The next example in the paper compares C# relational patterns. Rust’s range patterns do a similar job, with the caveat that Rust’s ranges don’t have a syntax for exclusive lower bounds. fn classify(value) { if value is { || .. -4.0 => "too low" || 10.0 .. => "too high" || NaN => "unknown" || => "acceptable" } } I tend to think relational patterns are the better syntax than ranges. With relational patterns I can rewrite an earlier example like, if foo is { || Some(< 0) => -1 || Some(> 0) => +1 || { Some(0) || None } => 0 } I think with the UCS I would have to name the Some(_) value to be able to compare it, which suggests that relational patterns can be better than UCS split relational operators. Prefix-unary relational operators are also a nice way to write single-ended ranges in expressions. We could simply write both ends to get a complete range, like >= lo < hi or like if value is > -4.0 < 10.0 => "acceptable" || => "far out" Near the start I quoted a normalize example that illustrates left-aligned UCS expression. The penultimate version drifts right like the Scala version: if normalize(tp1) is { || Bot => Bot || tp1_n && normalize(tp2) is { || Bot => Bot || tp2_n && merge(tp1_n, tp2_n) is { || Some(tp) => tp || None => glb(tp1_n, tp2_n) } } } But a more Rusty style shows the benefits of early returns (especially the terse ? operator) and monadic combinators. let tp1 = normalize(tp1)?; let tp2 = normalize(tp2)?; merge(tp1, tp2) .unwrap_or_else(|| glb(tp1, tp2)) antepenultimate breath When I started writing these notes, my penultimate conditional syntax was little more than a sketch of an idea. Having gone through the previous section’s exercise, I think it has turned out better than I thought it might. The extra nesting from multi-way match braces doesn’t seem to be unbearably heavyweight. However, none of the examples have bulky then or else blocks which are where the extra nesting is more likely to be annoying. But then, as I said before it’s comparable to a Rust match: match scrutinee { pattern => { consequent } } if scrutinee is { || pattern => { consequent } } The || lines down the left margin are noisy, but hard to get rid of in the context of a curly-brace language. I can’t reduce them to | like OCaml because what would I use for bitwise OR? I don’t want presence or absence of flow control to depend on types or context. I kind of like Prolog / Erlang , for && and ; for ||, but that’s well outside what’s legible to mainstream programmers. So, dunno. Anyway, I think I’ve successfully found a syntax that does most of what UCS does, but much in a much simpler fashion.

a month ago 25 votes

More in programming

An Analysis of Links From The White House’s “Wire” Website

A little while back I heard about the White House launching their version of a Drudge Report style website called White House Wire. According to Axios, a White House official said the site’s purpose was to serve as “a place for supporters of the president’s agenda to get the real news all in one place”. So a link blog, if you will. As a self-professed connoisseur of websites and link blogs, this got me thinking: “I wonder what kind of links they’re considering as ‘real news’ and what they’re linking to?” So I decided to do quick analysis using Quadratic, a programmable spreadsheet where you can write code and return values to a 2d interface of rows and columns. I wrote some JavaScript to: Fetch the HTML page at whitehouse.gov/wire Parse it with cheerio Select all the external links on the page Return a list of links and their headline text In a few minutes I had a quick analysis of what kind of links were on the page: This immediately sparked my curiosity to know more about the meta information around the links, like: If you grouped all the links together, which sites get linked to the most? What kind of interesting data could you pull from the headlines they’re writing, like the most frequently used words? What if you did this analysis, but with snapshots of the website over time (rather than just the current moment)? So I got to building. Quadratic today doesn’t yet have the ability for your spreadsheet to run in the background on a schedule and append data. So I had to look elsewhere for a little extra functionality. My mind went to val.town which lets you write little scripts that can 1) run on a schedule (cron), 2) store information (blobs), and 3) retrieve stored information via their API. After a quick read of their docs, I figured out how to write a little script that’ll run once a day, scrape the site, and save the resulting HTML page in their key/value storage. From there, I was back to Quadratic writing code to talk to val.town’s API and retrieve my HTML, parse it, and turn it into good, structured data. There were some things I had to do, like: Fine-tune how I select all the editorial links on the page from the source HTML (I didn’t want, for example, to include external links to the White House’s social pages which appear on every page). This required a little finessing, but I eventually got a collection of links that corresponded to what I was seeing on the page. Parse the links and pull out the top-level domains so I could group links by domain occurrence. Create charts and graphs to visualize the structured data I had created. Selfish plug: Quadratic made this all super easy, as I could program in JavaScript and use third-party tools like tldts to do the analysis, all while visualizing my output on a 2d grid in real-time which made for a super fast feedback loop! Once I got all that done, I just had to sit back and wait for the HTML snapshots to begin accumulating! It’s been about a month and a half since I started this and I have about fifty days worth of data. The results? Here’s the top 10 domains that the White House Wire links to (by occurrence), from May 8 to June 24, 2025: youtube.com (133) foxnews.com (72) thepostmillennial.com (67) foxbusiness.com (66) breitbart.com (64) x.com (63) reuters.com (51) truthsocial.com (48) nypost.com (47) dailywire.com (36) From the links, here’s a word cloud of the most commonly recurring words in the link headlines: “trump” (343) “president” (145) “us” (134) “big” (131) “bill” (127) “beautiful” (113) “trumps” (92) “one” (72) “million” (57) “house” (56) The data and these graphs are all in my spreadsheet, so I can open it up whenever I want to see the latest data and re-run my script to pull the latest from val.town. In response to the new data that comes in, the spreadsheet automatically parses it, turn it into links, and updates the graphs. Cool! If you want to check out the spreadsheet — sorry! My API key for val.town is in it (“secrets management” is on the roadmap). But I created a duplicate where I inlined the data from the API (rather than the code which dynamically pulls it) which you can check out here at your convenience. Email · Mastodon · Bluesky

22 hours ago 2 votes
Building a container orchestrator

Kubernetes is not exactly the most fun piece of technology around. Learning it isn’t easy, and learning the surrounding ecosystem is even harder. Even those who have managed to tame it are still afraid of getting paged by an ETCD cluster corruption, a Kubelet certificate expiration, or the DNS breaking down (and somehow, it’s always the DNS). Samuel Sianipar If you’re like me, the thought of making your own orchestrator has crossed your mind a few times. The result would, of course, be a magical piece of technology that is both simple to learn and wouldn’t break down every weekend. Sadly, the task seems daunting. Kubernetes is a multi-million lines of code project which has been worked on for more than a decade. The good thing is someone wrote a book that can serve as a good starting point to explore the idea of building our own container orchestrator. This book is named “Build an Orchestrator in Go”, written by Tim Boring, published by Manning. The tasks The basic unit of our container orchestrator is called a “task”. A task represents a single container. It contains configuration data, like the container’s name, image and exposed ports. Most importantly, it indicates the container state, and so acts as a state machine. The state of a task can be Pending, Scheduled, Running, Completed or Failed. Each task will need to interact with a container runtime, through a client. In the book, we use Docker (aka Moby). The client will get its configuration from the task and then proceed to pull the image, create the container and start it. When it is time to finish the task, it will stop the container and remove it. The workers Above the task, we have workers. Each machine in the cluster runs a worker. Workers expose an API through which they receive commands. Those commands are added to a queue to be processed asynchronously. When the queue gets processed, the worker will start or stop tasks using the container client. In addition to exposing the ability to start and stop tasks, the worker must be able to list all the tasks running on it. This demands keeping a task database in the worker’s memory and updating it every time a task change’s state. The worker also needs to be able to provide information about its resources, like the available CPU and memory. The book suggests reading the /proc Linux file system using goprocinfo, but since I use a Mac, I used gopsutil. The manager On top of our cluster of workers, we have the manager. The manager also exposes an API, which allows us to start, stop, and list tasks on the cluster. Every time we want to create a new task, the manager will call a scheduler component. The scheduler has to list the workers that can accept more tasks, assign them a score by suitability and return the best one. When this is done, the manager will send the work to be done using the worker’s API. In the book, the author also suggests that the manager component should keep track of every tasks state by performing regular health checks. Health checks typically consist of querying an HTTP endpoint (i.e. /ready) and checking if it returns 200. In case a health check fails, the manager asks the worker to restart the task. I’m not sure if I agree with this idea. This could lead to the manager and worker having differing opinions about a task state. It will also cause scaling issues: the manager workload will have to grow linearly as we add tasks, and not just when we add workers. As far as I know, in Kubernetes, Kubelet (the equivalent of the worker here) is responsible for performing health checks. The CLI The last part of the project is to create a CLI to make sure our new orchestrator can be used without having to resort to firing up curl. The CLI needs to implement the following features: start a worker start a manager run a task in the cluster stop a task get the task status get the worker node status Using cobra makes this part fairly straightforward. It lets you create very modern feeling command-line apps, with properly formatted help commands and easy argument parsing. Once this is done, we almost have a fully functional orchestrator. We just need to add authentication. And maybe some kind of DaemonSet implementation would be nice. And a way to handle mounting volumes…

10 hours ago 2 votes
Digital hygiene: Emails

Email is your most important online account, so keep it clean.

6 hours ago 1 votes
AmigaGuide Reference Library

As I slowly but surely work towards the next release of my setcmd project for the Amiga (see the 68k branch for the gory details and my total noob-like C flailing around), I’ve made heavy use of documentation in the AmigaGuide format. Despite it’s age, it’s a great Amiga-native format and there’s a wealth of great information out there for things like the C API, as well as language guides and tutorials for tools like the Installer utility - and the AmigaGuide markup syntax itself. The only snag is, I had to have access to an Amiga (real or emulated), or install one of the various viewer programs on my laptops. Because like many, I spend a lot of time in a web browser and occasionally want to check something on my mobile phone, this is less than convenient. Fortunately, there’s a great AmigaGuideJS online viewer which renders AmigaGuide format documents using Javascript. I’ve started building up a collection of useful developer guides and other files in my own reference library so that I can access this documentation whenever I’m not at my Amiga or am coding in my “modern” dev environment. It’s really just for my own personal use, but I’ll be adding to it whenever I come across a useful piece of documentation so I hope it’s of some use to others as well! And on a related note, I now have a “unified” code-base so that SetCmd now builds and runs on 68k-based OS 3.x systems as well as OS 4.x PPC systems like my X5000. I need to: Tidy up my code and fix all the “TODO” stuff Update the Installer to run on OS 3.x systems Update the documentation Build a new package and upload to Aminet/OS4Depot Hopefully I’ll get that done in the next month or so. With the pressures of work and family life (and my other hobbies), progress has been a lot slower these last few years but I’m still really enjoying working on Amiga code and it’s great to have a fun personal project that’s there for me whenever I want to hack away at something for the sheer hell of it. I’ve learned a lot along the way and the AmigaOS is still an absolute joy to develop for. I even brought my X5000 to the most recent Kickstart Amiga User Group BBQ/meetup and had a fun day working on the code with fellow Amigans and enjoying some classic gaming & demos - there was also a MorphOS machine there, which I think will be my next target as the codebase is slowly becoming more portable. Just got to find some room in the “retro cave” now… This stuff is addictive :)

yesterday 4 votes
That boolean should probably be something else

One of the first types we learn about is the boolean. It's pretty natural to use, because boolean logic underpins much of modern computing. And yet, it's one of the types we should probably be using a lot less of. In almost every single instance when you use a boolean, it should be something else. The trick is figuring out what "something else" is. Doing this is worth the effort. It tells you a lot about your system, and it will improve your design (even if you end up using a boolean). There are a few possible types that come up often, hiding as booleans. Let's take a look at each of these, as well as the case where using a boolean does make sense. This isn't exhaustive—[1]there are surely other types that can make sense, too. Datetimes A lot of boolean data is representing a temporal event having happened. For example, websites often have you confirm your email. This may be stored as a boolean column, is_confirmed, in the database. It makes a lot of sense. But, you're throwing away data: when the confirmation happened. You can instead store when the user confirmed their email in a nullable column. You can still get the same information by checking whether the column is null. But you also get richer data for other purposes. Maybe you find out down the road that there was a bug in your confirmation process. You can use these timestamps to check which users would be affected by that, based on when their confirmation was stored. This is the one I've seen discussed the most of all these. We run into it with almost every database we design, after all. You can detect it by asking if an action has to occur for the boolean to change values, and if values can only change one time. If you have both of these, then it really looks like it is a datetime being transformed into a boolean. Store the datetime! Enums Much of the remaining boolean data indicates either what type something is, or its status. Is a user an admin or not? Check the is_admin column! Did that job fail? Check the failed column! Is the user allowed to take this action? Return a boolean for that, yes or no! These usually make more sense as an enum. Consider the admin case: this is really a user role, and you should have an enum for it. If it's a boolean, you're going to eventually need more columns, and you'll keep adding on other statuses. Oh, we had users and admins, but now we also need guest users and we need super-admins. With an enum, you can add those easily. enum UserRole { User, Admin, Guest, SuperAdmin, } And then you can usually use your tooling to make sure that all the new cases are covered in your code. With a boolean, you have to add more booleans, and then you have to make sure you find all the places where the old booleans were used and make sure they handle these new cases, too. Enums help you avoid these bugs. Job status is one that's pretty clearly an enum as well. If you use booleans, you'll have is_failed, is_started, is_queued, and on and on. Or you could just have one single field, status, which is an enum with the various statuses. (Note, though, that you probably do want timestamp fields for each of these events—but you're still best having the status stored explicitly as well.) This begins to resemble a state machine once you store the status, and it means that you can make much cleaner code and analyze things along state transition lines. And it's not just for storing in a database, either. If you're checking a user's permissions, you often return a boolean for that. fn check_permissions(user: User) -> bool { false // no one is allowed to do anything i guess } In this case, true means the user can do it and false means they can't. Usually. I think. But you can really start to have doubts here, and with any boolean, because the application logic meaning of the value cannot be inferred from the type. Instead, this can be represented as an enum, even when there are just two choices. enum PermissionCheck { Allowed, NotPermitted(reason: String), } As a bonus, though, if you use an enum? You can end up with richer information, like returning a reason for a permission check failing. And you are safe for future expansions of the enum, just like with roles. You can detect when something should be an enum a proliferation of booleans which are mutually exclusive or depend on one another. You'll see multiple columns which are all changed at the same time. Or you'll see a boolean which is returned and used for a long time. It's important to use enums here to keep your program maintainable and understandable. Conditionals But when should we use a boolean? I've mainly run into one case where it makes sense: when you're (temporarily) storing the result of a conditional expression for evaluation. This is in some ways an optimization, either for the computer (reuse a variable[2]) or for the programmer (make it more comprehensible by giving a name to a big conditional) by storing an intermediate value. Here's a contrived example where using a boolean as an intermediate value. fn calculate_user_data(user: User, records: RecordStore) { // this would be some nice long conditional, // but I don't have one. So variables it is! let user_can_do_this: bool = (a && b) && (c || !d); if user_can_do_this && records.ready() { // do the thing } else if user_can_do_this && records.in_progress() { // do another thing } else { // and something else! } } But even here in this contrived example, some enums would make more sense. I'd keep the boolean, probably, simply to give a name to what we're calculating. But the rest of it should be a match on an enum! * * * Sure, not every boolean should go away. There's probably no single rule in software design that is always true. But, we should be paying a lot more attention to booleans. They're sneaky. They feel like they make sense for our data, but they make sense for our logic. The data is usually something different underneath. By storing a boolean as our data, we're coupling that data tightly to our application logic. Instead, we should remain critical and ask what data the boolean depends on, and should we maybe store that instead? It comes easier with practice. Really, all good design does. A little thinking up front saves you a lot of time in the long run. I know that using an em-dash is treated as a sign of using LLMs. LLMs are never used for my writing. I just really like em-dashes and have a dedicated key for them on one of my keyboard layers. ↩ This one is probably best left to the compiler. ↩

yesterday 4 votes